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On The Private Data Synthesis Through Deep

Generative Models for Data Scarcity of Industrial

Internet of Things
Yen-Ting Chen, Chia-Yi Hsu, Chia-Mu Yu, Senior Member, IEEE, Mahmoud Barhamgi, Charith Perera

Abstract—Due to the data-driven intelligence from the recent
deep learning (DL)-based approaches, the huge amount of data
collected from various kinds of sensors from industrial devices
have the potential to revolutionize the current technologies used
in the industry. To improve the efficiency and quality of machines,
the machine manufacturer needs to acquire the history of the
machine operation process. However, due to the business secrecy,
the factories are not willing to do so. One promising solution to
the above difficulty is the synthetic dataset and an informatic
network structure, both through deep generative models such
as differentially private GANs (DP-GANs). Hence, this paper
initiates the study of the utility difference between the above
two kinds. We carry out an empirical study and find that the
classifier generated by private informatic network structure is
more accurate than the classifier generated by private synthetic
data, with approximately 0.31% ∼ 7.66%.

Index Terms—Industrial Internet of Things, Deep Generative
Model, Generative Adversarial Network, Data Synthesis, Differ-
ential Privacy

I. INTRODUCTION

A. Industrial Internet of Things (IIoT)

Thanks to the rapid rise of the Internet of Things (IoT),

there are increasing demands and novel user scenarios for

human life. Smart appliances [1], autonomous driving [2],

intelligent robots [3] are exemplar applications with a consid-

erable number of devices connected to each other. For industry,

wireless communications and artificial intelligence (AI) jointly

promote the development of industrial IoT (IIoT) [4], [5]. In

particular, IIoT has been witnessed to significantly improve

manufacturing efficiency, reduce product cost, and upgrade

the manufacturing process by integrating various sensors and

controllers with intelligent analysis. While the intelligence in

IIoT is the core component that leads to the above benefits, a

critical part behind the scene is the abundance of the data.

B. Data Issue in IIoT

Due to the data-driven intelligence from the recent deep

learning (DL)-based approaches, the massive amount of data

collected from various sensors from industrial devices has

already become the primarily productive force. They have the

potential to revolutionize the current technologies used in the
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industry. For example, one can feed the data collected from

IIoT into a productive decision-making model to achieve data-

driven smart manufacturing. However, as current data-driven

AI models widely used in IIoT (e.g., deep neural networks,

DNN) require a considerable amount of high-quality data to

achieve intelligence, data incompleteness, low data quality, and

insufficient quantity have become the pain points. For example,

for image classification that often sees industrial applications

such as defect detection, a rule of thumb is at least 1000
images per class in DL. More specifically, first, possibly due to

the malfunctioning of sensors, the IIoT data may have missing

values, which may frustrate the training process. Second, the

factors such as vibration and high-frequency interference in the

factory may affect the sensors, leading to the low quality and

uncertainty of IIoT data. Such IIoT data mostly compromise

overall decision-making performance. Third, an insufficient

amount of IIoT, due to scarcity of the events of interest, may

easily make the DNN underfitting. Fourth, the valuable data

lead to the owner’s unwillingness to share the data. Despite the

effort in using techniques such as federated learning to help

data collection [6], [7], [8], only parts of the above problems

can be handled.

The availability of large datasets has been a crucial factor in

the success of DL-based classification and detection methods.

While datasets for everyday objects can easily be collected,

datasets for specific industrial use-cases (e.g., automated in-

spection and defect detection ) can hardly be collected. In this

paper, we mainly focus on the scarcity of image datasets in

IIoT.

C. Key Challenges in Data Synthesis Through Deep Genera-

tive Models (DGM)

To handle the data scarcity and facilitate DL techniques

in industrial applications, before fed into model training al-

gorithm, the dataset needs to be either created from scratch

or enhanced from a small-size initial dataset. In essence, to

accomplish the above task, deep generative models (DGM),

such as generative adversarial networks (GAN) [9], could

be a promising solution for generating realistic ”real” data

in an unsupervised manner. Despite its powerful generative

capability, GAN has limitations such as limited expressive

power, poor interpretability, and weak discriminative ability.

However, a fundamental problem for the data synthesis in IIoT

data synthesis is that most models ”memorize” the training

data due to the potential overfitting issue. The synthetic data
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generated from such a model also leak information about the

original sensitive data.

