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Abstract—With the development of spectral detection and
photoelectric imaging, multi-band spectrum is always degraded
by the random noise and band overlap during the acquisition
of spectrum devices. Owing to the fixed spectrum degrada-
tion model, the existing spectrum deconvolution technologies
are sensitive to the handcrafted model designed and manually
selected parameters. The fundamental cause of these limitations
during spectral analysis is that spectral processing is limited by
one-dimensional signal without structural information available
and insufficient training samples. In this paper, a dual stream
neural network is proposed to reconstruct the original infrared
spectroscopy, which effectively strengthens the capability to
represent the feature of infrared spectrum. A novel activation
function is proposed to realize the function of the dual stream
network. Furthermore, a heuristic learning strategy from the
perspective of balanced self-paced learning is exploited to help
network train from simple to difficult, resolving the problem
of high sample repeatability. Compared with other traditional
methods, the experimental results show that our network can
achieve state-of-the-art reconstruction result and fairly excellent
performance in terms of the corresponding index within synectics
and real spectrum experiments.

Index Terms—Spectral Deconvolution, Industrial Spectrum,
Dual Stream Network

I. INTRODUCTION

BASED on the great accuracy in distinguishing the chem-
ical composition and molecular structure, spectrum is

widely use in various areas, such as liquid detection [1],
medicine testing [2], chemicals structure analysis [3], biolog-
ical materials [4], medical image [5], food quality [6] and
so on. However, in the process of obtaining the spectrum,
the spectrum is often degraded by many objective factors: the
tremble of spectrometer and natural random noise (so called
the instrument broadening function (IBF)). The degraded spec-
trums make it difficult to get accurate information of structure
and molecule. To handle with this problem, a large number
of reconstruction algorithms have been proposed to recover
the peak or valley and preserve the spectrum structure details.
Recently, deconvolution method has received considerable
critical attention in the field of signal recovery for long time.
The core idea of the deconvolution method is to simulate the
process of convolution to recover the degraded spectrum.
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In general, the existing deconvolution methods can be classi-
fied into non-blind deconvolution (NBD), blind deconvolution
(BD) and semi-blind deconvolution (SBD). For NBD method,
the Fourier self-deconvolution (FSD) [7] method is one of the
simplest deconvolution techniques to process spectroscopic.
According to these studies, maximum burg entropy decon-
volution (MaxEntD) [8] method was proposed to resolve
the spectral deconvolution problem. However, these methods
mentioned above all rely on the prior knowledge of frequency
domain information and spectral domain information. In the
case of few available samples, the non-blind model relies
too much on prior knowledge, which leads to overfitting and
poor robust performance. In order to minimize the impact
of this limitation, many SBD methods[9] [10] [11] based on
various regularizations have been developed to solve problems
such as over-fitting caused by excessive reliance on prior
knowledge. However, the uncertain blur kernel will cause poor
reconstruction results under non-gaussian like IBF assumption.

Recently, blind deconvolution methods became more and
more popular in the field of deconvolution without fixed IBF
in advance. The BD methods estimate the blur kernel and clean
spectrum data simultaneously from the observation spectrum
without any prior knowledge. Therefore, blind deconvolution
(BD) [12], [13] [14][15]methods are considered to be a more
reasonable method in practical applications. But the unknown
IBF and latent spectral information make the learning process
difficult. Generally speaking, all of the above methods have
their own limitations more or less. These limitations are mainly
reflected in: single processing mode, relying on prior knowl-
edge, manually designing parameters, and high computational
complexity for iterative optimization. Thus, our goal is to
propose a spectrum deconvolution method regardless of any
kind of IBF and noises.

In the last few years, with the rapid development of neural
networks, the application of neural network has applied to
various such filed. Some neural networks which used to
image processing have been proposed, including stacked auto-
encoder structure [16], convolutional neural network [17],
fully convolutional network [18]. By summarizing the process
of these networks, data-driven works enable the desirable
behaviors in tailoring the task from the perspective of feature
representation strategies and sample learning modes. Moti-
vated by the scale-variant of network design, like Lin et al. [19]
proposed feature pyramid network to object detection. This
feature pyramid network (FPN) was designed to solve multi-
scale problem in small object detection by concatenating the
feature map of each resolution. Various of scale-variant meth-
ods dominates the feature representation strategies domain
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Fig. 1. The framework of our proposed dual stream spectrum deconvolution neural network. At first, we convert the one-dimensional spectrum into matrix
and initialization. The input is redirected into stream A and stream B. the output is obtained by adding the result of two streams. Network structure of every
stream is symmetric about the coding layer (the middle hidden layer). Therefore, the output spectrum and the input degraded infrared spectrum have the same
length.

