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Abstract—The visual loop closure detection for Autonomous
Underwater Vehicles (AUVs) is a key component to reduce the
drift error accumulated in simultaneous localization and mapping
tasks. However, due to viewpoint changes, textureless images,
and fast-moving objects, the loop closure detection in dramati-
cally changing underwater environments remains a challenging
problem to traditional geometric methods. Inspired by strong
feature learning ability of deep neural networks, we propose an
underwater loop closure detection method based on a variational
auto-encoder network in this paper. Our proposed method can
learn effective image representations to deal with the challenges
caused by dynamic underwater environments. Specifically, the
proposed network is an unsupervised method, which avoids the
difficulty and cost of labeling a great quantity of underwater
data. Also included is a semantic object segmentation module,
which is utilized to segment the underwater environments and
assign weights to objects in order to alleviate the impact of fast-
moving objects. Furthermore, an underwater image description
scheme is used to enable efficient access to geometric and object-
level semantic information, which helps to build a robust and
real-time system in dramatically changing underwater scenarios.
Finally, we test the proposed system under complex underwater
environments and get a recall rate of 92.31% in the tested
environments.

Index Terms—AUV SLAM, loop closure detection, semantic
segmentation, deep neural network.

I. INTRODUCTION

AUTONOMOUS Underwater Vehicles (AUVs) are now
used for a variety of tasks, for instant, pipeline detecting,

oceanographic survey, deep-sea exploration, and seafood prod-
ucts monitoring [1], [2]. AUV localization is such a significant
task with wide applications that numerous methods have been
proposed in recent years. Loop closure detection refers to the
assignment of deciding whether or not a vehicle has, after an
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excursion of arbitrary length, returned to a previously visited
location. It plays a key role in eliminating error accumulation
over long-term operations. Correct loop detection results con-
tribute to the relocation of AUVs or promote the algorithm to
obtain more consistent and accurate results, as illustrated in
Fig. 1, and similar demonstration is also given in [3].

(a) (b)

Fig. 1. An underwater trajectory map. (a) Without loop closure detection. (b)
With loop closure detection.

Although some vision-based loop closure (or place recog-
nition) algorithms [4], [5] were proposed to eliminate the
drifts for terrestrial environments, they cannot directly handle
the large-scale environment with real-world underwater data.
In addition, due to the nature of underwater environments,
changing viewpoints, blur motions, textureless images, and
fast-moving objects further increase the difficulty of solving
the problem. Therefore, exploring a significant loop closure
detection method for AUVs has become a current research
hotspot.

In previous works, many underwater localization methods
relying on the use of high-accuracy underwater sensors, such
as sonar, Doppler Velocity Log (DVL), and 3-axis compass,
could provide good localization results, but the high cost
limits their widespread deployments [1]. In recent years,
underwater acoustic sensor networks (UASNs) have been
extensively studied. Yan et al. [6] developed an AUV aided
localization solution for UASNs, subject to asynchronous
clock, stratification effect and mobility constraints in cyber
channels. At the same time, there has been a growing interest
in underwater optical wireless networks for localization. In
[7], the authors investigated underwater relaying and routing
techniques and provided their end-to-end performance analysis
under the location uncertainty. Saeed et al. [8] proposed a ro-
bust 3D localization method for partially connected underwater
optical wireless sensor networks, which can accommodate the
outliers and optimize the placement of the anchors to improve
the localization accuracy. Nevertheless, it requires a tedious
and costly installation process before deployment, which is
time consuming. Meanwhile, sensor nodes often have passive
motions caused by water current or tide. In this case, it is hard
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to calculate the actual distance between the nodes, which has
a great impact on localization accuracy.

Recent developments in vision research areas have wit-
nessed dramatically increasing performance in localization
on terrestrial applications. Most early loop closure detection
methods for mobile robots are based on the assumption of
appearance invariability. However, when they face a long-
term self-localization task in outdoor environments, dynamic
scene, illumination change, viewpoint varying, and seasonal
variation will greatly reduce the precision and recall rate of
system detection [9]. These issues pose a severe challenge to
the robustness of algorithms. Without loop closure detection,
the state estimation from visual simultaneous localization and
mapping (SLAM) systems could lead to serious deviation
for long-term and large-scale environments. A true positive
loop closure detection can significantly reduce the error of the
system, but a false positive loop closure detection could make
the graph optimization algorithm converge a completely wrong
value. Hence, correct loop closure detection is a crucial step
to the optimization algorithm in a SLAM system.

