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Abstract—Soft sensor, as an important paradigm for
industrial intelligence, is widely used in industrial pro-
duction to achieve efficient monitoring and prediction of
production status including product quality. Data-driven
soft sensor methods have attracted attention, which still
have challenges because of complex industrial data with
diverse characteristics, nonlinear relationships, and mas-
sive unlabeled samples. In this article, a data-driven self-
supervised long short-term memory–deep factorization ma-
chine (LSTM-DeepFM) model is proposed for industrial soft
sensor, in which a framework mainly including pretraining
and finetuning stages is proposed to explore diverse in-
dustrial data characteristics. In the pretraining stage, an
LSTM-autoencoder is first unsupervised pretrained. Then,
based on two self-supervised mask strategies, LSTM-deep
can explore the interdependencies between features as well
as the dynamic fluctuation in time series. In the finetun-
ing stage, relying on pretrained representation, the tem-
poral, high-dimensional, and low-dimensional features can
be extracted from the LSTM, deep, and FM components,
respectively. Finally, experiments on the real-world mining
dataset demonstrate that the proposed method achieves
state of the art comparing with stacked autoencoder-based
models, variational autoencoder-based models, semisuper-
vised parallel DeepFM, etc.

Index Terms—Deep learning, industrial big data, in-
dustrial intelligence, product quality prediction, self-
supervised learning, soft sensor.

I. INTRODUCTION

PRODUCTION status prediction, such as product quality
prediction, is critical for high-quality product delivery and

core competencies [1]. In the mining and chemical industries,
fast and effective prediction provides engineers with informa-
tion to take early action to control state variables, then further
improving product quality [2]. However, traditional methods of
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product quality prediction, relying on offline laboratory analysis,
are generally untimely. In recent years, soft sensors [3] have
been widely used to estimate critical quality variables that are
not measurable in industrial processes.

Soft sensors combine hardware sensors and computer pro-
grams, thus enabling real-time prediction and cost reduction [4].
Approaches of soft sensors can be mainly divided into model-
driven and data-driven methods. Model-driven approaches are
mainly based on the theoretical hypotheses and experimental
tests. And they are often difficult and time-consuming, hence
are not suitable for complex industrial production systems [5].
In contrast, by modeling with easily measurable process vari-
ables and laboratory quality analysis results, data-driven ap-
proaches can provide a reliable and stable online estimation.
Therefore, data-driven approaches are widely used in complex
situations.

However, due to the complex characteristics of industrial data,
data-driven approaches usually have difficulties in modeling.
For example, froth flotation is an important industrial process in
the mining industry. It uses the hydrophilic differences between
minerals and impurities to purify useful minerals. However, ow-
ing to complex physiochemical reaction mechanisms, industrial
process data are naturally low quality and high noise with high
nonlinear temporal correlations. Moreover, due to the inefficient
laboratory analysis, the sampling rate of quality variable is lower
than that of process variables. Thus, the unlabeled data are
abundant and usually much more than the labeled data. These
problems greatly limit the application of soft sensors in industrial
processes.

Fortunately, several methods have been proposed to deal with
the large amounts of unlabeled data as well as complex industrial
data feature modeling problems. For example, co-training [6]
is a popular semisupervised learning algorithm that can aug-
ment the unlabeled samples with multiple training iterations.
Besides, methods based on generative models [7], [8] are also
commonly used to solve the lack of labeled samples. In [9],
the variational autoencoder (VAE)-based methods fit the data
to a finite-dimensional mixed Gaussian distribution. Thus, ar-
tificial samples can be obtained by randomly sampling from
the distribution. In addition, to cope with the complex data
characteristics, an improved long short-term memory (LSTM)
with the VAE [10] is designed to extract the complex temporal
information in the industrial time series, whereas semisuper-
vised parallel DeepFM (SS-PdeepFM) [11] is used to extract
low-dimensional and high-dimensional features in a single time
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step. In summary, there are still several major challenges with
existing data-driven approaches, which are as follows.

First, many current models have been proposed to deal with
a wide range of industrial data characteristics (e.g., temporal
correlations of data sequences, low quality and high noise, and
large amounts of unlabeled data). However, the abovementioned
models only analyze and model a specific characteristic of
industrial data, and cannot achieve fusion learning of various
industrial data characteristics. Especially, since the industrial
structures become increasingly complicated, there is still lack-
ing a systematic soft sensor framework for complex industrial
process prediction with diverse data characteristics.

Second, most existing models are usually modeled from time
series or a single time step. It is crucial to consider the dynamic
temporal correlations across all time steps as well as the intrinsic
nonlinear relationships of the key indicator and process variables
at each time step. However, there are few models that consider
these two relationships at the same time.