D. Motivating Example and Problem Statement

Motivating Example. Consider a motivating example as

follows. There are many factories, each of which runs a

machine of the same type (e.g., grinding machines and metal

processing machine tools). The machine manufacturer wants

to collect the history of the machine operation process from

factories to perform the AI-based analysis to improve their

future design’s quality and efficiency. However, in operating

the machine, trade secrets such as different combinations of

parameters will be crafted and stored in the machine. The

history of the machine operation process may reflect or leak

the factory’s trade secrets. As a consequence, each factory is

unwilling to share the machine operation process.

Problem Statement. A promising solution to the above

difficulty is that each factory privately constructs a synthetic

dataset according to the machine operation process. A differ-

entially private GAN (DP-GAN) could be the best choice to

build a synthetic dataset because it strikes a balance between

data privacy and data utility. After that, one can have two

possible approaches for the factory to “share” the data with

the machine manufacturer.

• (A1) Each factory individually constructs the synthetic

dataset through DP-GAN according to the machine operation

process and then shares the synthetic dataset with the machine

manufacturer. Here, from the machine manufacturer’s view-

point, it receives a dataset. So the machine manufacturer can

perform arbitrary analysis on the received dataset, hoping that

the corresponding analytical conclusion is consistent with the

one made from the original history of the machine operation

process.

• (A2) With the assumption that the machine manufacturer

has announced to factories the analytical algorithms such as

convolutionary neural network (CNN) that will be used, each

factory instead sends the differentially private trained model

(e.g., differentially private convolutionary neural network, DP-

CNN [10]) to the machine manufacturer. In this scenario,

the machine manufacturer does not have the flexibility of

adaptively choosing analytical algorithms, compared to (A1).

As the machines in some areas such as the car and semi-

conductor industry may cost up to billions of dollars, the

improvement of machines may profoundly impact the business

of both the machine manufacturer and the factories that use

machines. Thus, one may raise a research question that which

one ((A1) or (A2)) will lead to a better data utility, given the

same level of privacy.

E. Contribution

Our technical contribution can be summarized as follows.

• While there is no research effort devoted to investigating the

utility difference between the above two options, this paper

initiates the study of the utility difference between the above

two kinds of private information-sharing mechanisms.

• After carrying out an extensive set of experiments, we

find that (A2) is superior to (A1) in terms of data utility,

at the cost of the flexibility in choosing arbitrary analytical

algorithms. In particular, the classification accuracy by directly

using differentially private models (e.g., DP-CNN) is more

accurate than the classifier generated by differentially private

synthetic data from DP-GAN, with approximately 0.31% ∼
7.66%.

An implication in IIoT is that when the machine manufac-

turer has already determined the analysis tool (e.g., CNN), it

would be preferred to ask the factories to return the differen-

tially private models. In such a case, the machine manufacturer

can have more accurate analysis results for future machine

improvement. Nevertheless, when the machine manufacturer

wants to keep the freedom of choosing arbitrary analysis tools,

the machine manufacturer needs to trade the analysis accuracy

for flexibility.

II. RELATED WORK

A. Differential Privacy (DP)

In this paper, we use differential privacy to both generate

synthetic data and train the privacy model. Differential privacy

[11], [12], [13] comprises strong privacy guarantees for algo-

rithms on aggregate databases. Two databases differ on a single

record called neighboring databases, so the results of querying

them are extremely similar. Base on this setting, if you cannot

distinguish the result queried from which databases, the single

record, the only difference between the two databases, will

not leak the information. The strict definition of DP (ǫ-DP)

is that a statistical release cannot compromise a member’s

privacy if their data are not in the database. Consequently, the

statistical functions run on the database should not excessively

rely on any individual’s data. Dwork et al. [14] proposed a

loose definition of DP named (ǫ, δ)-DP which allows for the

probability that ǫ-DP is failed with probability δ and we show

it as the following:

Definition 1. (ǫ, δ)–differential privacy. A randomized algo-

rithm M takes a database as input. M satisfies (ǫ, δ)–DP if,

for neighboring databases D1, D2 that all S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ exp(ǫ) · Pr[M(D2) ∈ S] + δ, (1)

where ǫ is a privacy budget that represents the degree of

privacy protection and δ ∈ [0,1] is a probability of not

satisfying differential privacy. The degree of privacy protection

is higher when ǫ is smaller, that is, the utility of databases is

lower. When δ = 0, M satisfies ǫ-DP. Given a deterministic

function f : D → R and differential privacy protection is

achieved by adding noise to the output of f . The magnitude

of noise influences on both the privacy degree and the utility

of databases. Adding the quite small magnitude of noise

does not provide sufficient protection. However, the excessive

magnitude of noise tremendously reduces the utility of results.

