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Abstract— Human activity recognition (HAR) using 

smartphone sensors have been recently studied in various 

applications including healthcare, fitness, smart home, etc. Their 

recognition accuracy often depends on high-quality feature 

design and effectiveness of classification algorithms, where 

existing work mostly replies on laborious hand-crafted design and 

shallow feature learning architecture. Recent deep learning 

techniques demonstrate outstanding effectiveness in performing 

automatic feature learning and outperform traditional models in 

terms of accuracy. But their performance is limited by the quality 

and volumes of available labelled data. It is challenging to achieve 

accurate multi-subject HAR with only smartphone sensing data. 

This paper proposes a novel optimal activity graph generation 

model incorporating a deep learning framework for automatic 

and accurate HAR with multiple subjects using only acceleration 

and gyroscope data. The activity graph generation model 

presents a multisensory integration mechanism with three-steps 

sorting algorithms for producing optimal activity graphs 

containing alignments of neighbored signals in their width and 

height. Then, we propose a deep convolutional neural network to 

automatically learn distinguishable features from the graphs for 

HAR. By leveraging superior presentation of correlations 

between human activities and neighbored signals alignments via 

optimal activity graphs, the learned features are endowed with 

more discriminative power. The experimental evaluation was 

carried out on several benchmark datasets (i.e., UCI, USCHAD 

and UTD-MHAD). The results showed that our approach 

improved the average recognition accuracy by about 5% when 

compared with other state-of-the-art HAR methods. Particularly 

towards multi-subject HAR cases (UTD-MHAD dataset with 21 

subjects), it achieved up to 10% accuracy gain over other 

methods. These improvements show the advantage and potential 

of our method dealing with complex HAR problems with multiple 

subjects using limited sensing data. 

 

 
Index Terms— Human activity recognition, deep learning, 

activity graph 

 

I. INTRODUCTION  

ith the rapid development of microelectronics and 

pervasive computing in the past decade, human activity 

recognition (HAR) using wearable and mobile computing 

technologies has been playing an increasingly important role 

in many fields from personlised healthcare to behavior analysis 

[1-2]. Particularly towards treatment and long-term care of 

many physical inactivity associated diseases like Parkinson’s 
disease and diabetes, effectively monitoring and accurately 

recognising patients’ daily physical activity (PA) using cost-
effective mobile devices is helpful to achieve identification of 

abnormal activities [3] and prevention of serious consequences 

[4]. Also, HAR-related mobile applications enable providing 

reasonable exercise advice and fitness level reports [5]. Design 

and development of innovative and cost-effective mobile HAR 

approaches have much significance many health-related fields.  

In earlier studies of HAR, optical sensing solutions [6-8] like 

using camera or depth sensors are one of the most popular cost-

effective technologies to monitor and recognise human activity 

in many applications. Comparing with other HAR solutions [9-

10], optical sensing approaches only require a small amount of 

low-cost camera to acquire video sources, and use advanced 

video analysis techniques for robust and accurate performance. 

But their usage suffers from many social limitations and 

technical challenges such as personal privacy, environmental 

illumination, video resolution, and cost and complexity of 

video processing algorithm. These limitations drive research 

and development of new cost-effective HAR technologies.  

Mobile sensing based HAR approaches rely on three steps: 

1) data acquisition using smartphone sensors; 2) distinguished 

feature extraction; and 3) feature learning and classification. 

Most previously existing works need to design laborious hand-

crafted features (i.e., time, frequency or hybrid domains) [11] 

and classification algorithms (i.e., SVM, Random Forest Tree, 

ANN, weighted support tensor machines) [12-13] [31-32]. 

While these approaches show excellent accuracy in many well-

calibrated lab-setting scenarios, their performance are often 

constrained by quality of hand-crafted feature, expensive data 

labelling process and strenuous experimental protocols for 

data collection. Recently, deep learning techniques [14-16] 

demonstrate outstanding abilities of modelling high-level 

abstractions of data and achieving automatic and robust feature 

learning. Typically, a deep neural network architecture with 

multiple layers is built up for automating feature design. Each 

layer in the deep architecture performs a non-linear 

transformation on the outputs of the previous layer; the data 

are represented by a hierarchy of features from low-level to 

high-level through the deep learning models. An effective 

mode could first represent raw signal data as 2D image or 

graphs containing visual features [17], and then apply well-

known deep learning models like Convolutional Neural 

Networks (CNN) [14-15] and Long Short-Term Memory 

(LSTM) [18] for processing these data. But in this mode, their 

performance is limited by the types, quality and volumes of 
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Fig.1. Technical pipeline of our approach architecture. 

available labelled sensing data. Importantly, these 1D time 

series data captured by smartphone sensors require further 

processing for better presenting human activities exist in the 

three-dimensional space, such as a critical process of 

converting multiple 1D time series signal into 2D activity 

images or graphs. How to represent the correlation between 

activity subjects and signals alignments in 2D data will affect 

recognition accuracy of deep learning models. So far, there has 

been little attention to the issue of finding ways for deep 

learning to reach high accuracy of multi-subject HAR using 

only smartphone sensing data. 