Some underwater self-localization solutions have been pro-
posed to address the challenge issues, but they determine
the loop closure detection through hand-crafted landmarks. In
[10], Jung et al. proposed a method that utilizes the optical
camera measurement to implement an underwater SLAM
system. Artificial landmarks (3D geometric landmarks, tag-
type landmarks, etc) were arranged to appear in view of the
forward and downward-looking cameras, which limits the wide
application of AUVs in unknown scenarios. To get rid of
the dependence on external equipment for the localization
of AUVs, our previous work [11] developed a low-cost,
portable, and small volume sensor suite for underwater vehicle
localization. However, its loop closure detection module only
uses the geometric information of images. Exploiting the
information provided by images like semantic, geometric and
visual appearance is still an open issue to be solved.

Traditional visual localization related methods are not robust
under dramatically changing underwater environments. Firstly,
the underwater environment has a single structure, repeated
texture and poor specificity of descriptors. Secondly, tradi-
tional feature points have a requirement on the perspective of
observation. When AUVs observe from a different perspective,
it may appear to be a completely different feature point.
Due to the influence of water flow, the angle change caused
by AUVs during navigation is very disadvantageous to the
identification of underwater feature points. Therefore, it is not
enough to rely on geometric information only. Fortunately,
neural networks are proved to be more efficient in feature
extraction. And semantic features, such as underwater stones,
are salient both spatially and temporally. Currently, most deep
learning based methods require users-chosen parameters for
loop closure detection. Moreover, the size of datasets with
annotated ground-truth labels is limited and they are expensive
to collect.

Inspired by successful applications of deep networks in
feature extraction, we propose an underwater variational auto-
encoder (UVAE) network, which can robustly detect loop
closures in dramatically changing underwater environments.

We have successfully implemented the proposed network on
the NVIDIA TX2 platform. Experimental results demonstrate
that our method produces a high recall rate of 0.92 on the
fire pool underwater dataset and demonstrates a competitive
performance. We summarize our contributions as follows:

• We propose an underwater loop closure detection method
based on a variational auto-encoder network, which can
learn effective image representations to solve the robust-
ness problem in complex dynamic underwater scenarios.

• We propose an unsupervised semantic object segmen-
tation method to avoid the dependence on large-scale
underwater labeled dataset, which can segment the un-
derwater scenario and assign weights to objects, so as to
alleviate the impact of fast-moving objects on detection.

• We propose an underwater image description scheme
that enables efficient access to geometric and object-
level semantic information. This improves the robustness
and real-time performance of the system in challenging
underwater scenarios.

The paper is structured as follows. Section II gives a brief
introduction of some related works. Section III presents an
overview of the proposed robust AUV visual loop closure de-
tection based on variational auto-encoder network. In Section
IV, we introduce the proposed unsupervised variational auto-
encoder network, including network architecture and network
training. Section V describes the implementation details and
experimental results on the self-collected underwater datasets
in the fire pool as well as the Yellow Sea. Finally, the
conclusions and directions for future work are summarized
in Section VI.

II. RELATED WORK

For harsh underwater environments, the localization of
AUVs is the basis for the completion of oceanographic survey,
real-time seabed mapping, and routine seafood product moni-
toring. At present, the great majority of underwater navigation
algorithms are based on acoustic sensors such as sonar, long
baseline (LBL), ultrashort baseline (USBL), and DVL [1]. At
the same time, the UASNs have received much attention due
to a wide range of applications including marine resources
exploration and ocean data acquisition [2]. However, it is too
expensive to use sonar, USBL and DVL to collect data for
fishery work. Sometimes it also takes long time to deploy the
underwater acoustic sensor nodes equipment.

As far as vision is concerned, there are relatively few
researches on underwater environments. Even in the field
of underwater image processing, a large proportion is in
the study of underwater image enhancement (UIE). An UIE
algorithm mainly includes: histogram equalization and fusion
techniques, as well as data-driven frameworks with end-to-
end convolutional neural networks (CNNs) to learn essential
parameters or transmission maps from the degraded inputs.
CNNs do have the ability to deal with special circumstances
[12], [13], for instance, Woźniak et al. [13] introduced a
soft tree decision architecture which works well for decision
processes over cultural heritage. With the increasing attention
to the development of marine resources, Liu et al. [14]
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established a benchmark dataset with real world sea images.
But in general, current underwater datasets are rare, which
could be one of the reasons why there are not many vision-
based underwater localization studies.