Therefore, f ′s sensitivity ∆f = maxd1,d2
‖ f (d1) –f (d2) ‖ is

the key parameter to determine how much noise to be added,

where ∆f represents the maximum impact of each record on

the f ′s output, and d1 and d2 are adjacent inputs. Laplace and

Gussain noises are used to be added to achieve DP guarantees

and we show their mechanisms as the following:

Definition 2. Laplace mechanism. Given any function f :
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Fig. 1. The flowchart of PATE. First, we get the ensemble of teachers trained on disjoint subsets of sensitive data. Then, we train a student model with public
data labeled by the ensemble.

D → R, the Laplace mechanism is ML(D) = f(D) +
(Y1, · · · , Yn), where the Yi is independently identical distribu-

tion random noise drawn from Laplace distribution Lap(
△f

ǫ
).

Definition 3. Gaussian mechanism. Given any function

f : D → R, the Gaussian mechanism is MG(D) = f(D) +
(Y1, · · · , Yn), where the Yi is independently identical distri-

bution random noise drawn from the Gaussian distribution

N (0, σ2) with the zero-mean and the scale showing as below:

σ ≥

√

2ln(
1.25

δ
)
△f

ǫ
(2)

Because Gaussian mechanism can accept a more powerful

composition property, both “Clean features with sloppy train”

and DP-GAN use Gaussian mechanism to randomize f ′s

output and define as M(d1) = f (d1) + N (0, (∆fσ)2I), where

N (0, (∆fσ)2I) is a Gaussian distribution with zero mean and

standard deviation (∆fσ)2I , where σ is the noise parameter

and I is the identity matrix. An inherent assumption behind

DP is that data records are independent. As the data generated

and collected from IIoT devices might be correlated, the DP

on correlated data is also developed [15].

B. Private Aggregation of Teacher Ensembles (PATE)

As shown in Fig. 1, PATE [16] partitions sensitive data

into n disjoint subsets and each teacher model trains on the

received data separately. After that, we get n classifiers fi
called teachers and the aggregate teacher gathers all teachers to

predict the label based on the student’s query. The ensemble of

teachers counts the predictions for each teacher and generates

the statistical result. The privacy guarantee is derived from

aggregation so that it needs to add noise to the statistical result

and return the prediction corresponding to the highest noisy

vote to the student model:

fen(x̄) = argmax
c

{

nc(x̄) + Lap (
1

γ
)
}

, (3)

where fen(·) is the ensemble of teachers and x̄ is an input

which is the number of teachers classifying input x̄ as class

c: nc(x̄) = |{i: i ∈ [n], fi(x̄) = c}|. Lap(a) is the Laplace

distribution with location 0 and scale a. The privacy parameter

γ affects the privacy guarantee. Instinctively, a large γ brings

about a strong privacy guarantee but decreases the accuracy of

the labels. Because of the additive noise on statistical results

generated by teachers, the student model has privacy protection

in the process of training.

When the number of teachers is small, the difference

between the most votes and the second-highest number of

votes is small. If the noise is arbitrarily selected, it will be

hard to maintain the most votes’ consistency after adding

noise. Considering the utility of the student model, the noise

must be strictly selected. However, this will result in the rapid

consumption of privacy costs and decrease student queries.

Eventually, the lack of training data with labels will cause low

accuracy because of the reduction in the number of student

queries. On the other hand, when the number of teachers is

too large, each teacher has only a small amount of training

data that makes their performance poor and finally causes the

student learning badly.

C. Differentially Private SGD

Stochastic gradient descent (SGD) is an optimizer used to

train the neural network. It computes the gradient of the loss

function L w.r.t the model’s parameters θ and updates θ for

each training sample xi and training label yi:

θ = θ − η · ∇θL (θ; xi; yi), (4)

where η is the learning rate. It can converge faster than batch

training. However, it may have information leakage via gradi-

ents. One of the “Clean features with sloppy training” achieves

the privacy protection by using differentially private stochastic

gradient descent (DP-SGD) [10] during optimization. Com-

pared to the normal SGD, DP-SGD adds Gaussian noise on

the gradients to achieve the privacy guarantees. To avoid the

overflow occurring, it must clip the gradient before adding

noise. Doing so can also prevent the exploding gradient [17]

that happens when the gradient increases dramatically during

training. It clips the ℓ2 norm of each gradient in the same

layer by a threshold C. Threshold C can limit the influence of

individual data on the overall data and compute the sensitivity

conveniently. After that, we compute the average gradients to

update the parameters, which is the same as normal SGD.