Targeting at above issues, this paper focuses on studying and 

developing novel activity graph generation mechanisms with 

superior presentation of correlations between human activities 

and neighbored signals alignments. It also incorporates a deep 

convolutional neural network (CNN) to improve multi-subject 

HAR performance. In a typical way [19], activity graphs were 

generated by simply placing and fusing all axis signals in one 

batch, where it possibly ignores some latent ‘correlation’. Our 

idea is based on an assumption that there should be some latent 

‘correlations’ between human activity subjects and alignments 

of multiple sensing signals, where each activity subject should 

have some patterns simultaneously reflecting into individual 

axis of sensor in smartphones. Thus, following the technical 

pipeline shown in Fig.1, we aim to design a multisensory 

integration mechanism with sorting algorithms for producing 

optimal activity graphs containing alignments of neighbored 

signals in their width and height. Then, a deep convolutional 

neural network is proposed to enable automatic learning of 

distinguishable features from optimal activity graphs for HAR. 

By leveraging superior presentation of correlations between 

human activities and neighbored signals alignments via 

optimal activity graphs, the learned features are endowed with 

more discriminative power for achieving high accuracy and 

robustness of multi-subject HAR. Our key contributions are 

summarized below:   

• A novel optimal activity graph generation approach with 

multisensory integration mechanisms and three-steps sorting 

algorithms is proposed to better present correlations between 

multiple human activity subjects and multiple sensing signals 

alignments. The generated optimal activity graphs contain rich 

and distinguished correlation information for learning features.  

• A deep convolutional neural network with optimised 

parameters is designed for processing activity graphs with high 

accuracy of human activity recognition on smartphone sensors 

data. This network utilizes CNN to explore important latent 

features along both width and height of activity graphs 

simultaneously, further improving classification performance. 

• A comprehensive experimental evaluation and analysis is 

given on three benchmark datasets (i.e., UCI [21], USCHAD 

[22] and UTD-MHAD [23]). The results show our proposed 

approach can averagely improve recognition accuracy of 3-5% 

compared with other state-of-the-art approaches. Towards 

some complex type HAR cases (UTD-MHAD dataset with 21 

activity types), it achieves up to 10% accuracy gain over other 

methods. These improvements show potential of our method 

dealing with complex HAR problems with multiple subjects 

using limited sensing data.  

The rest of the paper is organized as follows. Section II 

presents related work. Section III gives an overview to our 

approach; the technical details of our system are introduced in 

Section IV and V. Section VI describes and discusses the 

experimental results. Section VII gives conclusions.  

II. RELATED WORK  

Recent deep learning techniques [14-16] in HAR studies 

mainly focus on two issues: fusion strategies of multi-sensor 

data, and optimisation of network architecture. In the first part, 



some well-known models like Convolutional Neural Networks 

(CNN) [14-15] and Long Short-Term Memory (LSTM) [18] 

were used for processing multi-sensor data fusion for activity 

recognition. The work [19] suggested a classification method 

that fused different axis signals into an activity graph, and took 

it as input information of a deep convolutional neural network 

for recognising human activities. In [24], researchers used the 

Gramian Angular Fields (GAF) to encode one time series into 

a two-channel image, and applied a fusion ResNet framework 

for HAR. It is worth noting that some similar studies suggested 

some feature images generation approaches, where encoders 

were used to extract arrays or vectors similar to local images, 

and corresponding neural network classifiers were constructed 

to carry out the task of HAR. Ronao and Cho [25] proposed a 

deep convolutional neural network based HAR system. They 

constructed the original signal into arrays of six channels and 

used deep convolutional neural networks to extract relevant 

features from raw data for classification. Also, a temporal fast 

Fourier transform was applied in their approach to process 

original sensor data for enhancing the performance of neural 

networks. These methods prove that it is feasible and efficient 

to extract the information of the original data from the image 

for activity classification.  

In the second section, many HAR studies attempted to study 

how to optimise the structures of deep networks to identify 

features and automatically complete the classification method. 

Advanced CNN structures such as GoogleNet [26], ResNet 

[27] and ZFNet [28] are all capable of achieving outstanding 

results in the HAR fields when given large volume of data. 

These methods usually designed special structures to solve the 

most common problem of gradient disappearance or explosion 

during model training. Additionally, due to a strong ability of 

processing time series data, LSTM networks were also widely 

studied in the HAR. Tao et al. [29] presented an improved 

LSTM method, called bidirectional long short-term memory 

(BLSTM). They first converted the raw data from the sensor 

into the norm of the horizontal component and vertical 

component, and then applied a multicolumn BLSTM with 

different signals to improve the performance of the classifier. 

Their work shows that utilising common wearable sensors and 

simpler architecture of neural networks can potentially achieve 

better generalization in the HAR. 

III. PROPOSED APPROACH 

A. Brief summary of the model 

As mentioned before, our key idea is based on an assumption 

that there should be some latent ‘correlations’ between human 
activity subjects and alignments of multiple sensing signals. 

As shown in Fig.1, we will first get raw accelerometer and 

gyroscope sensing data from smartphone for preprocessing; 

where they are presented as time series data of different axes 

of X, Y and Z of smartphone sensors. Then, we will use a series 

of sorting algorithms to generate a baseline of activity graph 

and an optimal activity graph with special sorting and stacking 

operations. The optimal activity graphs will be taken as the 

input of our optimized CNN approach. The classification result 

of HAR will be finally obtained.  