in general network design. Unfortunately, due to the one-
dimensional continuity of different frequency bands for spec-
trum processing, scale-variant approach mentioned above is
not optimal for infrared spectrum to extracting feature. In [20],
they proposed a lightweight dilated convolution module to deal
with the spectral deconvolution (SD) problem. Although this
method has achieved superior performance to the recovery
of infrared spectral signals, this dilated convolution module
focuses on the local features of the spectrum. For the one-
dimensional spectrum, global features of spectrum are more
significant than local features. Thus, in this work, two new
problems are mainly focused on from the perspective of data-
driven manner: 1: how to enrich sample features and sharp
knowledge over spectrum; 2: how to solve sample problems
through heuristic sample learning strategy in signal domain,
such as self-paced learning [21].

In this paper, in order to overcome the lack of prior
knowledge and the complexity of manual design of model, the
data-driven method is used. The data-driven method of spectral
deconvolution eliminates the need for complex convolution
theory, and only using data to train neural networks can surpass
the effects of artificially designed network models. The main
contributions in this paper are presented as follows:

• A symmetrical dual stream neural network stream is
proposed to enhance feature extraction for spectrum,
including peaks and flat areas. In order to simplify the
network, a novel activation function is proposed to realize
the function of the symmetrical dual stream network.
It can ensure the effectiveness of feature extraction and
make network having a faster processing speed than other
convolution networks.

• A more reasonable learning strategy, balanced self-paced
learning [22], is quoted into our objective loss function
to resolve the problem of high sample repeatability.

II. MOTIVATION

With the rapid development of deep learning, many related
methods have been proposed for various practical application
scenarios. In [23], a bilinear CNN model is proposed to refine
visual recognition. The network architecture consists of two

feature extractors. Each feature extractor can be viewed as
a CNN whose output is multiplied by the output of each
CNN. In this way, a recognition architecture is proposed,
which is composed of two feature extractors. The output of
these feature extractors is multiplied by an external product
at each position of the image, and then combined to ob-
tain an image descriptor. The differences in feature richness
between the spectral signal and the image are taken into
account. A dual stream network is proposed to extract spectral
features and connect the output with each network stream.
The architecture of each network stream is similar to auto-
encoder [24]. Autoencoder is a kind of network that plays
a vital role in deep learning. Several studies have shown its
advantages in feature extraction and processing. Unlike the
autoencoder network structure, the corresponding parameters
of the network are trained in a supervised mode. Since our
network extracts features separately from the low-frequency
information and high-frequency information in the spectral
signal, it greatly improves the ability of our model to pay
attention to high- and low-frequency information. Each of the
dual stream networks is regarded as a separate CNN, so it has
a higher anti-interference ability against noise.

In terms of learning strategy, in [20], self-paced learning is
used to accelerate the model convergence speed. In this work,
considering the impact of sample repetition on the training
process, this paper decided to adopt another similar learning
strategy, self-paced learning to solve this problem.

III. OUR APPROACH TO SPECTRUM DECONVOLUTION

A. Network Architecture

The overall Framework of the network is shown in Fig.1.
The basic structure of our network is similar to the auto-
encoder. But different from auto-encoder, supervised feature
representation is mainly considered in our work during training
process. Our neural network consists of two parts: an encoder
(recognition network) and a decoder (generative network). The
encoder converts the input into a simpler, internal representa-
tion, and the decoder is responsible for producing the output
from the internal representation. Note that the hidden layer
must have less neuron in order to force the network to learn
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the most important features in the data. That way, it cannot
trivially copy the input to the output. Since the hidden layer
has a lower dimensionality than the output, the auto-encoder is
said to be under-complete. Just like other neural networks, this
network can also have multiple hidden layers. More hidden
layers will allow the network to learn more complex features.
For spectrum signals, if too many hidden layers embedding
in the designed network are likely to be overfitting for the
training. Indeed, only this single architecture may be difficult
in learning a latent representation from the training samples
directly.