Finally, we use the privacy accountant to track the cumulative

privacy loss. These processes iterate until it converges or the

privacy budget runs out.
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Fig. 2. The neural network architecture of the classifier for labeling synthetic data.

D. Differentially Private GAN (DP-GAN)

Fig. 3. The structure of generative adversarial networks (GAN). It consists of
two neural networks, the generator and the discriminator. The generator takes
the random noise as the input and generates the data resembling the training
data. Discriminator compares synthetically generated data with the real data.

Goodfellow et al. [18] proposed a neural network architec-

ture named generative adversarial network (GAN) shown in

Fig. 3 composed of two neural networks, the generator G and

the discriminator D, respectively. The generator G is in charge

of generating the new synthetic data similar to the training

data. The discriminator D tries to distinguish between the real

data and the synthetic data generated by G. The competition

between G and D, G can learn the latent distribution Pz well

so that the synthetic data has similar statistical properties to

the training data.

The DP-GAN proposed by Zhang et al. [19] is based on

the improved WGAN [20] framework. There are various DP-

GANs [21], [22]. According to Fig. 3, it shows that only

D can directly access the original data, so DP-GAN adds

noise on the gradients of D to achieve the privacy guarantees.

However, G is still protected by differential privacy. Because

any computation on the output of a differentially private

mechanism does not increase the privacy leakage under the

post-processing of differential privacy. Therefore, updating the

parameters of G through D does not increase the privacy loss.

Training G is also protected by differential privacy, and the

releasing data are also secure. The process of DP-GAN is

almost the same as DP-SGD. The slight difference between

them is that DP-GAN also needs to update the generator G.

Recalling the process of DP-SGD, it needs to clip ℓ2-

norm of each gradient with the threshold C and then add

Gaussian noise on gradients that DP-GAN conducts them too.

These operations influence the training bringing about the low

synthetic data quality generated by the generator. For instance,

if C is too small, it will lead to excessive truncation of the

gradient and slow polymerization. If C is too large, however,

more noise will be added to the gradients. To enhance the

performance of DP-GAN, Zhang et al. also propose some

strategies for the setting of clipping bound C, and we show

them below:

Basic. It sets the gradient clipping threshold of each layer to

be the same.

Weight-Bias Separation. From f(x) = wx + b, we can

intuitively observe that the weights w have a large influence

on the input x, so the setting of C should be set separately

for weights w and biases b.

Adaptive Clipping. Although the setting of C has been

divided from the overall parameters into weights and biases,

it is still set manually in each layer. Therefore, it still has

a significant difference from the optimal C. To achieve the

optimal C, the magnitudes of the gradients are monitored

before and during training and finally set C according to

the average magnitudes. We partition the training data into

the private data Dpri and the public data Dpub. During each

training step, a batch of samples is randomly selected from

Dpub and set the clipping bound as the average gradient

norm w.r.t this batch of Dpri. Because the clipping bound

is computed from Dpub instead of being set manually. It is

closer to the optimal C, but each iteration’s progress direction

is correct. Accordingly, this strategy accelerates the training

convergence rate and has a higher data utility.

Weight Clustering. Since the weights of each layer vary

greatly, the clipping bound should be different for overall

weights. Therefore, Zhang et al. [19] proposed this strategy,

as sketched in Algorithm 1 (see in Appendix A). First, we

receive a set of gradients {cgi}i and each gradient forms its

own group {(gi, cgi)}i. Then, we sort each group from small

to large and recursively find two groups Ĝi, ˆGi+1 with the

most similar clipping bounds and combine into a new group.

Because we clip the ℓ2 norm for C, the clipping bound of the

new group is computed as
√

c2
Ĝi

+ c2
ˆGi+1

using the ℓ2 norm.

Warm-Start. Since DP-GAN adds a lot of noise during train-

ing, the convergence rate is slower than GAN. To improve the

convergence rate and the utility, we extract a small proportion

of Dpub (e.g., 2% of Dpub in [19]) to train several iterations
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without DP. After that, based on the model trained in the above

non-private manner, we use Dpri to train the model in an

DP manner. In essence, this strategy can find a better weight

initialization for the model training from the perspectives of

the training efficiency and model utility budget by sacrificing

the privacy of those data records used in the pre-training 1.