 

Figure 2. Our idea of activity graph generation model. 

 

Figure 3. Demonstration of generating an Activity Graph with 

inputting 4 raw signals (AG-4: Activity Graph (1 x 4), AG-8: 

Activity Graph (1 x 8), AG-8-3: Activity Graph (3 x 8)).  

 

Fig.4. Activity Graph Generation with single-column method. 

B. Activity Graph Generation 

As for activity graph generation, the first issue is to determine 

its dimension of height. This paper only considers smartphone 

sensors, thus we can get six original data sequences from both 

accelerometer and gyroscope sensors in the X, Y, Z axis, as 

same as the datasets of USCHAD and UTD-MHAD shown in 

Fig2. However, the UCI dataset provides data after eliminating 

gravity component on the axis of the three components of the 

accelerometer, so each sample of UCI has nine data sequences.  

A baseline activity graph generation method with a sorting 

algorithm was proposed by Jiang and Yin [19]. They highlight 



certain latent ‘correlation’ between activity subjects and 

neighbored signals alignments in the height dimension of 

activity graphs. But their method only supports UCI dataset 

with 9 input sequences. Thus, as shown in Fig2, we improve 

their method as a baseline solution by taking any number of 

input sequences with a sorting algorithm named single-column 

activity graph method. Also, for producing optimal activity 

graphs containing alignments of neighbored signals in their 

width and height, another activity graph generation algorithm 

containing three columns in each activity graph is proposed 

and named multi-column activity graph method. Fig.2 shows a 

sample of taking 6 input sequences for generating baseline and 

optimal activity graphs. Also, another demonstration of 

generating an Activity Graph with inputting 4 raw signals is 

shown in Fig.3.  

C. Single-column activity graph method  

Jiang and Yin [19]’s algorithm is limited to the number of input 

sequences of 9 in UCI dataset, in other cases, the algorithm 

will give unexpected results. An activity graph stack algorithm 

that can accommodate any number of inputs is necessary, as 

different datasets are likely to use a variable number of sensors 

to collect data. For example, if we use a dataset containing 

signal data from one accelerometer and one gyroscope, then 

we use 6 different signals data (X, Y, and Z axis of 

accelerometer and the gyroscope) as raw input information, the 

resulting sequence by [19] is not completely sorted.  

    For solving this problem, we improved single-column 

method algorithm consisting of Algorithm 1 and 2. Algorithm1 

outputs a specific data stack order based on the input original 

signal, Algorithm2 stacks the original signal sequentially into 

a graph based on the output of Algorithm1. The core idea is to 

stack the original data sequence row-by-row and make sure 

that each sequence is adjacent to any other sequence at least 

once. Note that the activity graph obtained using Algorithm2 

is an internal distribution of single columns and multiple rows. 

Following the example in Fig.3, when giving 4 raw signals 

with AG-4, the activity graph generated by single-column 

method should guarantee alignment of each two neighbors 

sensor signals at least once. Finally, it will output an activity 

graph with AG-8. The procedure is shown in Fig.4.  

D. Multi-column activity graph method  

As single-column method only duplicates data along height of 

an activity graph, we further proposed another algorithm that 

generates a new activity graph to guarantee alignment of each 

two neighbored sensor signals at least once in its width and 

height. We called it as a multi-column method consisting of 

Algorithm-1 and Algorithm-3. Following the example in Fig.3 

and 4, when giving an output activity graph AG-8 from Fig.4, 

the activity graph generated by multiple-column method 

should guarantee alignment of each two neighbors sensor 

signals at least once in its width and height. It will output an 

activity graph with AG-8-3. The procedure is shown in Fig.5. 

    Note that the activity graph obtained using Algorithm3 is an 

internal distribution of three columns and multiple rows. The 

core design idea of Algorithm3 is that the distribution of data 

sequences should be distributed as far as possible in higher 

dimensions, that is, not limited to a single column like 

Algorithm2, i.e., not only by stack signal sequence row-by-

row, for each row of a single signal sequence, in its left and 

 

 

 

Fig.5. Activity Graph Generation with multi-column method. 



  

right, respectively inserted into the signal sequence. At the 

same time, for each data sequence, not only keeping it on row 

direction and adjacent to other sequences at least once, but also 

on the direction of the column to guarantee with other 

sequences adjacent at least once. 

IV. PRINCIPLE OF ACTIVITY GRAPH DESIGN 

As shown in Fig.2, the design principle of optimal activity 

graph is to enable containing more latent correlation presenting 

between human activity subjects and neighbored signals 

alignments.  To better explain the concept of the” correlation”, 
we used the simplest activity graph generated by the original 

unordered method, the activity graph generated by single-

column method, compared with the activity graph generated 

by multi-column method, as shown in Fig.6.  

    The most important part of using a CNN for activity graph 

operation is to use the convolution kernel for convolution 

operation. Specifically, a fixed size convolution kernel moves 

the image horizontally and vertically until it reaches the end 

point. In this process, the information contained in the activity 

graph is aggregated into the final convolutional layer through 

corresponding matrix operations. The selection of convolution 

kernel will directly affect the results of information extraction. 