Third, some semisupervised learning methods (e.g., co-
training and graph-based methods) are not suitable for noisy
data or few labeled samples scenes. And some methods, such as
traditional autoencoders, can only reconstruct the input but lack
effective mining of interdependent relationships of features and
time series.

To solve the abovementioned problems, a data-driven self-
supervised LSTM-deep factorization machine (DeepFM) model
is proposed for industrial soft sensor prediction with the main
contributions given as follows.

1) A new systematic soft sensor framework is proposed for
complex industrial process prediction, which includes a
method for processing the data sequences. This method is
based on the representation learning of massive process
data to deal with industrial data noise. Meanwhile, it
utilizes self-supervised learning to effectively extract the
useful information hidden in a large amount of unlabeled
data. Therefore, the fusion learning of various industrial
data characteristics can be achieved well.

2) An LSTM-DeepFM structure is proposed for multifea-
ture extraction in complex environment. The LSTM-
autoencoder can extract temporal information in indus-
trial data. By fusing this information, DeepFM can better
reveal the implicit correlations between the process vari-
ables and the key indicator.

3) A novel self-supervised learning method is proposed
for multidomain feature mining of potential multidimen-
sional information. Based on two mask strategies, this
method can explore the interdependencies between fea-
tures as well as the dynamic fluctuation in time series.
Thus, the information of unlabeled samples can be fully
mined.

Finally, to demonstrate the performance of the proposed self-
supervised LSTM-DeepFM model, it is applied to an industrial
froth flotation process to predict the residual impurity in the
purified mineral.

The rest of this article organized as follows. In Section II,
the brief review about the data-driven soft sensor, LSTM, and
DeepFM is presented. Then, in Section III, the overview of

the proposed framework, including data processing, pretraining
stage, and finetuning stage, is proposed. Methodology and its
corresponding case study are presented in Sections IV and V,
respectively. Finally, Section VI concludes this article.

II. PRELIMINARIES

In this section, the recent advancements of the data-driven soft
sensor and the deep feature extraction methods are presented.

A. Data-Driven Soft Sensor

Recently, data-driven soft sensor techniques have been widely
developed for specific industrial applications. For example, a
deep probabilistic transfer learning framework [12] and a model-
agnostic metalearning method [13] were proposed to improve
the model performance when migrating from the relevant source
domain to the target domain. In addition, to address the LSTM’s
inadequacies, a VAE-based LSTM was designed, which adopts
batch training and L2 regularization techniques to learn crucial
data information from various process data [10]. In [14], another
improved method of LSTM called gated convolutional neural
network-based transformer (GCT) was implemented to deal with
the gradient vanishing and the parallel computing difficulties.
Also, overfitting is a problem that is easily neglected in soft
sensor modeling. The bound optimization theory and variational
Bayesian inference were integrated in [15] to regularize the
extreme learning machine, and satisfying performance was ob-
tained in energy-efficient building design experiments.

B. Deep Feature Extraction

Deep feature extraction can be accomplished using a vari-
ety of approaches, with the stacked autoencoder (SAE) being
one of the most widely used backbone networks. Variablewise
weighted SAE (VW-SAE) [16], for example, is a hierarchical
VW-SAE that extracts output-related feature representation. In
addition, gated stacked target-related autoencoder (GSTAE) [17]
is utilized to extract different levels of abstract features, with gate
neurons governing the flow of information in different layers.
Besides, slow and multidimensional feature extractions are also
crucial in industrial processes. A Siamese network, called su-
pervised slow feature analysis Siamese network (SSFAN) [18],
extracts the latent features from the time series based on temporal
slowness aspect, whereas SS-PdeepFM [11] extracts low- and
high-dimensional features in a single time step. However, the
SAE-based models may trivially copy their inputs to outputs
without finding useful patterns in the data. And the advantages
of Siamese network and SS-PdeepFM are complementary in the
complete process of feature extraction, but they cannot perform
well enough on their own.

C. Long Short-Term Memory-Deep Factorization
Machine

In this part, the brief introduction about LSTM-DeepFM,
including the LSTM and DeepFM, is presented.