III. OUR APPROACH

To avoid leaking sensitive data in machine learning, it in

common uses the “Clean feature with sloppy training” ap-

proach to attain this goal. However, this method only releases

a model of the fixed type, and third parties can not generate

the corresponding model according to their needs. In recent

years, Zhang et al. [19] has proposed a method with the same

degree of privacy guarantees that can train the expected model

according to their requirements. Suppose the accuracy of the

model generated by the synthetic data is close to or higher than

the model released by “Clean feature with sloppy training”.

In that case, we can use synthetic data extensively for various

analyses and the model generated by these synthetic data with

the same degree of privacy guarantees. In Section IV, we will

show the performance of classifiers trained on the original data

with the DP-SGD optimizer and trained on the synthetic data

generated by DP-GAN normal SGD optimizer.

In this section, we show that how we train the classifier

with the DP-SGD optimizer. We also show how we generate

a classifier from synthetic data and evaluate its performance

for the DP-GAN.

For DP-SGD, we train the classifiers on MNIST and

FASHION-MNIST with the architecture: a 60-dimensional

PCA projection layer, a single 1000-unit ReLU hidden layer,

and a 10-unit output layer. Based on [10], PCA projection

needs to access the sensitive data, so we must add noise to

avoid the leakage of privacy. To maintain the overall privacy

budget, ǫ is split into ǫclip and ǫpca whose noise scales are σclip

and σpca, respectively.

We train the DP-GAN models with δ = 10−5 and various

privacy budgets in this paper for DP-GAN. The DP-GAN

model only generates differentially private synthetic data and

does not label them. Hence, our strategy is to generate a highly

accurate classifier at first and then use it to label the synthetic

data generated by the generator of the DP-GAN model. To get

a highly accurate classifier, we train the neural networks of

the architecture shown in Fig. 2 on MNIST and FASHION-

MNIST datasets whose accuracies are 99.16% and 92.58%,

respectively. Then, we randomly select the same number of

each class in the training data of “Clean features with sloppy

training” from the synthetic data. For the sake of fairness, we

train these synthetic data based on the neural network structure

of “Clean features with sloppy training”. We repeat to generate

synthetic data and train the classifier fifty times and finally take

the average accuracy.

1Warm-start is optional. In other words, if one cannot find any Dpub

available for the pre-training, one can skip warn-start. In fact, warm-start
can be seen as the transfer learning with full-model fine-tuning. Thus, even
if one cannot find Dpub that shares the same distribution with the sensitive
dataset and can only find Dpub that shares the somewhat similar distribution,
then warm-start can still increase the training efficiency and utility.

IV. EXPERIMENTS

In this section, we mainly compare the performance between

the classifiers trained on the synthetic data and trained with

“Clean features with sloppy training”. Both methods are under

an equal degree of privacy protection.

A. Experiments Setup

We trained classifiers on MNIST and FASHION-MNIST

datasets. MNIST consists of 70,000 handwritten digital images

of size 28×28 and divides them into 60,000 training and 10,000

test samples. FASHION-MNIST consists of 70,000 images of

10 categories: t-shirt, trousers, pullover, dress, coat, sandal,

shirt, sneaker, bag, and ankle boot of size 28×28 divides them

into 60,000 training and 10,000 test samples. Both two datasets

are black and white images. All experiments are conducted

using an Intel Xeon E5-2620v4 CPU, 125 GB RAM, and an

NVIDIA TITAN Xp GPU with 12 GB RAM.

Each teacher and student model uses the same neural

network structure in PATE: two convolution layers with max-

pooling and one fully connected layer with ReLUs. The

teachers can access 60,000 samples totally, of which 5,000

are used for validation. The batch size is set to 128, and the

learning rate is initially set to 5. We found that when the

number of teachers is 100 and 80 for MNIST and FASHION-

MNIST, the student model has the highest accuracy shown in

Table I. We show more experiments on number of teachers

versus the student accuracy in Fig 10. (see in Appendix B).

Since the FASHION-MNIST dataset is more complex than

the MNIST dataset, each teacher model needs more training

data so that the student model can attain higher accuracy. The

amount of the training data for training the student model is a

critical factor for the accuracy shown in Fig 4. We use 5000

test data labeled by the ensemble teacher to train the student

model for all experiments.

Fig. 4. The accuracy generated by the different numbers of training data
under the student’s training structure.