In our experiment, we use a convolution kernel of size 10x10 

for the convolution operation of the active graph. We used the 

activities in the USCHAD data set to obtain the final activity 

graph through three different generation algorithms. The size 

of the graph remains consistent 360x360. Moreover, we 

extracted the number of the real signal sequence in the activity 

graph to construct a corresponding order graph for each 

activity graph, as shown in the Fig.2. Then, when the 

convolution kernel with a size of 10x10 moves over these 

images, it shows that the” correlation” obtained by convolution 
kernel is different, as shown in Fig.6 to make a specific 

comparison. For the activity graph from original unordered 

method, no matter where the convolution kernel moves to, the 

maximum number of original signals that a single convolution 

kernel can recognize at the same time is 2, as shown in Fig.6. 

 

Figure 6. Convolution operation on different activity graphs  

As all signals are not extended sorted, many correlations 

between signals will be lost, such as signals 1 and 3, signals 2 

and 4, etc. This method contains the least “correlation” 
information, and the recognition effect is theoretically the 

worst.  

For the single-column method, the maximum number of 

original signals that a single convolution kernel can recognize 

at the same time is 2, as shown in Fig.6. However, due to the 

extended sorting, all signals are adjacent to any other signals 

at least once, which solves the problem of large amount of 

information loss in the unsorted method. This method contains 

more” correlation” information, and the recognition effect can 
be improved theoretically. In the multi-column method, the 

maximum number of original signals that a single convolution 

kernel can recognize at the same time is improved, we can see 

in Fig.6 when the 10x10 convolution kernel moves to the 

signal junction, the convolution operation can be performed on 

up to four signals (containing three different signals, such as 

signal 4,1,1,2) at the same time, and our method remains the 

signal extend sorting. Our proposed method can contain more 

”correlation” information than the single-column method, 

which further improves the theoretical recognition effect.  

It is worth noting that, in theory, if the size of the 

convolution kernel is increased, more different signals can be 

recognised simultaneously. But the ”correlation” information 

does not necessarily become richer, as too large a convolution 

kernel will aggregate too much original information of the 

image during the convolution operation, resulting in the loss of 

information. So, a balance needs to be reached between the 

size of the activity graph and the size of the convolution kernel 

so that more” correlation information” can be contained and 
better recognition effect can be achieved. According to our 

experimental tests, for the activity graphs (default width and 

height are equal, both are m), the most appropriate convolution 

kernel size interval is [m/50, m/30]. At the same time, based 

on our theoretical explanation of the proposed method, for 

more complex activities, the more complex the activity pattern 

on each decomposition axis is, the more” correlation” needs to 
be recognized to better avoid false recognition. It means that 

our method should be able to deal with some complex cases 

with many activity subjects.  

V. DESIGN AND OPTIMISATION OF DEEP NETWORK  

We use CNN in deep learning technology to automatically 

extract potential features in activity graphs. CNN is mainly 

composed of convolution layer, activation function and 



pooling layer. And the dimension of our input (activity graph) 

is W × H × C, where W, H, and C are width, height and the 

number of channels, respectively. 

Convolutional layer: The typical convolutional layer uses the 

kernel (also called filter) to perform mathematical processing. 

The kernel size is usually f × f, the other four important 

parameters are the number of input feature map, the number of 

output feature map, padding P and stride S. Note that the 

number of channels C must be equal to that of input feature 

map so the convolution operation be performed correctly. The 

output size (𝑊𝑙𝑛  ×  𝐻𝑙𝑛) of convolution layer 𝑙𝑛 is shown in 

Eq.(1, 2). 
 𝑊𝑙𝑛 =  𝑊𝑙𝑛−1+2𝑃𝑙𝑛− 𝑓𝑙𝑛𝑆𝑙𝑛  + 1                (1) 

 𝐻𝑙𝑛 =  𝐻𝑙𝑛−1+2𝑃𝑙𝑛− 𝑓𝑙𝑛𝑆𝑙𝑛  + 1                    (2) 

 

The final output of the convolutional layer 𝑙𝑛  is shown in 

Eq.(3). 

 𝑋𝑗𝑙𝑛 = 𝜑 (∑ 𝑋𝑖𝑙𝑛−1 ∗ 𝑓𝑖𝑗𝑙𝑛 + 𝑏𝑗𝑙𝑛𝑀
𝑖=1 )                 (3) 

 

In Eq.(3), 𝑏 is bias term,  i and j are indexes of input and output 
feature maps of convolutional layer. M means the range of 
filter values. 
 

Activation function: Rectified linear activation function 

(ReLU) is usually selected as the activation function after the 

convolution operation, the purpose of using ReLU is to 

introduce non-linearity because the CNN needs to learn 

nonnegative linear values. In the Eq.(3),  𝜑  is the ReLU 

function, is shown in Eq.(4). 

 𝜑(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                         (4) 
 

In addition to this, finally, all data is entered into a full 

connection layer and applying the final activation function 

(typically Sigmod in Eq.(5) or Softmax in Eq.(6)) to get the 

prediction results, C represents the number of classes in a 

multi-classification problem. 