1) Long Short-Term Memory: LSTM is a popular network
for extracting temporal features in industrial time series. There
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are three gate controllers in an LSTM unit: input gate, forget
gate, and output gate. The input gate identifies important inputs,
while the forget gate learns to preserve information to long-
term memory. And the output gate can control the output of
the current time step. Assuming that the input sequences are
{xc

1, x
c
2, . . ., xT

c}, the forward pass of an LSTM unit at time
step t is as follows:

it = σ (Wixxt
c +Wihht−1 + bi) (1)

ft = σ (Wfxxt
c +Wfhht−1 + bf ) (2)

ot = σ (Woxxt
c +Wohht−1 + bo) (3)

c̃t = tanh (Wcxxt
c +Wchht−1 + bc) (4)

mt = ft �mt−1 + it � c̃t (5)

ht = ot � tanh (mt) (6)

where it, ft, and ot are the input gate, forget gate and output gate,
respectively; c̃t is the intermediate state, mt is a memory cell,
and ht is the hidden state; tanh and σ are nonlinear activation
functions; and � denotes pointwise multiplication.

2) Deep Factorization Machine: DeepFM is often used in
recommendation systems to extract low- and high-dimensional
features in the data. It consists of two parts, FM component and
deep component.

1) FM component: The core idea of FM is to do pairwise
matrix decomposition between features. Compared with
the linear model, it can mine the influence of the second-
order combination of features. The objective function of
the FM is shown in (7). The wi and the w0 are the weight
and bias of a linear regression. xi is the ith variable and n
is the number of variables.< vi,vj > denotes the weight
of the second-order feature combination.

yfm = w0 +

n∑
i=1

wixi +

n−1∑
i=1

n∑
j=i+1

< vi,vj > xixj

(7)

n−1∑
i=1

n∑
j=i+1

< vi,vj > xixj

=
1
2

n∑
i=1

n∑
j=1

< vi,vj > xixj − 1
2

n∑
i=1

< vi,vi > xixi

=
1
2

⎛
⎝ n∑

i=1

n∑
j=1

k∑
f=1

vi,fvj,fxixj −
n∑

i=1

k∑
f=1

vi,fvi,fxixi

⎞
⎠

=
1
2

k∑
f=1

⎛
⎝( n∑

i=1

vi,fxi

)2

−
n∑

i=1

v2
i,fx

2
i

⎞
⎠ . (8)

For each variable, the FM component learns a 1-D vector
of fixed size k by the embedding layer. Therefore, the
weight between the variables xi and xj can be expressed
by the inner product of the feature corresponding vectors
vi and vj . The complexity of the original FM isO(k · n2).
By rewriting the mathematical formula, as shown in (8), it

can become the O(k · n) complexity, so it is very suitable
for the industrial scene.

2) Deep component: The deep component is a deep neu-
ral network (DNN) that can capture high-order features,
accepting the normalized features as input. The forward
propagation of DNN is shown as follows:

a(l+1) = Activation
(
W (l)a(l) + b(l)

)
(9)

where a(l) is the output of the lth hidden layer, and
W (l) and b(l) are the weight and bias, respectively. The
activation function is the parametric rectified linear unit
(PReLU) [19]

PReLU(x) = max(0, x) + α ∗ min(0, x) (10)

where α is a learnable parameter.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

In this section, as shown in Fig. 2, the overview of the proposed
framework, mainly including data processing, pretraining stage,
and finetuning stage, is presented.

In the data processing part, raw time series are collected from
soft sensors in the industrial processes, and then some features
of the raw time series are discretized to effectively suppress
data noise. Also, the different value ranges of process variables
are solved by data normalization. Moreover, feature selection
selects more representative, independent, and quality-related
features for modeling. Therefore, quality information can be
better extracted from the data.

In the pretraining stage, the LSTM-autoencoder is first unsu-
pervised pretrained to obtained the latent embedding. The latent
embedding and the continuous input features are concatenated
and masked. Then, they are normalized and sent to the deep
component autoencoder. The self-supervised pretraining loss
function is the masked features and time series prediction loss.
The whole pretraining process is depicted in Fig. 1(a).

In the finetuning stage, the pretrained LSTM-encoder is em-
ployed to extract the temporal features from the continuous fea-
tures. Subsequently, the continuous features concatenated with
the latent embedding are normalized and directly fed into the pre-
trained deep component encoder. So high-dimensional features
can be explored. In parallel, the discrete features are sent into
the embedding layer and FM component for low-dimensional
features extraction. Finally, the comprehensive output is built
based on the two kinds of outputs. Fig. 1(b) shows the whole
finetuning process of the proposed framework.

IV. METHODOLOGY

In this section, data processing technologies, LSTM-DeepFM
structure, pretraining stage, and finetuning stage will be
discussed.

A. Data Processing Technologies

First, we discuss the data processing technologies in this part.
1) Data Binning: One of the inevitable problems in industrial

data analysis is data noise. It may degrade the performance of the



5862 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 9, SEPTEMBER 2022

Fig. 1. Detailed structures of the model during self-supervised pretraining stage and supervised finetuning stage. (a) self-supervised pre-training
LSTM-deep model. (b) supervised Fine-tuning LSTM-deepFM model.