In DP-SGD, the learning rate initially sets as 0.1, linearly

reduces to 0.052 in 10 epochs, and finally fixes at 0.052. To

limit the sensitivity, we found that the gradient clipping thresh-

old is set to 4 and 5 separately for MNIST and FASHION-

MNIST with the best utility demonstrated in Fig 5. Besides,

the total privacy budget ǫ is partitioned into ǫclip and ǫpca with
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TABLE I
TRAINING PATE WITH DIFFERENT NUMBER OF TEACHERS SATISFIED (2, 10−5)-DP INFLUENCES THE PERFORMANCE OF STUDENT MODELS.

Dataset Number of teachers Average Accuracy of Teachers Teacher Ensemble Accuracy Student Accuracy

MNIST
10 97.49% 97.6% 93.33%

100 90.27% 96.34% 97.47%

250 83.7% 91.72% 92.48%

FASHION-MNIST
10 86.47% 87.72% 82.8%
80 81.73% 85.76% 86.78%

250 73.68% 74.37% 76.03%

noise scales σclip and σpca mentioned in Section III. We set

(ǫ = 0.5, σclip = 8, σpca = 16), (ǫ = 2, σclip = 4, σpca = 7),
(ǫ = 4, σclip = 3, σpca = 5) and (ǫ = 8, σclip = 2, σpca = 4)
for both datasets.

(a) MNIST

(b) FASHION-MNIST

Fig. 5. The accuracies based on different gradient clipping thresholds C on
MNIST and FASHION-MNIST.

In DP-GAN, we divide the training data into a publicly

available dataset Dpub and a private dataset Dpri with a ratio

of 2 : 98. We set the number of steps for updating the generator

in the single iteration to be 4. We train the DP-GAN by

setting the number of steps for updating generator in the single

iteration= 4, batch size = 64, the initial learning rate= 0.0002,

the coefficient of gradient penalty λ = 10, and hyper-

parameters of Adam optimizer (α, β, γ) = (0.002, 0.5, 0.9).
Based on Section II-D, there are five strategies for finding the

optimal clipping bound C. The number of groups for weight

clustering is set to be 5. The number of iterations of warm-

start is set to 500. To limit the sensitivity, the settings of the

gradient clipping threshold C for different models show as

below:

1) Basic model: It is the traditional DP-GAN, we set the

overall parameters of C to be 4 and 5 on MNIST and

FASHION-MNIST, respectively.

2) Weight-Bias model: Because the initial parameters are

very messy, it should be set the larger C at the beginning.

As the training step increases, the model will tend to

converge. Therefore, the setting of C should gradually

become small.

3) Other strategies adopt adaptive clipping to set C through

Dpub.

B. Experimental Results

In this section, we show the performances on classifiers

trained with “Clean features with sloppy training” and DP-

GAN by varying privacy budgets ǫ on MNIST and FASHION-

MNIST. Both DP-SGD and PATE belong to “Clean features

with sloppy training”. Besides, we perform the visual compar-

ison of the synthetic data for five strategies of DP-GAN with

the same privacy budget ǫ.

1) Performance on MNIST dataset: We train with δ = 10−5

and four different privacy budgets ǫ = {0.5, 2, 4, 8}. The

degree of privacy protection increases when ǫ reduces. We

train eight classifiers: regular training, PATE, DP-SGD, and

combinations of 5 strategies of DP-GAN models. We show the

test accuracies of 8 classifiers in Fig 6. Original data meaning

regular training; of course, it can get the highest accuracy

which is more significant than 97%. Based on Equation 2.,

we know that the noise injection is related to the ǫ. If we add

more noise during training, it will interfere severely with the

parameters of the optimizer. When ǫ = 0.5, we added more

noise and the manual setting of the gradient clipping bound

C has a large fluctuation bringing about the lower accuracy.

When ǫ ≥ 2, the demand for noise is small. That is, it has a

slight effect on the gradients. Consequently, the accuracy will

become more stable and approach to the original data.

DP-SGD, it contains ǫpca and ǫclip so that the demand of the

additive noise is more causing the poor performance. The poor

performance of basic and weight-bias models demonstrates

the importance of the gradient clipping bound C. Among

all strategies of setting C, the adaptive clipping is closer

to the varying gradients caused by each input than others.

The adaptive clipping does not cause slow convergence and

excessive truncation due to the small gradients. Furthermore,

it does not add too much noise due to reducing the data utility

of the generated data eventually. In addition to using adaptive

clipping, the warm-start is also a good choice. Because it

uses a little original data to train in several epochs without



7

adding noise, the latent space learned by the generator is closer

to the original data. Compared to DP-GAN models without

warm-start, we show images generated by generators trained

with different steps shown in Fig 11 (see in Appendix C).