Recent developments in visual localization research have
witnessed dramatically increasing performance in service
robots [15], autonomous micro aerial vehicles, autonomous
driving and augmented reality, which promoted the rapid
development of SLAM technology. With the advance of deep
learning, a large number of learning based methods have
emerged. In [16], the authors used a learning based method to
solve the problem of estimating the 6D pose of specific objects
from a single RGB-D image. Visual localization is closely re-
lated to a wide range of applications, especially re-localization
[17], loop closure detection in SLAM and Structure-from-
Motion systems [18]. In the field of visual place recognition,
the state-of-the-art system is NetVLAD [4]. In this method,
local descriptors, a flat convolution feature map, are assigned
to different local learning clusters to construct global image
descriptors. It is a highly versatile system that represents the
state-of-the-art accuracy, but it fails to provide the ability to
close the loop precisely.

Semantic information has the potential to make positioning
systems more robust. Naseer et al. [19] proposed a learning ap-
proach to robust binary segmentation and feature aggregation
of deep networks, which exploits the image content to create a
dense and salient scene description. In this work, the authors
provided a coarsely labeled dataset for semantic saliency in
dynamic and perceptually changing urban environments which
captures long-term weather and structural changes. Kingma
et al. [20] introduced a stochastic variational inference and
learning algorithm and proved that a reparameterization of the
variational lower bound yields a lower bound estimator that
can be straightforwardly optimized using standard stochastic
gradient methods.

Long term unmanned equipment operation shows that the
appearance change may be an important factor in visual place
recognition failures. Cadena et al. [21] proposed a place
recognition algorithm for SLAM systems using stereo cameras
that considers both appearance and geometric information of
points of interest in images. In [22], the authors proposed
how to choose the best environment similarity criterion, that
is, if each environment is described by its co-occurrence
characteristics, then the similarity between environments can
be determined by comparing their co-occurrence matrices.
Similarly, Chen et al. [23] trained two CNN architectures to
complete specific place recognition tasks, and used a multi-
scale feature coding method to generate condition invariant
and viewpoint invariant features.

To avoid wasting time using pixel-level supervision, Gao et
al. [24] presented a network based on the stacked denoising
auto-encoder (SDA) that learns a nonlinear representation of
raw image in an unsupervised way. But it is mainly used to
handle indoor environments. In [25], the authors proposed an
unsupervised auto-encoder network for robust and fast loop
closure detection. However, it does not take advantage of
the semantic information, and a threshold needs to be set
to determine a true positive. In the field of self-supervised,

Schönberger et al. [26] proposed a generative model of visual
localization based on 3D geometric and semantic information.
Yet, it takes around one second per frame to relocalise, which
is a bit slow. Merrill et al. [27] proposed a new auto-encoder
network called CALC2.0, but the network does not apply for
underwater applications.

In view of the rapid growth of underwater resource develop-
ment and utilization, it is necessary to accomplish an accurate
and efficient localization solution for AUVs. However, visual
loop closure detection of AUVs is known to be a complex and
challenging problem. Corke et al. [28] compared acoustic and
visual methods for underwater localization showing the via-
bility of using visual methods in some underwater scenarios.
In order to solve the robustness problem in complex dynamic
underwater scenarios, our previous work [11] proposed an un-
derwater self-localization method based on Pseudo-3D vision-
inertia for AUVs, which merges depth information into 2D
visual image to achieve continuous and robust localization. In
addition, we also optimized the 4 DOF pose graph to enhance
the global consistency and designed an online loop closure
detection module to realize the relocalization. However, our
previous work did not leverage the semantic information in
underwater images.

Different from other existing works, our proposed method,
as described in the following section, integrates semantic,
geometric and visual appearance information from underwa-
ter images to improve the performance of underwater self-
localization estimation. In particular, the proposed network is
an unsupervised method, which avoids the difficulty and cost
of labeling a great quantity of underwater data.

III. SYSTEM OVERVIEW

The architecture of the proposed robust AUV visual loop
closure detection based on variational auto-encoder network
is shown in Fig. 2. The whole network starts with the input
of training data, and then we send a pair of images to the
encoder part of the network at a time. After passing through
a 3 × 3 convolution layer, the convolutional features is fed
into five blocks of two convolution, each with a max pooling
behind it. Then, two 1 × 1 convolution layers are used to
computer the latent variables µ(i) and σ(i). In the second half
of the network, the latent variable is divided into K +1 local
descriptors. One is used to reconstruct the RGB image, while
the remaining K are sent to the decoder for concatenation and
then used to predict a full resolution semantic segmentation
label.