 𝜑(𝑥) = 11+ 𝑒−𝑥                            (5) 

 𝜑(𝑥𝑖) = 𝑒𝑥𝑖∑ 𝑒𝑥𝑐𝐶𝑐=1                           (6) 

 

Pooling layer: CNN uses pooling layers to reduce the number 

of parameters significantly. The most commonly used pooling 

layers include average pooling and max pooling. Here, we use 

max pooling as pooling layer. The output size (𝑊𝑙𝑛  ×  𝐻𝑙𝑛) 

of max pooling layer 𝑙𝑛 is equal to the Eq.(1, 2). Specifically, 

the Max Pooling layer preserves the maximum value within 

each kernel range and discards other values as the final output. 

In order to select an appropriate CNN as our baseline 

classifier, we compared three advanced CNNs: ResNet, 

GoogleNet and LeNet, the comparing result is shown in Table. 

I. We can see that although ResNet and GoogleNet are more 

complex, to do better in some image classification problems, 

but in our experiment, due to the sample of dataset is less (from 

5000 to 14000, small amounts of data are also a common 

feature of HAR data sets), for ResNet and GoogleNet, which 

are attempting to solve the problem of large-scale data 

recognition, unable to play to their advantages, and their 

training time is longer. So we finally used LeNet as the 

baseline classifier in subsequent experiments due to its good 

performance and lower training consumption. And we finally 

used the structure of CNN is shown in the bottom of Fig.1, the 

detailed parameters are shown in the Table II. 

TABLE I     PERFORMANCE COMPARISON OF DIFFERENT CNNS  

CNN 

architecture  
UCI USCHAD UTD1 

LeNet 86.2% 83.1% 54.2% 

GoogleNet 85.7% 81.9% 53.5% 

ResNet 84.5% 82.5% 52.8% 

TABLE II     THE PARAMETERS AND HYPERPARAMETERS OF OUR CNN 

Parameters  Value 

Input layer size 360 x 360 

The kernel size of convolutional layer 1 10 

The kernel size of convolutional layer 2 7 

The number of output maps of convolutional layer 1 20 

The number of output maps of convolutional layer 2 30 

The kernel size of convolutional layer 2 7 

The type of subsampling layer Max-pooling 

The kernel size of subsampling layer 1 5 

The kernel size of subsampling layer 2 3 

Learning rate 0.0001 

Optimizer type Adam 

Batch size 256 

The number of epochs 1000 

The dropout rate 0.1 

TABLE  III    DATASET DESCRIPTION 

Dataset Sensors Position 
Data 

Subjects 

 

Sampling 

rate 

Number 

of 

activities 

UCI [21] 
2 (Acc, 

Gyro) 
Waist 30 

50HZ 
6 

USCHAD 

[22] 

2 (Acc, 

Gyro) 
Hip 15 

100HZ 
12 

UTDI 

[23] 

2 (Acc, 

Gyro) 
Wrist 8 

50HZ 
21 

TABLE IV     PROCESSING RESULTS AND PARAMETER SELECTION 

Dataset 
Sliding window 

overlap 

Sampling 

time 

Training set 

samples 

Test set 

samples 

UCI [21] 50% 2.5s 7352 2947 

USCHAD 

[22] 
50% 2s 18557 7954 

UTDI 

[23] 
50% 1s 3014 1293 



VI. EXPERIMENTS EVALUATION AND RESULTS 

A. Experimental Settings 

We used three public datasets to validate the proposed method. 

The information of these datasets is summarized in Table.III. 

UCI dataset was collected from 30 volunteers within an age 

bracket of 19-48 years [21]. Each volunteer wore a Samsung 

Galaxy S II smartphone on the waist and performed six 

different activities. The researchers collected data from 

accelerometers and gyroscopes embedded in the smartphone, 

and videotaped the experiments so that activity types are 

manually labeled. The original sampling frequency is 50HZ. 

Extra, the sensor acceleration signal was separated into gravity 

and body acceleration parts based on a Butterworth low-pass 

filter. For the USCHAD [22] dataset, a sensing platform called 

MotionNode is used to collect data and this platform integrates 

a 3-axis accelerometer, 3-axis gyroscope, and a 3-axis 

magnetometer with the sampling frequency of 100HZ. The 

researchers selected 14 subjects within an age bracket of 21-49 

years to collect data from 12 different activities, and they used 

observers to manually record and label these activities. In the 

UTD [23] dataset, the researchers used one Kinect camera and 

one wearable inertial sensor to collect data. The sampling rate 

of the wearable sensor is 50 HZ. The 8 objects are required to 

perform 27 different activities, it’s worth noting that, for 
actions 1 through 21, the inertial sensor was placed on the wrist 

of subjects but for actions 22 through 27, the inertial sensor 

was placed on the subject’s right thigh. In this paper, we only 
take the first 21 class activities of inertial sensor data for 

research, and we also do not use the camera data because we 

don’t study optical sensor data, as called UTD1. 