Hence, the inversed stream that mentioned in the neural
network architecture is added to settle this limitation. The
inversed stream is used to learn the corresponding clean atoms
by detecting inversed blurry input patterns. The basic ideal of
inverse stream is that for the same hidden layer, another neural
nodes are introduced, which receive opposite input and output
weights to model two-factor variations for spectrum. Hence,
this model can extract the corresponding information for
spectrum more efficient. According to the activation function
in hidden layer, instead of using tanh or sigmoid, rectified
linear unit (ReLU) is proved to handle vanishing gradient
problem. Next, a novel activation function will be proposed
which can realize this inversed stream architecture.

Considering the complexity of the derivation process, this
activation function is introduced based on a hidden layer
network structure. As shown in Fig.2. The ability of our neural
network to extract the high and low frequency features of the
infrared spectrum can be shown clearly in the figures. In this
way, the forward propagation can be described as follows:

Y = [W2 −W2]h

([
W1

−W1

]
X̃ +

[
bu1
bl1

])
+ b2 (1)

where X̃ is the input, Y is the corresponding output
from the last layer. And W1,W2, b

u
1 , b

l
1, b2 denote the matrix

parameters that need to be learned in network, in which bu1 , b
l
1

represent the bias that corresponding to the upper stream
and lower stream in hidden layer respectively. h (x) is the
rectified linear unit (ReLU) max (0, x). According the above
formulation, a novel function is proposed with a trainable
parameter t to combine these two streams into one unified
framework:

g (x) = max(0, x+ t)−max(0,−x+ t) (2)

Let t =
(
bu1 + bl1

)/
2. Then, the forward propagation can be

transformed as follows:

Y =W2g

(
W1X +

bu1 − bl1
2

)
+ b2 (3)

According to the above derivation process, this function
is depicted with different parameter t in Fig.3. During the
training process, all of the parameters in the process of
forward propagation can be learned by using back-propagation
algorithm, minimizing the empirical squared error between ob-
tained degraded infrared spectrometers and the corresponding
label. The partial derivative of g(x) with respect to t can be
written as follows:
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Fig. 2. Understanding the architecture of the dual stream neural network with
hidden layers. (a). The original infrared spectrum. (b). The degraded infrared
spectrum under noisy condition. (c). The corresponding high frequency of
the infrared spectrum extracted by the stream A neural network. (d). The
corresponding low frequency of the infrared spectrum extracted by the stream
B neural network. (e). The output of the neural network

∂g (x)

∂t
=

{
0

sgn(x)
x ≤ |t|
x > |t| (4)

Compared with using two rectified linear units (ReLU),
this novel activation function reduces the number of model
parameters by a large factor while preserving the architecture
of inverse stream and simplifies the gradients in the training
process. It not only has the advantages of ReLu activation
function: nonlinear, easy to derive, but also shortens the
training steps: A unified network with a novel activation
function can be used instead of a dual stream neural network
to share neuron weights and reduce the number of forward
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Fig. 3. Activation function with the parameter t, (a). t is nonnegative (t=1).
(b). t is zero (t=0). (c). t is negative (t=-1).

and back propagation, making the dual stream network more
compact and more integrated, rather than two separate parts.

B. Objective Loss Function with Balanced Self-paced Learn-
ing

Inspired by above theory of self-paced learning, the key
principle of self-paced learning is used to optimize the objec-
tive function. This improvement could help our model become
more comprehensively to solve spectrum deconvolution prob-
lem. Formally, given an output of the network f (xi, w), w
represents all the parameters in our network. xi, yi denotes the
ith degraded spectrum and ground truth in the training process.
N is the number of training sample in data set. Therefore, the
loss function can be formulated as follows:

L (yi, f (xi, w)) =
1

2N

∑
i=1

(yi − f (xi, w))2 (5)

Obviously, the loss function is the mean-square er-
ror (MSE). In order to represent briefly, letting li =
L (yi, f (xi, w)) in the following section. Based on the loss
function and the methodology of standard self-paced learning
(SPL), the objective function is reconstructed by adding a
hard self-paced regularization term and weighted loss function
term into the loss function. The objective loss function can be
written as:

E (w, v; η) = argmin

n∑
i=1

vili − ηvi (6)