We choose to extract keypoints from the maximally acti-
vated regions outputted from the conv5 layer. After the mean-
ingful number of keypoints is computed, the proposed network
extracts the keypoint descriptors. Next, the network extracts
the residual of feature vectors around the point of interest in a
3×3 window. Then, we connect the residuals above to obtain
the keypoint descriptors. Here, the Euclidean distance metric
is used to compare these descriptors during keypoint matching.
Once keypoints are matched, a loop closure is detected. The
detection process is as follows: Firstly, we perform a K-
Nearest Neighbor search with k = 5 on the global image
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Fig. 2. The architecture of the proposed network.

descriptor database. Next, we filter k candidates by matching
keypoints. If a valid fundamental matrix can be computed with
the matched keypoints using the Random Sample Consensus
(RANSAC) algorithm [29], a loop closure is considered to be
detected. Otherwise, if there are not enough valid matches to
estimate a fundamental matrix, the candidate will be rejected.
The details of network architecture and its training will be
introduced in Section IV. Table I shows the main notations
used in this paper.

TABLE I
NOTATION DEFINITIONS

Name Description

Ni The set of training images

H The height of the image

W The width of the image

DKL The Kullback-Leibler (KL) divergence

T The number of descriptors corresponding to the decoder

K The number of concatenation sent to the decoder

⊙ The element-wise product

DS The dense pixel-wise semantic segmentation image

Lsum The overall objective function

IV. UNSUPERVISED VARIATIONAL AUTO-ENCODER
NETWORK

This section describes the proposed unsupervised UVAE
network. In general, our model learns the latent variables in
an underwater image through the UVAE network, which can
extract more abundant features and make the model more
accurate. The following two subsections will introduce the
network in detail.

A. Network Architecture

We consider the image dataset X = {x(i)}Ni=1 to be used
is composed of N independent and identically distributed
sample variable x. We assume that the data is generated by a
random process, which contains an unobservable continuous
random variable z. With the variational bound of our model,

the marginal likelihood consists of the sum of marginal likeli-
hoods of individual data points log pθ(x

(1),x(2), · · ·,x(N)) =∑N
i=1 log pθ(x

(i)), which can be written as:

log pθ(x
(i)) = DKL(qϕ(z|x(i)) ∥ pθ(z|x(i)))

+ L(θ,ϕ;x(i))
(1)

where the first right-hand side term is the Kullback-Leibler
(KL) divergence of the approximate from the true posterior.
Due to the KL divergence is non-negative, L(θ,ϕ;x(i)) is
called the (variational) lower bound on the marginal likelihood
of data point i, the formula can be written as:

log pθ(x
(i)) ≥ L(θ,ϕ;x(i)) = Eqϕ(z|x)[− log qϕ(z|x)

+ log pθ(x, z)]
(2)

The above equation can also be written as follows:

L(θ,ϕ;x(i)) = −DKL(qϕ(z|x(i)) ∥ pθ(z))

+ Eqϕ(z|x(i))[log pθ(x
(i)|z)]

(3)

DKL represents the KL divergence, θ represents the genera-
tive parameters, and ϕ is the variational parameters. qϕ(z|x(i))
and pθ(z)(the prior information) are both Gaussian.

The input to our proposed network is a set of RGB images.
Before the training begins, each input training image Ni is
wrapped randomly and resized to 192×256, which is used
to create an image pair. We send a pair of images to the
encoder part of the network at a time, which consists of 3× 3
convolutional layers. Then the convolutional features are fed
into five blocks of two convolutional layers, with one max
pooling layer after each block. The upper and lower encoders
share the weights for the true positive images in training.
After that, there are two separate 1×1 convolutional layers
to computer the latent variables µ(i) and σ(i). Let the prior
over the latent variables be the centered isotropic multivariate
Gaussian N (µ(i), diag(exp(σ(i)))), we sample from the pos-
terior z(i,l) ∼ qϕ(z|x(i)) using z(i,l) = µ(i) + σ(i) ⊙ ϵ(l),
where ϵ(l) is an auxiliary noise variable ϵ(l) ∼ N (0, I).
With ⊙ we signify an element-wise product. Let J denote the
dimensionality of z, and let µ(i) and σ(i) be the variational
mean and standard deviation evaluated at data point i. Finally,
let σj and µj simply denote the jth element of these vectors.
The estimation results of this model and data point x(i) can
be written as follows:

L(θ,ϕ;x(i)) ≃ 1

2

J∑
j=1

(1 + log((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2)

+
1

L

L∑
l=1

log pθ(x
(i)|z(i,l))

(4)
where

z(i,l) = µ(i) + σ(i) ⊙ ϵ(l), ϵ(l) ∼ N (0, I) (5)

In our proposed network, semantic information and visual
appearance are encoded into separate feature maps of the latent
space z. After passing through the encoder, the latent variable
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z is divided into K + 1 local descriptors with the shape of
T × H