Fig. 2. Framework of the proposed approach.

model. Therefore, a k-means-based binning method is applied
to suppress the data noise effectively. It ensures that all values in
each bin have the same nearest center of a 1-D k-means cluster.

In order to select a reasonable number of bins and improve the
performance, silhouette coefficient [20] is applied as follows:

Sil(i) =
(b(i)− a(i))

max(b(i), a(i))
(11)

where a(i) is the mean of the distances between the sample to
the others, and b(i) is the mean nearest cluster distance, that
is the mean instance to the instances of the next closest cluster.
Silhouette coefficient closes to +1 means that the instance is well
inside its own cluster and far from other clusters.

2) Feature Selection: Feature selection refers to select a sub-
set of features according to their feature importance. Commonly
used techniques are Lasso regularization [21] and tree-based fea-
ture selection [22]. However, there are usually complex relations
between industrial data. For any feature with large variance, the
tree-based model can always find the split point to optimize the
loss function, which causes a deviation in the ranking of feature
importance.

To correct the feature importance bias, permutation impor-
tance (PIMP) [23] is applied to soft sensor modeling, and this
method can be clearly elucidated in Algorithm 1.

B. Pretraining Stage

Here, we introduce two fundamental methods employed in
the pretraining stage.

1) LSTM-Autoencoder: As mentioned in Section I, the rela-
tionships among the process variables are very complex. The
temporal and nontemporal features will influence the quality
index. Therefore, we reconstruct the input sequences by an
LSTM-autoencoder to obtain the temporal features from the
latent representation, with which the DeepFM can better predict
the quality variable.

The LSTM-autoencoder consists of two LSTMs: an encoder
and a decoder. The encoder will translate the input sequence into
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Algorithm 1 PIMP for feature selection
Input: The labeled dataset Xi, yi; a model with ranking
feature importance; a threshold; the number of model
runs n.

Output: The subset of the features;
1: Create the null importance distribution based on n

model runs on a shuffled version of the target.
2: Fit the model on the original target and gather the feature

importance.
3: For each feature, if the actual importance is larger than

the threshold of the null importance distribution: leave
the feature.

4: return The selected features.

Fig. 3. Two tasks of self-supervised learning. For the sake of simplicity,
the latent representation is omitted in (a) and (b). Detailed structure of
the model in the self-supervised pretraining stage is shown in Fig. 1(a).
(a) Self-supervised learning task 1. (b) Self-supervised learning task 2.

a reduced-dimensional feature vector e1 (latent embedding)

e1 = LSTMEncoder(xc) (12)

where xc is the continuous input features of the input sequence.
The decoder will reconstruct the original input sequence by
decoding the latent embedding from the encoder

xc′ = LSTMDecoder(e1). (13)

The loss function loss1 is defined as the mean squared error
(mse) between the predicted sequence xc′ and the real sequence
xc

loss1 =
1
B

B∑
b=1

T∑
j=1

||xc′
b,j − xc

b,j ||2 (14)

whereB and T are the batch size and the time step of the LSTM,
respectively.

To reduce the loss, the encoder tends to preserve temporal
information in the latent embedding as much as possible. Then,
the latent representation concatenated with the flattened input
sequence is served as the input of the DeepFM

s = concat(flatten(xc), e1). (15)

2) Self-Supervised Learning: Self-supervised learning uses
pretext to mine its own supervision information from massive
unsupervised data and trains the network through the constructed
supervision information. Therefore, the model can learn more ef-
fective representation through self-supervised training objective.
In this article, as shown in Fig. 3, two tasks of self-supervised

learning are proposed to mine the information of raw data from
two domains. Task 1 seeks to predict missing feature columns
regardless of chronological order, so the model can mine the
interdependencies between features. And task 2 seeks to predict
missing time series to capture the chronological relationships,
so the dynamic fluctuation in time series can also be taken
into consideration. Fig. 3(a) and (b) illustrates self-supervised
learning task 1 and task 2, respectively.

For a mathematical form, considering a binary mask M ∈
{0, 1}B×D, the deep component encodes the input (1 −M) · s
and decodes the reconstructed features M · ŝ, as shown in the
following:

e2 = Deep Component Encoder((1 −M) · s) (16)

ŝ = Deep Component Decoder(e2). (17)

In the self-supervised phase, the decoder’s last full-connected
(FC) layer is multiplied byM because only the unknown features
are considered. The self-supervised training loss2 is defined as
follows:

loss2 =
1
B

B∑
b=1

D∑
j=1

∣∣∣∣∣∣∣∣
(ŝb,j − sb,j) ·Mb,j√∑B

b=1

(
sb,j − 1

B

∑B
b=1 sb,j

)2

∣∣∣∣∣∣∣∣

2

(18)

As the industrial process variables may have different ranges,
the normalization term with population standard deviation is
added to the loss2. At each iteration, the Mb,j is sampled
independently from a Bernoulli distribution with parameter p.