In this objective function, as mentioned in above section,
the parameter η is a threshold (age parameter) that controls
the learning pace. At the same time, the difference of sample
can be got by computing the mean-square error (MSE) of
samples. The value of η is the latent weight variable in the self-
paced learning (SPL), which decide whether the input samples
can be selected or not. If li < η, the self-paced learning
parameter is vi = 1, otherwise vi = 0. While this improvement
could help the model dynamically build a robust self-paced
learning (SPL) system, there is an issue existing in the process
of training. The self-paced learning (SPL) could be seen as
selector that get easier samples. That is to say, the neural
network may select only a few easier samples repeatedly
under the influence of self-paced learning. To handle this
limitation, a penalty term is added into the objective function
that balances the lack of sample diversity, named balanced

self-paced learning (BSPL) [22]. Intentionally, the objective
loss function can be transformed as follow:

E (w, v; η, λ) = argmin

n∑
i=1

vili − ηvi + λ

n∑
i=1

|vi|2 (7)

where λ is the hyper-parameter, the component of the balanced
self-paced learning objective loss function can be divided
into two regularization terms. The first term is responsible
for selecting easier samples and the second term penalizes
the training samples with more selected. Thus, the proposed
objective function considers both the easiness and diversity
of selected samples to remove redundant information and
accelerate training steps. Based on the objective loss function,
the global optimum solution for this optimization problem can
be derived as follows:

vi =

 0,
η − li/2λ,

1,

li ≥ η − 2λ (q − 1)
η − 2λq ≤ li < η − 2λ (q − 1)

li < η − 2λq
(8)

q ∈ {1 · ··, n} is the sorted index based on the loss values
{l1, · · ·, ln} in the kth training sample. This formula can
intuitively explain the advantages of this optimization, which
can classify samples according to the size of the sample loss. If
the loss of training sample is less or greater than the threshold
η − 2λq/η − 2λ (q − 1), the sample would be considered as
easy or difficult sample and are selected or not selected into the
neural network. Otherwise, the sample would be considered as
medium condition that is between easy and difficult.

C. Training of Neural Network

The manually degraded infrared spectral data sets are put
into training in our work. Based on the methodology of
degraded spectrum model, the process of spectral degradation
is simulated by appending different blur kernels, such as
Gaussian blur and Lorentz blur, to the clean infrared spectrum;
the original clean infrared spectra are gained from high pre-
cision infrared spectrometer. The specific scheme of updating
parameter is illustrated in Fig.4. In order to get the global
optimal solution, Mini-Batch Gradient Descent (MBGD) is
used to update the parameter. Hence, all the training samples
are divided into many batches; every batch contains several de-
graded spectrums. Meanwhile, the BatchNormalization (BN)
aims to solve the inefficient training. It normalizes the statisti-
cal distribution of all samples to reduce the difference between
different samples in the batch. Therefore, BatchNormalization
(BN) allows to use a large learning rate for training during the
training process.

B
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Fig. 4. Computing the gradients of dual stream network in the model and
transform it into a more concise solution.
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Fig. 5. Ablation study: (a).The test dataset loss comparison between Single stream and Dual stream (Both have the same hyper parameters and the number
of neurons) during the training process. (b).The test dataset loss comparison on different numbers of neurons during the training process. (c).Comparison
between No-BSPL (Our method without Balanced Self-Paced Learning) and With-BSPL (Our method with Balanced Self-Paced Learning during the training
process).

Algorithm 1 The optimization of our method

Step 1. Initialize the parameters of network, age parameter
η and weight factor v.
Step 2. Carrying out the forward propagation and calculate
the loss function of training samples.
Step 3. Decide whether the sample can be selected by
comparing loss function with age parameter η.
Step 4. If selected, update the parameter by Mini-Batch Gra-
dient Descent (MBGD), else, reselect the training sample to
repeat step2 until the v is not equal to 0.
Step 5. Update η = kη, k > 1 .
Step 6. Repeat step2 to step5 until the test samples can
converge to a certain value of root mean square error
(RMSE), and then save the corresponding parameters.

According to the iterating algorithm, alternative learning
approach is used to update the parameters, hence, the process
of updating parameter (w, v) can be divided into two parts:
1) If the w is fixed, the self-paced learning parameter v can
be determined by comparing the loss function of train sample
with age parameter η, that is say, the train sample would be
labeled or unlabeled. 2) Based on the label train samples and
fixed parameter v, all the network parameters (w) including
weights (W1,W2), biases (bu1 , b

l
1, b2), extra parameter(t) would

be learned by back propagation algorithm. Network training
follows the basic principle of gradient decent, because the
derivatives of each activation function exist, as long as the
learning rate is controlled, the convergence of the network
can be guaranteed.