16 × W
16 on the channel. This can also be interpreted as T

local descriptors. One of them is used to reconstruct the full
resolution RGB image, while the remaining K descriptors are
sent to the decoder for concatenation and then used to predict
a full resolution semantic segmentation label. In this way, all
the information contained in the image is encoded by K + 1
local descriptors, so that the network can automatically put
the relevant features into the corresponding feature map of µ
and σ. The latent variables here are both vector quantities,
which are obtained by flattening the T × H

16 × W
16 × (K + 1)

three-dimensional arrays.
We use the KL divergence loss to optimize the latent

variables and construct the standard normal distribution, which
can be constructed as:

Lα ≃ DKL[N (µ(i), diag(exp(σ(i)))) ∥ N (0, I)]

=
1

2
((
∑
i

exp(σ(i))− σ(i) − dim(µ(i)) + (µ(i))⊤µ(i))

(6)

After sampling with a standard normal distribution, the
latent variable z is sliced into K + 1 groups of feature maps
corresponding to K object classes and one visual appearance.
The slice part of latent variable z is sent to K+1 independent
decoders to decode the features and object classes correspond-
ing to appearance respectively. Then, the output information
of the decoder for appearance is sent to the generated image
loss function:

Lβ = −
∑
i

(Ii log(Gi) + (1− Ii) log(1−Gi)) (7)

where Ii and Gi represent the input image and generated
image respectively, and i is the index.

At the same time, the remaining K outputs of the decoders
for semantic segmentation are concatenated channel-wise.
After that, we send the concatenated result to a standard pixel-
wise softmax, and define the cross entropy loss function as
follows:

Lγ = −
M∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i)) (8)

where M represents the number of pixels for an image. ŷ(i)

is the predicted result, and y(i) represents the truth-value. We
only use the limited number of labeled underwater images
for training. The unsupervised auto-encoder network is able
to effectively train the segmentation decoder with the limited
labelled data and avoid the difficulty to label large amount of
the underwater images.

In the convolution layer of encoder, we use the exponential
linear unit activation layer. At the end of each layer, we use
3×3 max pooling with a stride of 3 to downscale the features.
However, the layers for computing the latent variables and the
last layer of the semantic segmentation in the decoder have
no activation. In addition, the generated image decoder has
a sigmoid activation. In the convolution layer of decoder, we
use the sub-pixel convolutional neural network to upscale the
decoder features.

We define Dχ as the normalized overall image descriptors
for the database images, DΥ as the positive sample, and DΦ

as the negative sample. Therefore, the objective function is
defined as follows:

Lξ = max(0, D⊤
χ (DΦ −DΥ) + Θ) (9)

where Θ represents the margin hyperparameter. Using this loss
function, the UVAE network learns to separate the similarity
between positive and negative samples through the margin
Θ. By optimizing this loss function, the cosine similarity
between the positive samples representation and database is
maximized, while the cosine similarity between the negative
image representation and database is minimized.

B. Network Training

We use an NVIDIA GeForce RTX 2080 Ti GPU to train
our model. Since we have limited self-collected underwater
dataset (only about 5,000 different underwater images), we
first pre-trained our model with the COCO dataset [30]. In
this dataset, the COCO-Stuff dataset includes total 164,000
images from COCO 2017. Furthermore, in order to alleviate
the dependence on large-scale underwater labeled dataset, we
randomly wrap the self-collected underwater images and send
them to the network for learning. At the same time, due to
our dataset does not contain the positive samples, we also use
random rotation, translation and stretching transformation to
generate corresponding images. By using these methods, we
are able to simulate the influence of changing pitch, roll and
yaw angles on the vision images during AUV navigation.

Light illumination at different times of the day could
result in significant changes in the underwater appearance.
Texture changes could affect the scene geometry. Intense
viewpoint changes in underwater environment could cause
serious perspective distortions, and often lead to structural
overlap between query and database. Due to the low number
of underwater training examples, we augmented our data with
a series of transformations. We applied rotation, warp images,
color distortion, and skew for the augmentation. We calculate
the dense pixel-wise semantic segmentation DS = {DSi

}
for all input images, where each pixel of DSi

is assigned a
semantic class label ls ∈ {1, 2, · · · ,K}. Then, we fuse the
images into semantic 3D voxel maps for the database Md and
query images Mq . Each voxel in the semantic 3D map has
one of K + 2 labels, that is, a voxel is occupied by one of
the K semantic classes, or marked as unobserved space Ku

or free space Kf .
Our model leverages the latent space as the descriptor and

captures the high-level geometric and semantic information.
After the semantic segmentation of underwater images, we
assign weights to the dynamic and static segmentation results
according to the speed of moving objects. The details of
weight allocation will be introduced in Section V. The overall
objective function is defined as:

Lsum = Lα10
−4 + Lβ10

−4 + Lγ + Lξ (10)

After training 200,000 epochs with the COCO dataset, we
get a satisfactory result of semantic segmentation. Then, we
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continue to put the underwater dataset into the network for
further learning. On this basis, we randomly darken images
with an average intensity above the threshold Ω = 0.3 to
compensate for the lack of night-time images in our under-
water dataset. In addition, we also randomly add blue and
green light to simulate the scene changes at different times of
the day. We retrained the network 10,000 epochs in the same
way mentioned above, and finally trained the whole network
210,000 epochs.