C. Finetuning Stage

During the finetuning stage, the binary mask M is removed,
and an embedding layer and an FM component are added.

1) Embedding Layer: Due to k-means discretization, some
continuous features are transformed to sparse one-hot variables
with different dimensions. The embedding layer is used to con-
vert these one-hot variables into dense vectors with the unified
embedding size k. It also acts as an auxiliary part of the FM
component

vi = Embedding Layer (xi) . (19)

In the finetuning stage, the (7) can be optimized by training
the embedding layer. And it can be simplified in the following,
where xd is the discrete features.

yfm = FM Component
(
xd
)
. (20)

During the finetuning stage, the binary mask M is removed.
The output of the deep component is shown in (21). And the
only new parameters introduced in the deep component are the
regression layer weights W ∈ R1×H , where H is the hidden size
of the last FC layer in the deep component encoder.

e2 = Deep Component Encoder(s) (21)

ydeep = We2. (22)

2) Long Short-Term Memory-Deep Factorization Machine:
The model structure of LSTM-DeepFM in the finetuning stage
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is shown in Fig. 1(b). In the original DeepFM model, the FM
component and the deep component share the same embed-
ding layer. The discrete and the normalized features are both
transformed to vectors of the same size, which may bring more
computing costs. Also, in order to make the deep component
benefit from the self-supervised training, the parameter sharing
of the FM component and the deep component is removed.
Therefore, the FM component and the deep component can be
trained individually.

In our implementation, we only feed the discrete variables into
the FM component. The deep component takes the normalized
features as input. Finally, the comprehensive output of LSTM-
DeepFM is based on both of the two components

yLSTM−DeepFM = β1ydeep + β2yfm (23)

where β1 and β2 are both initialized to 0.5 and set as trainable
parameters in consider of the different contributions of the
two components. For example, assuming the supervised loss
function in the finetuning stage is L, which is also a function of
ŷ, then the stochastic gradient descent can be utilized to optimize
β1 and β2 as follows:

β1 = β1 − lr ∗ ∂L
∂ŷ

∂ŷ

∂β1
= β1 − ∂L

∂ŷ
∗ lr ∗ ydeep (24)

β2 = β2 − lr ∗ ∂L
∂ŷ

∂ŷ

∂β2
= β2 − ∂L

∂ŷ
∗ lr ∗ yfm (25)

where lr is the learning rate. After many trials, the average values
of β1 and β2 are approximately 1.64 and 1.41, respectively,
which proves that both components play equally important roles
in the soft sensor prediction.

In summary, the finetuning stage is relatively inexpensive
compared to the pretraining stage. In the pretraining stage,
massive labeled and unlabeled samples are used for comput-
ing self-supervised training objective function. However, in the
finetuning stage, only the labeled samples are used. Through the
unsupervised representation learning by masked self-supervised
learning task, the model can converge faster and has a better
generalization performance in the finetuning stage. In this way,
the labeled and unlabeled samples can be fully utilized so that
more quality-related information can be derived.

V. CASE STUDY

To measure the proposed method, a case study is presented
to illustrate the advantages of our proposed method over the
methods based on generation model and depth feature extraction.

A. Industry Process

In mineral processing, froth flotation is a purification process
for separating valuable minerals from waste gangue by exploit-
ing their different hydrophobicity. A valuable mineral is more
hydrophobic than the waste gangue because of the employment
of surfactants and other chemical reagents. Depending on the
selective adhesion of air bubbles to mineral surface, the air
bubbles will attach to more hydrophobic particles.

Fig. 4. Schematic froth flotation cell.

TABLE I
DESCRIOTIONS OF THE RECORDED FEATURES

Before froth flotation, the ore needs to be crushed and ground
into fine particles (the particle sizes are typically less than
0.1 mm). Then, by mixing the particles with water, ore slurry
is formed. This process is called as liberation. Next, the slurry
will be treated with some chemical agents, including surfactants
and frothers. Accompanied by the air supply and frothers, the
slurry is agitated by the agitator to generate bubbles, and more
hydrophobic particles (valuable minerals) will stick to the air
bubbles. Then, the bubbles float up to the top of slurry, hence
forming froth. Finally, the attached valuable minerals will be
collected and concentrated, and sent to a further process for
refining. The whole process is shown in Fig. 4.