Based on these theories, the optimization of our proposed
method can be formulated as algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

Our proposed method is based on deep learning neural
network training, in which the parameters involved have
weight value w, bias b, and additional parameter t. In order to
avoid the impact of overfitting on the model but also to ensure
the accuracy of the model, the number of neural network
nodes trained in the model is 300. Because there is no unified
dataset, the dataset used in our work contains 24696 pieces of

spectral data from the Internet and from our own collection.
The wavenumber of each spectral data is 1211. In order to
imitate the situation under different noises, degraded spectral
data are generated by adding different kinds of noise. During
the training process, the mini batch size and learning rate is
set to 256 and 0.00001. Parameter initialization obeys normal
distribution. Our methods is implemented with Matlab 2017a
and all the experiments are run on a PC equipped with Intel
i7 7700 CPU, 32GB RAM and a single NVIDIA GTX 1070
GPU. Several deconvolution methods for spectral resolution
enhancement, SBD-MHS [25], SBD-HS [26], MaxEntD [8],
DSPNet [20] are chosen for comparison with the proposed
method. The training of all models follow the criteria of the
original papers. To compare the performance of our method
with other methods quantitatively, there are several indexes to
evaluate the reconstructed spectral quality: root mean square
error (RMSE), weighted correlation coefficient (WCC), and
correlation coefficient (CC). For RMSE, WCC and CC (The
details can be found in [20]), the range of them is zero to one.

B. Ablation Study

In order to compare the performance between single stream
and dual stream, a single stream network is designed with the
same hidden nodes of dual stream network. The comparison of
results are shown in Fig.5(a), the performance of our proposed
dual stream structure is shown clearly. The loss of dual stream
is always lower than that of single stream, it proves that the
dual stream network can extract more useful features and have
a better and faster performance.

In order to compare the performance of network with dif-
ferent numbers of hidden neurons, the experiments with same
training process and different numbers of hidden neurons are
designed. The results are shown in Fig.5(b). The picture shows
that when the number of hidden neurons exceeds 300, there
is little change between network losses. In order to reduce the
phenomenon of network overfitting, but also to speed up the
network speed and ensure the accuracy of the network, 300 is
the most appropriate number of hidden neurons.

In the Fig.5(c), we compare the impact of balanced self-
learning. It is evident that, at the beginning of learning
state, our method has faster convergence rate. In general, the
BSPL model accelerates the learning process and prevents
the network falling into the local minimization value. This
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improvement could help the model automatically adjust its
course materials, establishing a sound BSPL system.

C. Deconvolution of Single Blur Kernel Spectrum
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Fig. 6. Infrared spectrum experiments under no noisy condition (mixed mixed
blur kernel:ρgauss = 8, (a) Original spectrum, (b) Degraded spectrum under
noisy condition var = 10, (c) Recovery spectrum of SBD-HS , (d) Recovery
spectrum of MaxEntD, (e) Recovery spectrum of DSPNet , (f) The results of
our method
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Fig. 7. Infrared spectrum experiments under noisy condition(mixed mixed
blur kernel:ρgauss = 7, ρlorentz = 7, (a) Original spectrum, (b) Degraded
spectrum under noisy condition, (c) recovery spectrum of SBD-MHS , (d)
recovery spectrum of MaxEntD, (e) recovery spectrum of DSPNet , (f) the
results of our method

TABLE I
AVERAGE PERFORMANCE COMPARISON UNDER MIXED KERNELS

(ρgau = 8).

Noise level Method RMSE CC WCC

Noise- free

SBD-HS 0.0134 0.9610 0.9514
SBD-MHS 0.0209 0.9217 0.9087
MaxEntD 0.0094 0.9718 0.9713
DSPNet 0.0211 0.9638 0.9718
OurMethod 0.0066 0.9927 0.9916

V ar = 10

SBD-HS 0.0136 0.9586 0.9518
SBD-MHS 0.0214 0.9176 0.9053
MaxEntD 0.0097 0.9786 0.9749
DSPNet 0.0220 0.9629 0.9700
OurMethod 0.0066 0.9927 0.9915

The deconvolution results of single blur kernel spectrum are
illustrated in Fig.6 and Table. I. The Fig. 6(b) is the degraded

spectrum, involving with a Gaussian-shape instrument function
ρgauss = 8 with a Gaussian noise var = 10. It can be seen
in Fig. 6(c), the SBD-HS method restores the valley position
well marked in Fig. 6(c). The DSPNet cannot remove noise
well in the flat area of the spectral signal. Through the above
experimental results and related indicators, our method gets
better performance especially in the recovery of small details.