V. EXPERIMENTS AND ANALYSIS

A. Experiment Setup

We trained the proposed network with TensorFlow using the
default parameters of the Adam optimizer and set the learning
rate to 0.0001, each holding a batch size of 6. We tested the
proposed method in the real-world underwater environment to
evaluate its performance.

The custom-made sensor suite for AUV loop closure de-
tection is 1470×650×800mm3 in dimensions. It includes a
NVIDIA Jetson TX2, a forward-looking global shutter camera,
two light sources, etc. Our AUV is driven by four thrusters,
including two vertical thrusters and two plane omnidirectional
thrusters. We carried out underwater experiments in the Yellow
Sea, where the seafloor mainly contains a large number of
rocks, sea cucumbers, sea urchins, scallops. In addition, we
also set up a number of observation devices under the water,
as shown in Fig. 3.

(a) (b) (c)

Fig. 3. The underwater vehicle that we used for the Yellow Sea experiment.
(a) The appearance of the AUV testbed. (b) The custom-made sensor suite
collecting dada in the Yellow Sea. (c) The real scene of the experiment in
the Yellow Sea, where the data in this paper was collected. There are a large
amount of rocks, sea cucumbers, sea urchins, scallops and other objects under
the white iron rectangular area observed in zoomed-in image.

B. Experiment Results

After training, we used 12 representative underwater images
to test the network. The generated images are very similar to
the input original images, and the generated image contains
the main objects captured underwater, as shown in Fig. 4.
Although some unimportant scenes may be lost, it will not
have a significant impact on the detection of loop closure.
On the other hand, noise interference can also be filtered out,
for example, it can make up for the absorption and scattering
of particles suspended in the medium before reaching the
camera in the underwater scene, resulting in low contrast
and fog effect. In addition, it can compensate for the color
difference caused by the optical wavelength, dissolved organic
compounds and salinity of water.

We assign the weights to the dynamic and static segmen-
tation results according to the speed of the moving objects.

Furthermore, we use different colors to represent different
semantic information, as shown in Fig. 5. As you can see,
our method can achieve good semantic segmentation results.
In the complex underwater environment, we roughly classi-
fied the substances in the water into five categories. Stones,
aquatic plants and artificial structural scenario are marked as
background, whose weights are set as 1.0, and represented
by darkseagreen. The weights for objects like sea urchines,
which barely move, are set to 0.8, and we use purple to
represent them. Orchid represents sea cucumbers moving in
similar pace, whose weights are set to 0.7. Due to the fact
that scallops could suddenly move several meters, we set their
weights to a relatively low level, 0.5. Lightgreen represents
scallops. Finally, the weights for fishes and AUVs moving
in the water are set to 0.2, and we use coral to represent
them. In the task of loop closure detection, the objects with
high weights have high reliability. Even when there are only
fishes and AUVs in the view field, the rough relative position
recognition can be completed to ensure the robustness of the
system.

In order to eliminate the effect of false positive, we use
the Euclidean distance metric during keypoint matching to
compare the descriptors. By combining the fast and discrim-
inative global image descriptors with the geometric features
of keypoints, we are able to precisely complete the loop
closure detection without the need for the use of thesholding
techniques. If there are not enough valid matches to estimate
the fundamental matrix using the RANSAC algorithm, the
candidate will be rejected. The algorithm needs at least five
matches. On this basis, the final candidate is regarded as the
candidate with the highest global descriptor similarity score
and effectively matched. In Fig. 6, we tested it in different
scenarios, which can be used as a good geometric check for
loop closure detection. Outlier rejection is handled by the
uncertainty derived from false positives of both semantic and
geometric consistencies. It can eliminate the influence of the
uncertainty derived from false positives. In the underwater
environment with a single color background, the matching
can be completed correctly, with a matching score of 0.98,
as shown in Fig. 6 (a). It can be done successfully even in
the presence of aquatic plants disturbances, as shown in Fig.
6 (b). In Fig. 6 (c), the matching effect is very good near
the artificial structural scenario. Moreover, we also tested in
an indoor pool, and the matching score is 0.95, as shown in
Fig. 6 (d). The average processing time of matching point
detection is 11 ms. In the above four representative scenarios,
these matching keypoints can provide a good geometric check
for underwater loop closure detection.