In the froth flotation cell, different process variables are
measured by sensors. The valuable mineral and impurity were
sampled hourly, and the laboratory analysis of purity(%) and
impurity(%) will take 2 h. The other process variables including
the speed of reagent flow and the pH of ore slurry were measured
every 20 s. Thus, the ratio of labeled to unlabeled samples is
1:179. The proportion of the residual impurity in the purified
mineral was considered as the quality index to evaluate the
purification process.

In this article, the utilized dataset is obtained from real flota-
tion processes. There is a total of 3670 labeled samples. Each
sample has 22 process variables and a label from laboratory
analysis. A total of 3000 samples of the dataset are selected as the
training set, and the other 670 samples collected in the last month
are utilized as the test set. The information about all variables
are shown in Table I. After data binning, data normalization, and
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Fig. 5. Comparison of different number of feature selection ratios and embedding size in the experiment. (a) Train Loss(embed = 24). (b) Validation
Loss(embed = 24). (c) Train Loss(embed = 12). (d) Validation Loss(embed = 12).

Fig. 6. Split importance is the number of times the feature is used in
the LGB model. (a) Split Importance of i1. (b) Split Importance of i10

feature selection, each sample contains a 4-D discretized vector,
an 11-D normalized vector, and a 1-D label.

B. Experiment

In this section, experiments are carried out to test the effec-
tiveness of the proposed methods. The experiment is mainly
divided into two parts, containing the hyperparameters selection
and comparison with other methods.

1) Feature Selection: In the PIMP test, the lightgbm
(LGB) [24] was chosen as the base model, and the number of
model runs was set as 200. As shown in Fig. 6, the distance
between the red line and the blue distribution measures the
effectiveness of the feature. In Fig. 6(b), the actual importance
is inside the null importance distribution, which means that the
feature may not be effective.

The threshold set was {1, 0.9, 0.8, 0.7, 0.5}, and the dimen-
sions of latent embedding were set to 12 and 24 in the exper-
iment. As shown in Fig. 5, although selecting a small number
of features can obtain good results in the training set, the model
does not perform as well in the validation set. It can be concluded
that feature selection effectively narrows the search place of the
training process and accelerates the convergence of the model.
However, too few features can damage the robustness of the
model. Based on these experiments, only the top 70% of the
features are retained, thus preventing the model from reducing
the generalization ability of unknown data.

2) Self-Supervised Learning: To determine the value of
mask rate p, a relatively optimal number of features and latent
dimension were chosen. As shown in Fig. 7, the convergence
of the model had been tested in different mask rate settings.

Fig. 7. Reconstruction loss (a) and the test loss (mse) with different
mask rate settings in the pretraining and the finetuning stage, respec-
tively. (a) Pretraining stage. (b) Finetuning stage.

Fig. 8. (a) Test RMSE of the model with and without pretrained under
partially labeled samples. (b) Training curve of the model with and with-
out pretrained under 100 labeled samples. (a) RMSE of partial labeled
samples. (b) Training Curves of 100 samples.

It can be concluded that a small p makes the model converge
faster, whereas a large p leads to convergence difficulties in the
pretraining stage and loss fluctuations in the finetuning stage, as
shown in Fig. 7(b).

In terms of interpretability, self-supervised learning can mine
the interdependencies between features. For example, the pH
of ore slurry can be guessed from the flow rates of the slurry
and reagents, while the purity of minerals and major impu-
rity components are also generally intrinsically related. With
self-supervised learning, unsupervised representation learning
can explore the complex relationships and provide an improved
encoder for the supervised learning task.

As shown in Fig. 8(a), to train the LSTM-DeepFM, the
number of labeled samples increases 100 each time from 100
to 1000. The pretrained model always performs better than the
model with random initialization. Moreover, in Fig. 8(b), the
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Fig. 9. Comparison between SSFAN and the LSTM-DeepFM. For simplicity, not all the fitting plots are shown here. The SVR and LGB were only
trained with the original labeled samples. The kernel function of the SVR is radial basis, and the penalty parameter of its error term is set to 0.01.
The hyperparameters of LGB were selected according to [24]. For VAE-WGAN, VAE-NN, and SS-PdeepFM, each model was trained with a mixture
of original labeled samples and artificial samples. The size of the original labeled samples and the artificial samples are both 3000. The size of the
hidden feature was 20. In addition, the encoder, decoder, and discriminator of each model were DNNs with two hidden layers of (256, 64) units. The
other hyperparameters were from [7], [8], and [11]. For SSFAN, the network has four hidden layers of (256, 128, 32, 16) units and the number of
slow features is set to 32. Besides, GSTAE has three hidden layers of (256, 128, 64) units, and the label is normalized to [0, 1] to meet the output
requirements of GSTAE. The design of the model structure and hyperparameters were taken from [17] and [18], and the number of neurons was
scaled up in order to enhance the model performance. (a) SSFAN. (b) LSTM-DeepFM.