D. Deconvolution of Mixed Blur Kernel Spectrum
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Fig. 8. The part of deconvolution results about Fig. 7 for different methods,
the part of spectrum is from 200 cm−1 to 500 cm−1 The (a) SBD-MHS,
(b)MaxEntD, (c) DSPNet, (d) OurMethod

In order to verify robustness of our method under complex
situations. the mixed blur kernel experiments are proposed,
whether additive Gaussian noise or no noise, to realize it. Ac-
cording to the spectral degraded model, the degraded spectrum
is degraded spectrum by Gaussian and Lorentzian blur kernel
together.

As indicated by the arrows in Fig.7 and Either SBD-
MHS or MaxEntD, these two methods can not recover it
well in the area of valley, for example, the SBD-MHS can
not recovery the degraded area well as over-smooth and the
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TABLE II
THE PERFORMANCE OF DIFFERENT METHODS UNDER VARIOUS SITUATION

Method ρGau ρLor Noise level RMSE CC WCC

SBD-HS

5 6 Noise-free 0.0113 0.9662 0.9583
Var=0.01 0.0121 0.9607 0.9559

5 7 Noise-free 0.0119 0.9655 0.9564
Var=0.01 0.0125 0.9606 0.9552

6 6 Noise-free 0.0117 0.9651 0.9562
Var=0.01 0.0121 0.9625 0.9571

6 7 Noise-free 0.0117 0.9651 0.9562
Var=0.01 0.0121 0.9625 0.9571

7 5 Noise-free 0.0117 0.9651 0.9562
Var=0.01 0.0121 0.9625 0.9571

7 7 Noise-free 0.0117 0.9651 0.9562
Var=0.01 0.0121 0.9625 0.9571

SBD-MHS

5 6 Noise-free 0.0168 0.9426 0.9350
Var=0.01 0.0170 0.9405 0.9332

5 7 Noise-free 0.0179 0.9375 0.9275
Var=0.01 0.0181 0.9343 0.9251

6 6 Noise-free 0.0173 0.9406 0.9309
Var=0.01 0.0174 0.9375 0.9292

6 7 Noise-free 0.0180 0.9366 0.9260
Var=0.01 0.0183 0.9346 0.9252

7 5 Noise-free 0.0176 0.9375 0.9291
Var=0.01 0.0175 0.9366 0.9275

7 7 Noise-free 0.0186 0.9338 0.9227
Var=0.01 0.0192 0.9306 0.9210

MaxEntD

5 6 Noise-free 0.0088 0.9758 0.9722
Var=0.01 0.0109 0.9801 0.9691

5 7 Noise-free 0.0085 0.9763 0.9766
Var=0.01 0.0105 0.9801 0.9749

6 6 Noise-free 0.0086 0.9753 0.9717
Var=0.01 0.0103 0.9794 0.9705

6 7 Noise-free 0.0085 0.9762 0.9767
Var=0.01 0.0106 0.9797 0.9731

7 5 Noise-free 0.0083 0.9761 0.9750
Var=0.01 0.0098 0.9820 0.9751

7 7 Noise-free 0.0085 0.9753 0.9772
Var=0.01 0.0101 0.9814 0.9778

DSPNet

5 6 Noise-free 0.0203 0.9723 0.9811
Var=0.01 0.0212 0.9714 0.9792

5 7 Noise-free 0.0203 0.9735 0.9821
Var=0.01 0.0213 0.9726 0.9801

6 6 Noise-free 0.0203 0.9732 0.9817
Var=0.01 0.0213 0.9722 0.9798

6 7 Noise-free 0.0204 0.9738 0.9819
Var=0.01 0.0214 0.9799 0.9799

7 5 Noise-free 0.0203 0.9730 0.9815
Var=0.01 0.0213 0.9720 0.9796

7 7 Noise-free 0.0206 0.9738 0.9813
Var=0.01 0.0216 0.9727 0.9791

OurMethod

5 6 Noise-free 0.0044 0.9962 0.9944
Var=0.01 0.0044 0.9962 0.9944

5 7 Noise-free 0.0044 0.9959 0.9931
Var=0.01 0.0044 0.9959 0.9931

6 6 Noise-free 0.0044 0.9960 0.9934
Var=0.01 0.0044 0.9960 0.9934

6 7 Noise-free 0.0046 0.9954 0.9915
Var=0.01 0.0046 0.9954 0.9915

7 5 Noise-free 0.0044 0.9959 0.9934
Var=0.01 0.0044 0.9959 0.9934

7 7 Noise-free 0.0050 0.9947 0.9895
Var=0.01 0.0050 0.9947 0.9895

MaxEntD leaves a lot of random noise at the peak position.
Simultaneously, as can be seen in Table II, it is clear that our
method exhibits excellent performance in the case of mixed
convolution kernels in various situation. At the same time,
our method has the same index result for noisy degraded