In order to verify the effectiveness of our method in the loop
closure detection, we also evaluated our algorithm by driving
the AUV around the fire pool. In the indoor experiment, the
fire pool size is 20×8×5 m3. There is only one wellhead in
the pool that can be put into the underwater vehicle. At the
bottom of the pool, we arranged sea cucumbers, sea urchins
and scallops along the way to provide underwater features.
We control the AUV to move along the edge of the pool
in a rectangular trajectory. The water in this pool is not
static, but flowing. Therefore, in this dynamic environment,
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Fig. 4. Comparison of the input and generated images. Among them, the first line is the input images, and the second line is the generated images successively
through the UVAE network. Sea urchins, stones, starfish, and artificial targets were generated in the underwater environment, while some floating particles,
insignificant sand or small shells in the water may be ignored.
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Background Sea urchin Sea cucumber Scallop Fish / AUV

Fig. 5. The results of semantic segmentation. Among them, the first line is the input images, and the second line is the semantic segmentation images
successively through our network, where darkseagreen represents the background, purple represents sea urchins, orchid represents sea cucumbers, lightgreen
represents the scallops, and coral represents fast-moving objects (AUV or fish). We can segment the underwater scenes and assign the weights to the target,
eliminating the influence of fast-moving objects.

the influence of ocean currents in the Yellow Sea can be
simulated, as show in Fig. 7 (a). Fig. 7 (b) shows the detailed
loop closure detection results. We used X-axis and Y-axis
to represent the position information, and Z-axis to represent
the keyframe index. Our system successfully detects that the
AUV returns to the starting position at the frame 788, and can
perform the matching correctly. It achieves over 91 frames
per second (FPS) on a single-core desktop for underwater
loop closure detection. From these results, it shows that the
proposed network is capable of accurate loop closure detection
in practice.

The scenarios in the Yellow Sea underwater dataset we
collected are challenging and have a lot of viewpoints changes.
We proved the discriminate capability of our local image
descriptors. We extracted two principal components of de-
scriptors for the scallop and sea cucumber classes, where
the principal component analysis (PCA) whitening matrices
are trained for each class of the whole underwater dataset
respectively. As shown in Fig. 8, (a), (b) and (c) represent
an image in the database, true positive image and true neg-
ative image respectively. In Fig. 8 (d), blue represents the
database descriptor, green represents the true positive, and
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(c) (d)

Fig. 6. Comparison results of matching points after performing geometric
methods in different underwater scenarios. (a) A seabed with a single color
background (matching score: 0.98). (b) A colorful seabed (matching score:
0.73). (c) An artificial structural scenario (matching score: 0.97). (d) A
scenario in an indoor fire pool (matching score: 0.95).
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Fig. 7. Experimental results of our system in underwater loop closure
detection. (a) The picture of the fire pool experiment. We arranged sea
cucumbers, sea urchins and scallops along the way. The zoomed-in part of
the picture is the starting position of the AUV. (b) The results of our system
performance on the fire pool dataset. Clearly, the loop closure is correctly
detected in the complex dynamic underwater scenario.

red represents the true negative. This effect shows the benefit
from using semantic information in the image descriptors.
For example, the visual appearance method can not clearly
distinguish between two different descriptors. The blue line in
the figure is basically in the middle of green and red. The
reason for this could be that the true negative images are
similar to the images in the database in terms of texture, which
would cause the system to misjudge them. However, by using
the semantic information, we could avoid the disadvantage
that the visual appearance might be indistinguishable, and our
descriptors could maintain an obvious distinction. We can see
that after adding the semantic descriptors of scallops and sea
cucumbers, the blue line is closer to the green line on the unit
circle. The aforementioned results confirm that the potential
information extracted from our network is very effective.

(a) (b) (c)

database
positive
negative

Scallop Sea cucumber Appearance

(d)

Fig. 8. The result of computing the descriptors for underwater seabed images
in the Yellow Sea area. (a) An image in the database. (b) A true positive
query image. (c) A true negative query image. (d) The computed results
of two principal components of the corresponding local normalized residual
descriptors. In the upper right corner of the picture are details and illustrations.
Best viewed in color and with zoom in.

C. Discussion

Robust camera-only AUV localization in difficult underwa-
ter environments is a challenging problem. Water flow or tide,
plankton and water particles all would cause different imaging
backgrounds, which could bring noise in the system. In order
to deal with the influence of dynamic water current, colour
shift and low illuminations on the experimental results, the
Yellow Sea underwater dataset specifically contains the images
taken at different times of the day. Especially in the pool
environment, we not only carried out experiments at different
times, but also collected underwater images in very calm and
flowing scenarios respectively.