TABLE II
DETERMINED VALUES OF THE HYPERPARAMETERS

TABLE III
PERFORMANCE ON DIFFERENT METHODS

The bold values represent the root mean squared error and the mean absolute
error of our proposed method LSTM-DeepFM.

pretrained model is more stable and not easy to be overfitting,
even in the small labeled sample scenarios.

Then, the hyperparameters are determined as followed. First,
the mask rate p is set to 0.15 so that the training curve is more
stable in the finetuning stage. Second, the time step of the input
sequence t is fixed to 4. In addition, based on the aforementioned
results, the latent embedding size e and the threshold thres of the
PIMP are fixed to 24% and 70%, respectively. Other parameters
are determined as their empirical values. For example, the hidden
layers of the deep component are set to (256, 64) neural units.
The determined hyperparameters are listed in Table II.

3) Evaluation: Some other experiments are conducted to
verify the effectiveness of the model in soft sensor modeling.
Support vector regression (SVR), LGB, variational autoencoder
and neural network (VAE-NN), variational autoencoder and

Wasserstein GAN (VA-WGAN), SS-PdeepFM, SSFAN, and
GSTAE are used for comparison. Among them, SVR [25] is
a more traditional and effective method. It is widely used in the
industrial field and has good interpretability. LGB is an ensemble
tree-based model that performs fairly well in some data science
competitions. Furthermore, VAE-NN and VAE-WGAN are two
methods based on generative models, which are commonly used
to augment labeled samples. In addition, SS-PdeepFM, SSFAN,
and GSTAE represent different soft sensor methods for dynamic
feature extraction and modeling. To evaluate the performance of
different models, the root-mean-squared error (RMSE) and the
mean absolute error (MAE) are used as basic metrics. Results of
the different models are shown in Table III and Fig. 9. All results
reported are the mean and std. of 20 runs. The source code of
LSTM-DeepFM is available on GitHub.1

In these experiments, the SVR and LGB are used as baseline
models. However, due to the small number of labeled samples,
they do not perform well. The VAE-WGAN and VAE-NN solve
the labeled data paucity to some extent. They generate a lot
of artificial samples that can effectively improve the accuracy
of the model. However, these two models are more suitable
for the cases of small unlabeled samples. And compared with
the unsupervised representation learning of LSTM-DeepFM, the
generative model does not transfer the knowledge learned from
data to the posttraining model. So it’s not practical under the
context of our article.

Both of the SS-PdeepFM and LSTM-DeepFM get decent per-
formance in general. The SS-PdeepFM uses a label broadcasting
method, so the samples are augmented to some extent. On the one
hand, the label will only broadcast to few unlabeled samples so
that lots of unlabeled samples are still wasted. On the other hand,
there also exists temporal quality-related information that is

1[Online]. Available: https://github.com/iamownt/LSTM-DeepFM

https://github.com/iamownt/LSTM-DeepFM
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TABLE IV
ABLATION STUDY

SSL denotes the self-supervised learning. All results reported are the mean of 20 runs. Note that in row 6, if DFM is removed from
LSTM-DeepFM, it will degenerate to a simple LSTM-autoencoder, so it is slightly worse than SS-PdeepFM.
The bold values represent the root mean squared error and the mean absolute error of our proposed method LSTM-DeepFM.

Fig. 10. Trial 0 to Trial 4 represent five random equal divisions of the
training and test sets. Trial 5 to Trial 9 represent the exchange of the
training and test sets corresponding to the first five trials.

important for product quality prediction. This is often ignored by
the DNN models. Therefore, the LSTM-DeepFM outperforms
the SS-PdeepFM by the temporal features extraction part and
the self-supervised training objective.

When comparing the dynamic feature extraction performance
of SSFAN, GSTAE, and LSTM-DeepFM, GSTAE performs
slightly worse. This is because, unlike LSTM-DeepFM, it does
not consider dynamical temporal features while constructing the
final output through different levels of abstract representation.
In addition, GSTAE is pretrained layer-by-layer with a simple
reconstruction of the input. Compared with the dynamic mask
strategy, it may trivially copy its inputs to outputs without explor-
ing the interdependencies between features. Besides, SSFAN
extracts slow features from time series, but often ignores the
potential information of fast-changing features. Furthermore, in
the pretraining process of SSFAN, all samples must be computed
at the same time to construct the covariance matrix of extracted
features, which makes it inappropriate for large-scale datasets.
And pretraining also requires the guidance of labeled samples,
so that it is not suitable for our scenario with large amounts of
unlabeled samples.