B. Evaluation Metrics 

In order to accurately evaluate our model, Mean Average 

Precision (mAP) is used as metric for evaluation that takes 

mean of Average Precision (AP) value among classes. Given 

an IoU threshold, AP value used to fuse the precision and recall 

together and defined as the area under Precision-Recall (PR) 

curve: 𝐴𝑃(𝑐) =  ∫ 𝑃𝑅(𝑐)                          (7) 
 

where 𝑐 denotes the class and PR is calculated by: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐) =  #𝑇𝑃(𝑐)#𝑇𝑃(𝑐)+#𝐹𝑃(𝑐)                          (8) 𝑅𝑒𝑐𝑎𝑙𝑙(𝑐) =  #𝑇𝑃(𝑐)#𝑇𝑃(𝑐)+#𝐹𝑁(𝑐)                          (9) 

 

in which TP , FP  and FN  represent True Positive, False 

Positive and False Negative samples respectively so the 

Precision measures the samples that are incorrectly detected 

while Recall measures those misdetection samples. Then the 

mAP could be obtained by taking mean: 

 

1
( )

c C

mAP AP c
C 

=                     (10) 

C. Parameter Optimisation 

In the process of data preprocessing, generating the activity 

graph, we respectively show the relevant parameter  

 

a) accuracy of differnet sliding window overalp rate 

 

b) accuracy of differnet sampling time 

Figure 7. Comparison of accuracy with varied sliding window 

size and sampling time over three datasets. 

optimization process and the corresponding results of these 

three parts. For all datasets, LeNet as a baseline classifier is 

used to get the classification accuracy with single-column 

method as a baseline. For data preprocessing, Fig.7 shows the 

different results obtained from the different selection of sliding 

window overlap and sampling time. For sliding window 

overlap in Fig.7a, the greater the overlap means that finally can 

use the sample will be more. It is of great value to the original 

data set sample amount is small, in UTD1 data set, due to its 

original sample amount relative to the other two data sets is 

less, so we can see the overlap take a larger value (65%), 

eventually the highest classification accuracy, for the other two 

data sets, one of the most commonly used overlap value (50%), 

can obtain the good effect. The length of sampling time also 

has a similar effect on the final number of samples. For UCI 

and USCHAD datasets, the sampling time around two seconds 

could achieve a good classification effect, as shown in Fig.7b. 

However, more than two seconds is too long for the UTD1 

dataset, this results in too few samples available for training, 

one second is the relative optimal choice of UTD1 when both 

the number of samples available and the length of a single 

sample need to be considered. The final data preprocessing 

result is shown in Table IV.  

 For all datasets, there are two most important parameters, 

aspect ratio and dots per inch (DPI), to determine the final size 

and quality of the image when generating the activity graphs., 

Fig.8 show the different results obtained from the different 

selection of aspect ratio and DPI. For aspect ratio, we find that 

the ratio is equal to 3:3 or 3:4 with the highest accuracy. This 

is due to compression problems when data sequences are 

arranged into images. For images that have the same content 

and format except for the different proportions of width and 

height, we can see when aspect ratio is 3:2 (Width: Height is  



 

a) accuracy of using differnet aspect ratio of AG generation 

 

b) accuracy of using differnet DPI of AG generation 

Figure 8.  Comparison of accuracy with varied aspect ratio 

and DPI over three datasets. 

3:2), the data sequence is stacked in rows, the height of the data 

sequence graph in each row is compressed because the number 

of rows is large, this could cause fluctuations in the original 

data to be partially obscured (i.e., locally lost information). In 

contrast, if we increase the height so that the height is suitable 

for the arrangement of multiple rows of data sequence, this 

situation will be greatly improved, conducive to the 

subsequent recognition. But blindly increasing the height is not 

a good choice because it makes the activity graph file too large,  

considering that we need to save and read a lot of images 

later, the ratio of 3:3 was used as our final choice in this paper 

(the actual pixels used are 360:360). Moreover, when data sets 

need to generate activity graphs with more rows, we 

recommend using larger heights such as 3:4 or 3:5 as 

appropriate. In total, for HAR, too small aspect ratio will cause 

loss of details of picture information, while too large aspect 

ratio will cause unnecessary waste of computing resources. 

The appropriate aspect ratio should be 3:3 or 3:4.  

    Similarly, we also tested the choice of different DPI, the 

result was shown in Fig.8b. The value of DPI will directly 

affect the picture quality of the activity graphs, and too much 

DPI will cause unnecessary space resource occupancy, we 

finally choose DPI equal to 120 for the subsequent 

experiments. Too small DPI will cause loss of details of picture 

information, while too large DPI will cause unnecessary waste 

of computing resources. We recommended DPI is 120 as the 

generally choice. 

D. Comparison of the Single-column method and the 

proposed method 

The classification performance of the three public datasets 

using single-column activity graphs and multi-column activity 

graphs (our proposed method) is shown in the Table V. For 

each dataset, the method we proposed has achieved better 

classification accuracy compared with the single-column 

activity graphs, the classification accuracy was improved by 

3.96%, 4.56% and 9.93% respectively. It proves the 

effectiveness of the algorithm we designed, in other words, for 

different activity types and different number of original signal 

sources, our method can generate activity graphs containing 

more potential features, thus effectively improving activity 

recognition accuracy. 