The Model with warm-start can learn the latent space of the

training data well in fewer steps than other models. The ability

of generators influences the utility of the synthetic data. We

visualize the synthetic data shown in Fig 7 and the qualities

of images generated by estimation and warm-start models are

better than others. Therefore, the performance of classifiers

trained by them is higher than other DP-GAN models in Fig 6.

In conclusion, training DP-GAN models with the combination

of adaptive clipping and warm-staring is the most suitable

method to train an accurate classifier.

Fig. 6. Comparison test accuracies of 8 types of classifiers on MNIST. The
auto-grouping model use strategies for the combination of adaptive clipping
and weight clustering. The warm-start model is composed of warm-start
and adaptive clipping. The estimation model consists of warm-start, adaptive
clipping and weight-bias. The performance of Estimation model is closed to
PATE when ǫ ≥ 2. However, DP-SGD belonging to “Clean features with
sloppy training” cannot perform well until ǫ = 8.

2) Performance on FASHION-MNIST dataset: We per-

formed the same setting as MNIST dataset with δ = 10−5 and

three different privacy budgets ǫ = {2, 4, 8} on FASHION-

MNIST. Obviously, under the same degree of privacy protec-

tion, there is a significant gap in the accuracy of FASHION-

MNIST compared to the MNIST. Because the FASHION-

(a) Original Images (b) Basic Model

(c) Weight-Bias Model (d) Auto-grouping Model

(e) Warm-Start Model (f) Estimation Model

Fig. 7. Visual Comparison of the synthetic data generated by basic, weight-
bias, auto-grouping, warm-start and estimation models trained by the same
iterations under the privacy budget ǫ = 0.5 and δ = 10−5 on MNIST.
Estimation and warm-start models can generate the synthetic data being more
similar with original images.

MNIST dataset is more complex than the MNIST dataset, the

performance is arduously as good as MNIST. We overcome

this barrier by using adaptive clipping and its accuracy is

relatively high and stable. Since adaptive clipping constantly

monitors the magnitude of the gradients in Dpub before and

dynamically sets the clipping threshold C based on the average

during training. Hence, it guarantees the maximum protection

of the input sample to the gradients with minimal correlation

error.

Fig. 8. Comparison test accuracies of 8 types of classifiers on FASHION-
MNIST. The auto-grouping model use strategies for the combination of
adaptive clipping and weight clustering. The warm-start model is composed
of warm-start and adaptive clipping. The estimation model consists of warm-
start, adaptive clipping and weight-bias. The performance of warm-start model
shows that is closed to PATE when ǫ ≥ 2. It consistently shows that the utility
of the synthetic data is brilliant.

As mentioned above, the amount of noise affecting the

utility of data is connected to ǫ. When the privacy budget

ǫ growing, the accuracy of each model increases shown in Fig

8. DP-SGD consistently cannot get the brilliant performance

caused by partitions of ǫ for the gradient clipping and PCA

projection. As ǫ increases, performances of DP-GAN models

are closer to PATE and regular training. The reason for basic

and weight-bias models gaining low accuracy mentioned in

Section IV-B1 is that both do not use warm-start. We also

perform the synthetic images generated by different DP-GAn

models trained with and without warm-start with the privacy

budget ǫ = 2 and different steps shown in Fig 12 (see in

Appendix C). Consider the results on MNIST; warm-start

plays a vital role in the accuracy of classifiers trained on the

synthetic data. We also perform the synthetic data generated

by 5 DP-GAN models under the same privacy budget shown in

Fig 9. The images generated by auto-grouping and warm-start

models are closer to the original images.

To train the accurate classifier, the performance of both

“Clean features with sloppy training” and DP-GAN are almost

the same on both MNIST and FASHION-MNIST. However,

using DP-GAN to generate synthetic data with appropriate

strategies has widespread applications. For example, we can

do statistical analysis on synthetic data. “Clean features with

sloppy training” can only be used to predict the user’s data.

In practice, instead of releasing secure models, the synthetic

data can be applied in broad fields.
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(a) Original Images (b) Basic Model

(c) Weight-Bias Model (d) Auto-grouping Model

(e) Warm-Start Model (f) Estimation Model

Fig. 9. Visual Comparison of the synthetic data generated by basic, weight-
bias, auto-grouping, warm-start and estimation models trained by the same
iterations under the privacy budget ǫ = 2 and δ = 10−5 on FASHION-
MNIST.