4) Statistical Hypothesis Test: To verify the effectiveness of
our proposed method, we adopt a statistical hypothesis test to
compare our model with the previous best performing model. A
5×2cv paired t-test [26] is conducted in the original training set
with 3000 labeled samples. Fig. 10 illustrates the performance
of the two models in ten trials. Since the training and test sets
are equally divided in each trial, the performance of the model
is particularly important in the case of fewer samples. Due to

TABLE V
COMPLEXITY ANALYSIS AND COMPUTATION COST PER SAMPLE

self-supervised learning, LSTM-DeepFM can maintain a con-
sistent performance improvement in ten trials with an interval
of [0.017, 0.043] despite the small training size. By setting the
null hypothesis that the two models perform equally and the
significant level α = 0.05, the t statistic and the pvalue could be
calculated. Through calculation, we can get pvalue = 0.0308,
which is lower than α. Therefore, we can reject the null hy-
pothesis and conclude that the performance of the two models
is significantly different.

5) Complexity Analysis: The proposed algorithm is mainly
composed of LSTM, DNN, and FM. The complexity contribu-
tion of each component is extended in Table IV, and t, h, n, nc,
nd, k, l, and di represent the length of input sequence, hidden
size of LSTM, input size, continuous input size, discrete input
size, FM embedding size, number of layers of DNN, and the
number of neurons in DNN’s ith layer, respectively.

Therefore, the complexity of each soft sensor method is shown
in Table V. It is worth noting that the computational complexity
of DNN is actually O(n · d1 +

∑l−1
i=1 didi+1 + dl · 1), and for

simplicity, we use O(l · d2) instead.
The lowest computation cost is VAE-NN and VAE-WGAN

models, as they have fewer hidden layers. And due to the deep
network structure or recursive nature, SSFAN and LSTM have
relatively high computational costs. Since GSTAE adopts tanh
and sigmoid activation functions to control the information flow,
it has the highest computational cost. The complexity of LSTM-
DeepFM is the sum of the three components’ complexity, and
the computation time is approximately the sum of LSTM and
DNN’s time.

6) Ablation Studies: Ablation studies are conducted to un-
derstand the importance of each design choice. Examining rows
1–4 of Table IV, we can see both self-supervised learning and
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LSTM clearly contribute to the superior performance of LSTM-
DeepFM. Moreover, if we remove the feature selection part (row
5), the performance clearly drops. In addition, row 6 shows that
the DeepFM plays an important role in LSTM-DeepFM.

On the one hand, it is necessary to extract the temporal features
and decouple the complex relationships among the industrial
process variables. The LSTM-DeepFM is proposed to solve this
issue. The LSTM component is used to obtain the temporal
features. And the DeepFM uses the FM component to extract
the low-order features, and the deep component is utilized to
mine the high-order features. Therefore, the LSTM-DeepFM
can analyze the quality variable better compared with the other
soft sensor models.

On the other hand, it is also very important to mine and
utilize the information of unlabeled samples. In the pretraining
stage, the model makes full use of the data and learns the high-
dimensional representation of the raw data. In the finetuning
stage, the model only needs to learn the trained representation
through the fully connected layer, which greatly improves the
speed and reliability of the model training. Our proposed method
not only achieves state of the art (SOTA), but also effectively
alleviates the problem of insufficient labeled samples. Therefore,
the self-supervised learning is valuable and can be extended to
other industrial process analyses.

VI. CONCLUSION

In this article, a data-driven self-supervised LSTM-DeepFM
model was proposed for industrial soft sensor prediction. On
the one hand, the LSTM-DeepFM model structure can extract
the low-dimensional, high-dimensional, and temporal features
in the time series. On the other hand, the self-supervised learning
method can explore the interdependencies between features as
well as the dynamic fluctuation in time series. Therefore, the
fusion learning of various industrial data characteristics can
be achieved well. Experiments on real-world froth flotation
dataset demonstrate the effectiveness and superior performance
of the proposed approach by comparing with SVR, LGB, VAE-
WGAN, VAE-NN, GSTAE, SS-PdeepFM, and SSFAN.

At present, the soft sensor model can be utilized to as-
sist flotation plant operators in making better decisions, and
operators also need some visual assessment information of
froth appearance. Future work should focus on how to main-
tain process reliability and support continuous improvement,
as well as further exploring online model predictive control
techniques.
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