Moreover, we can see with the improvement of the number 

of activities on these datasets (21 activities >12 activities >6 

activities), the degree of improvement of classification 

accuracy also increases (9.93% >4.56% >3.96%), these results 

suggest a possibility, that is, our proposed method has greater 

potential to recognize data with more activity types. To verify 

this hypothesis, we randomly selected different types of 

activities in the UTD1 dataset to generate sub-datasets, and 

used two feature graph generation methods respectively to 

obtain classification accuracy data, which were then compared 

with the original UTD1 recognition data.  

We also found that when the number of activities decreases 

to 12, the accuracy of Multi-column activity method increase 

to 72.02% and the accuracy of single-column activity method 

increase to 64.57%, but the improvement of Multi-column 

methods decrease to 7.45%, a similar test result was presented 

when the number of activity types was equal to 16 (the 

improvement of Multi-column methods decrease to 8.18%), in 

contrast, the number is 9.93% when the number of activity is 

21 on UTD1 dataset. This verifies our hypothesis that the 

performance improvement of our proposed method is more 

significant on datasets with more subject activities. 

    In comparison with two state-of-the-art deep learning 

techniques [35][36], we found that our proposed multi-column 

method performs not good as [35][36] in UCI datasets with 6 

activity subjects. It is because the two state-of-the-art deep 

learning techniques have proposed new SE blocks and SK 

convolution to optimise the kernel of CNNs, so that it could 

achieve up to 96.60% accuracy in UCI dataset. 

TABLE V     PERFORMANCE COMPARISON OF OUR PROPOSED METHOD  

Activity Graph 

generation 

method 

UCI [21] 

(6 activities) 

USCHAD [22] 

(12 activities) 

UTD1[23] 

(21 activities) 

Single-column 86.21% 83.14% 54.19% 

Multi-column 90.17% 87.70% 64.12% 

TABLE VI     PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-

ART METHODS  

 
UCI [21] 

(6 activities) 

USCHAD [22] 

(12 activities) 

UTD1[23] 

(21 activities) 

Our 

multi-

column 

method 

90.17% 87.70% 64.12% 

RF   91.31% LR   76.08% LR   15.54% 

SVM   96.47% J48DT  91.37% J48DT   48.57% 

ABDT   91.31% ABDT  90.21% ABDT   51.42% 

[35] 94.51% 87.36% 61.53% 

[36] 96.60% 86.70% 60.12% 

 



TABLE VII   PERFORMANCE COMPARISON OF COMPUTATIONAL COST  

Dataset 
UCI [21] 

(6 activities) 

USCHAD [22] 

(12 activities) 

UTD1[23] 

(21 activities) 

Methods 
Single  

column 

Multi-

column 

Single  

column 

Multi-

column 

Single  

column 

Multi-

column 

Accuracy 86.21% 90.17% 83.14% 87.70% 54.19% 64.12% 

Precision 86.01% 87.62% 81.19% 85.59% 53.94% 63.69% 

Recall 84.64% 88.15% 81.14% 85.78% 52.88% 63.31% 

Computational Cost (ms) 0.52  0.54  0.54 0.54 0.52 0.54 

However, as for the datasets [22][23] with more activity 

subjects, our proposed algorithms perform better than these 

two state-of-the-art algorithms, particularly in UTDI with 21 

activities, our proposed method has outperformed them with 

3% accuracy gain. This verifies our hypothesis that the 

performance improvement of our proposed method is more 

significant on datasets with more subject activities. Therefore, 

the above results show that our proposed approach performs 

better than these state-of-the-art deep learning approaches with 

selected kernel convolution, due to our optimised activity 

graph generation model.  

E. Comparison of other state-of-the-art methods 

We also compared the classification performance of the 

proposed method with that of other state-of-art methods on the 

three datasets. Most of these methods use manual feature 

extraction methods and variants or improvements based on 

traditional classifiers (such as SVM, random forest, etc.) for 

activity recognition. The result is shown in the Table VI. RF: 

Random forest tree; SVM: Support Vector Machine, ABDT: AdaBoost 

decision tree; J48DT: J48 Decision Tree; LR: logical regression;  

Since most of state-of-art methods improve the traditional 

classifiers, so the first thing we evaluate the proposed method 

and the original traditional classifier performance difference, 

we used the UCI dataset have done manually extract with 561 

features with four traditional classifiers (Bayesian, Random 

Forest, GBDT, SVM,) carried out the experiment, the 561 

features include the characteristics of the time domain and 

frequency domain, is constructed from the original dataset 

author through expert knowledge and proved the validity of 

them. We compared our method with traditional feature 

extraction methods and traditional classifiers. The results show 

that our proposed methods can approach or exceed the 

performance of some traditional classifiers (our method: 

90.17% > Bayesian: 85.00%). At the same time, the traditional 

manual feature extraction method can obtain the optimal 

classification result (SVM: 96.47%), moreover, by comparison 

with other state-of-art methods, the effect of our proposed 

method (90.17%) is also close to that of Casale et al. ’s method 
based on the random forest classifier (91.31%) and Anguita et 

al. ’s method based on the multiclass SVM classifier gets the 
best result (96.47%), which indicates that the proposed method 

is effective but not yet optimal. However, these analysis 

conclusions above just from UCI dataset contains only six 

common kinds of activities and the activities themselves are 

not complicated, not all of the datasets could be extracted 

specification and reasonable characteristics of as many as 561, 

in more cases, it is limited by the highly complex and more 

categories of the classification activity itself, from Table VI for 

USCHAD and UTD1 tests, we can get more information. In 

addition to accuracy, other important experimental results such 

as precision and recall are shown in Table VII. 