V. CONCLUSION

In our work, we use two types of Clean feature with sloppy

training” based on the location of noise injection and compare

it with the classifier generated by the synthetic data under the

same level of privacy protection. According to the experimen-

tal results, we can observe that the setting of the clipping

threshold has a considerable influence on accuracy. In DP-

SGD, it not only sets the clipping threshold manually but adds

more noise than other models during training, so its accuracy

is usually the lowest. However, in DP-GAN, we dynamically

adjust the value of the clipping threshold in each step by

using adaptive clipping. This strategy prevents the clipping

threshold from being too small, causing slow aggregation;

it also prevents it from being too large, adding more noise.

Therefore, when the noise is added to the gradients, the model

generated by differentially private synthetic data has higher

utility. Another Clean feature with sloppy training” adds noise

to the voting’s statistical results, so we focus on whether there

are enough correct labels. We increase the number of teachers

to ensure that the correct label has an overwhelming number

of votes. Therefore, the model generated by this method has

a higher utility than the model developed by differentially

private synthetic data.

On the other hand, due to the business secrecy, the factory

owners are not willing to share the data collected from IIoT

with the other one. However, from our empirical experiments,

one can know that a DP synthetic dataset learned from DP-

GANs or a DP deep neural network can be a surrogate for the

shared data. With the DP synthetic datasets or models available

for the public, the factory owners can also benefit from such

a data sharing (e.g., the external machine learning experts can

make an improvement to the production process when the

data about the production process is available) without com-

promising the data privacy and business secrecy. Moreover,

though DP-GANs has slightly worse utility than DP-CNNs,

the factory owner may still prefer DP-GANs because of the

high versatility.
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APPENDIX A

THE ALGORITHM OF WEIGHTING CLUSTERING.

Algorithm 1. summarize that how to accomplish weight-

clustering group into k categories.

Algorithm 1 Weight-Clustering

Require: Number of groups: k, A set of gradients: {cgi}i
Ensure: Grouping of parameters, G

1: G¸{(gi, cgi)}i
2: while |G| > k do

3: // Sort G from small to large by cgi
4: Ĝ1, Ĝ2, · · · , ˆG|G|−1, ˆG|G|¸Sort(G)

5: Ĝi, ˆGi+1¸max

(c
Ĝ1

c
Ĝ2

,
c
Ĝ2

c
Ĝ3

, · · · ,
c ˆG|G|−1

c ˆG|G|

)

6: // Merge them and update the clipping threshold

7: merge Ĝi, ˆGi+1 with clipping bound as
√

c2
Ĝi

+ c2
ˆGi+1

8: end while

9: return G

APPENDIX B

MORE SETS OF NUMBER OF TEACHERS VERSUS THE

ACCURACY OF STUDENT MODELS

In Fig 10, we conducted more experiments with different

number of teachers. The number of teaches significantly affect

on the accuracy. Fixed the total number of the training data,

each teacher needs more amount of the training data for the

complicated dataset.

Fig. 10. The accuracies of student models trained with different number of
teachers on MNIST and FASHION-MNIST. 100 and 80 teachers for MNIST
and FASHION-MNIST can attain the highest accuracy.
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APPENDIX C

VISUAL COMPARISON OF SYNTHETIC IMAGES ON MNIST

AND FASHION-MNIST.

Fig 11. and Fig 12. showed that using warm-start in the

training learned more quickly than other models. Thus, the

performance of generators trained with warm-start is better

than others when we fixed the training iterations. As the result,

classifiers trained on the synthetic data associated with warm-

start gain higher accuracy.

(a) 0 step of Estimation model (b) 360th step of Estimation
model

(c) 1460th step of Auto-grouping
model

(d) 2040th step of Weight-Bias
model

Fig. 11. Visual comparison of synthetic images generated by generators
trained with different steps, the privacy budget ǫ = 2, and disparate
combinations of strategies on MNIST. Only Estimation model uses warm-
start. It shows that the models trained without warm-start need more steps to
learn the features of the training data.

APPENDIX D

NOTATION TABLE

Notation Description

ǫ, δ privacy parameters in DP

∆f global sensitivity

Lap(b) Laplace distribution with zero mean and scale b

N (a, b) Gaussian distribution with mean a and variance b

θ model parameter

L loss function

η learning rate in SGD and DP-SGD

C clipping threshold in DP-SGD

G generator in GAN and DP-GAN

D discriminator in GAN and DP-GAN

Ĝ group of similar gradients in Zhang et al. [19]
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