spectrum and no noisy degraded spectrum. However, it does
not mean that the restored spectra in these two cases are
exactly identical. They are different in some small detail areas.

TABLE III
COMPARISON OF POSITION AND INTENSITY FOR PEAK DISTORTIONS IN

FIG. 8 (ρgau = 8, var = 10 ).

Peak positions Method A(305) B(372) C(392) RMSE

Position1

SBD-MHS -1 -1 +1 1
MaxEntD -4 -1 +1 2.4504
DSPNet -7 -1 +2 4.2426
OurMethod -1 -2 +2 1.2901

Intensity2

SBD-MHS +0.0452 -0.0649 0.1028 0.0749
MaxEntD +0.0501 +0.0053 +0.0100 0.0297
DSPNet -0.0577 -0.0593 -0.0649 0.0375
OurMethod +0.0177 -0.0071 +0.0243 0.0140

1 In cm−1, obtained from the band maximum.
2 “+” or “-” indicates larger or smaller than the original, respectively.

In order to further prove the superiority of our method in
deconvolution problem. Experiments about the position and
intensity of the peaks and valleys are designed. Table III and
Fig.8 represent the peak distortion from the perspective of
vision and data. The values of intensity and position for three
peaks (A, B and C) are noted. It can be seen from the Table III
that our approach has a lower RMSE for position and intensity.
Thus, according to the above experiments, our method is
robust and can be applied to various complex situations.

E. Real Spectrum Experiment

In the final stage of this work, real spectrum experiments
are conducted to test the effectiveness of the proposed method.
These real spectra are obtained from an aged Fourier transform
infrared spectrometer.

1) Real Degraded Spectrum: These two spectra are good
materials for testing the performances of our method. In Fig.
9 (a), the marked part of the spectrum is too smooth and
the peaks seem to have been hidden seriously. It is extremely
possible to find peaks here. Additionally, in Fig. 9 (c), there
are two obvious overlaps in the spectrum which is marked.

2) Real Spectrum Results: As can be seen in Fig. 9 (b),
there are three hidden peaks are found by our method, and
the split peaks are marked with a star. In Fig. 9 (d), the
original shallow peak is deeper now, and the overlap is split
well. The split peaks are beneficial to indicate the property of
the spectrum. However, there are still some problems, such as
artificial noise and remaining overlap. Our method does not
get a good grade in the part to be split in Fig. 9 (b). There
is artificial noise in the reconstructed spectra which is marked
with a square. In a word, our method could detect most overlap
in real spectrum. Our method has a competitive performance
compared with traditional approaches.

F. Limitations

Although our network has a great improvement in training
and testing results compared with other methods, there is
still a phenomenon that the deconvolution result is too high
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Fig. 9. Real Raman spectrum experiments. (a) Part of spectrum L(+)-
Arabinofuranose from 2700 to 2900 cm-1 (b) Result of our method. (c) Part
of spectrum D(-)-Ribose from 2400 to 2800 cm-1 (d) Result of our method.

or too low sometimes for the real degraded spectrum. The
deconvolution results of complex wave can not be completely
restored. Owing to the limitations, future work will focus
on dealing with complex waves to make the network more
general.

V. CONCLUSION

In this article, a new dual stream deconvolution spectrum
analysis network is proposed. By strengthening the ability to
express spectral characteristics, it greatly retains the high and
low frequency information of the spectrum with strong anti-
interference ability. A novel activation function is proposed
to achieve the architecture of dual stream network. This
activation function can let the hidden neural nodes receive the
opposite input and weight. Regarding sample utilization, the
proposed heuristic learning strategy uses self-defined sched-
ule learning to solve the difficult problems of high sample
repeatability. Through different comparative experiments, our
model can also achieve good results compared with the latest
methods. In the future, the disadvantages of the network and
application of various fields will be focused.
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