F. Computational cost  

All our experiments are conducted on a normal computer with 

a 2.7GHZ CPU and 8GB memory. When training the 

convolutional neural network, we used the Tesla P100 GPU 

for acceleration. When testing the test set to calculate various 

metrics and computational Cost, we did not invoke the GPU. 

Our computational cost average is 0.54ms per test sample, 

which is a very low time resource consumption and helps to 

perform real-time human physical activity recognition on low-

power devices, especially mobile devices. The result is shown 

in the Table VII. 

VII. DISCUSSION 

While our proposed activity graph generation approach with 

multi-column sorting algorithms demonstrates a superior 

performance than existing state-of the-art deep learning 

algorithm [19] on the most complex UTD1 dataset, there are 

still some further issues requiring discussion and future study.  

    One main issue is the difference on how to transfer signals 

into pixel value between our method and [19]. In [19], their 

method is to directly map the original signal into pixel value 

and then generate activity graph through Discrete Fourier 

Transform (DFT). But our method including single-column 

and three-column algorithms is to generate activity graph by 

stacking the waveform of the original signal. We have re-

produced the method in [19] with DFT pre-processing in a 

variety of experiments and tested the use of DFT for our 

proposed method, but the results show that the DFT does not 

improve (or even decrease) accuracy. It is probably because 

[19]’s method is a direct mapping of the original sensor 

readings to pixels, and the images generated by this method are 

more densely arranged, which is more suitable for the use of 

DFT. However, our method could better extract the 

‘correlation information’ on different coordinate axes without 

DFT to extract the frequency domain information. So the 

method we proposed refers to idea from [19]: "Every two 

signals must be adjacent once", but has some significantly 

difference with their method. These two approaches also have 

different advantages. For data sets with fewer activity 

categories and uncomplicated activities, [19]'s method is more 



effective. For data sets with more complex activities and more 

categories, for example in the dataset of UTD1, [19]'s method 

contain less information than our method. Our method is 

inspired by [19]’s idea, but towards more complex datasets 

with multiple subjects’ activities.  
      Another notable issue is whether we could have potentially 

optimised the soring algorithms, as it is key to the success of 

the output of activity graphs. Current multi-column sorting 

algorithm contains duplicated and redundant information of 

activity graph. For instance, Figure.2 shows a case of activity 

graph with only 6 axis input. When the axis input is increased 

to 9, 12, or even more, we will have some more duplicated and 

redundant information in activity graph, further potentially 

affecting efficiency of our CNN solution. Also, our sorting 

algorithm is not the only unique solution for optimal activity 

graph, as it is dependent on initialization of axis signals input.  

Lastly, one important issue is about selecting parameters of 

CNN such as kernel size. We find out that the 5x5 convolution 

kernel processes frequency domain data rather than direct 

correlation of signals on different axes in [19]. Catching the 

"right" amount of information with the adopted 10x10 

convolution kernel is applicable to the method we proposed, 

where this kernel size could better extract the presentation of 

correlations between multiple activity subjects and sensor 

signals alignments. Our key contribution of this paper is to 

seek an importantly ignored problem in existing literatures of 

HAR, that generating optimal activity image can present 

correlations between multiple human activity subjects and 

sensor signals alignments, further improving its accuracy when 

applying deep learning techniques into activity images.  

Notably, recent literatures [31-34] on HAR indicates some 

interesting new research progress, such as ambient sensing 

technologies [33] for smart home care, Kinect based human 

affection recognition technologies [34] for remote healthcare. 

Their practical applications in free-living environment are still 

limited, as using smartphone data is easier and more accessible 

to end-users. Thus, our proposed solution has importance in 

this field. To our best knowledge, it is the first time in the 

literature to point out the issue of activity graph generation 

using “latent ‘correlation’ between human activity subjects 
and neighboured signals alignments”, also we prove its 

effectiveness in complex datasets of HAR with 21 subjects of 

activities, with up to 10% accuracy improvement.  

VIII. CONCLUSION 

This paper designed a novel optimal activity graph generation 

model by incorporating deep learning frameworks for 

automatic and accurate HAR with multiple subjects using only 

acceleration and gyroscope data. Specifically, through a 

comprehensive comparison, we confirm that the classification 

effect of our proposed multicolumn activity graph is better than 

other deep learning or traditional supervised learning HARs.  

The results showed that our approach averagely improved 

recognition accuracy about 5% compared with other state-of-

the-art HAR methods. Particularly towards multi-type HAR 

cases, it achieved up to 10% accuracy gain over other methods. 

These improvements show the advantage and potential of our 

method dealing with complex HAR problems with multiple 

subjects using limited sensing data. 
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