Due to the difference between underwater and ground
terrestrial environments, some terrestrial algorithms SeqLPD
[5], ORB-SLAM2 [18] were prone to collapse in underwater
datasets, and so far we cannot directly compare the proposed
method with related exiting loop closure detection algorithms.
So in this paper, we only compare it with the state-of-the-art
method NetVLAD [4] and CALC [25]. In order to achieve a
fair comparison, we implemented the NetVLAD and CALC
algorithms in our system. On the above two models that were
trained separately, we also added our underwater dataset to
train them again, to avoid the possibility that they have not
seen any underwater scenarios during training. We choose
three underwater datasets to validate the robustness of the three
algorithms, and the results of different scenarios are shown in
Table II and Fig. 9. In the table, the performance indicator used
is the highest recall rate at 1.0 precision. The mixed scenario
refers to 100 pairs of underwater images of the Yellow Sea
and fire pool.

In the pool, the recall rates of three methods are 55.93%,
36.36% and 92.31% respectively, since the pool is small and
there are fewer underwater dynamic objects. When facing the
complex Yellow Sea environment, the recall rate of NetVLAD
decreased considerably. However, the recall rate of our method
is still high, which is 80.00%. Because the proposed method
uses the object-level semantic information, it could alleviate
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TABLE II
STATISTICS FOR RECALL RATE

Underwater Dataset NetVLAD CALC Ours

Fire Pool 55.93% 36.36% 92.31%

Yellow Sea 11.36% 26.67% 80.00%

Mixed Scenario 18.52% 52.63% 81.82%

the impact of fast-moving objects. Even if there are moving
objects in the water, such as fishes and AUVs, our method
can improve the robustness of the system in challenging
underwater scenarios through semantic features.

The precision-recall curves are shown in Fig. 9, which
includes the recall rate, area under curve (AUC), average
precision (AP) and F1-score. We can see that our method
outperforms the NetVLAD and CALC algorithms in all three
scenarios. The AUC values of our method are 0.99, 0.98
and 0.98 respectively, and the F1-scores are 0.96, 0.89 and
0.90 respectively, indicating that our method has a better
performance in underwater place recognition.

VI. CONCLUSION

In this paper, to solve the robustness problem of loop closure
detection in dynamically changing underwater environments,
we proposed an UVAE network, which mainly extracts se-
mantic, geometric and visual appearance information from
underwater images. It is a novel underwater visual loop closure
detection scheme based on an unsupervised deep network. The
proposed method is verified by our custom-made underwater
sensor suite on real-world maritime space. Specifically, our
system successfully detects that the AUV returns to the starting
position at the frame 788, and can perform the matching
correctly in the complex dynamic underwater scenario. The
average processing time of matching point detection is 11
ms. Moreover, when comparing the proposed method against
NetVLAD and CALC in the pool, our method has a higher
recall rate, which is 92.31%. Hence, the results show that the
network has better performance.

It should be noted that there is still a lot of work to do
to further improve the performance of localization and map-
ping tasks in underwater environments through autonomous
navigation, e.g., how to improve accuracy of loop closure
detection in complex underwater environments? How to apply
decentralized visual SLAM algorithms to multiple AUVs in
large scale environments? We will try to address these issues
in future studies.

REFERENCES

[1] T. Qiu, Z. Zhao, T. Zhang, C. Chen, and C. P. Chen, “Underwater internet
of things in smart ocean: System architecture and open issues,” IEEE
Trans. Ind. Informat., vol. 16, no. 7, pp. 4297–4307, Jul. 2020.

[2] I. Jawhar, N. Mohamed, J. Al-Jaroodi, and S. Zhang, “An architecture
for using autonomous underwater vehicles in wireless sensor networks
for underwater pipeline monitoring,” IEEE Trans. Ind. Informat., vol. 15,
no. 3, pp. 1329–1340, Mar. 2019.

[3] K. L. Ho and P. Newman, “Detecting loop closure with scene se-
quences,” Int. J. Comput. Vis., vol. 74, no. 3, pp. 261–286, Sep. 2007.

[4] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1437–1451, Jun. 2018.

[5] Z. Liu, C. Suo, S. Zhou, H. Wei, Y. Liu, H. Wang, and Y.-H. Liu,
“SeqLPD: Sequence matching enhanced loop-closure detection based
on large-scale point cloud description for self-driving vehicles,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2019, pp. 1218–1223.

[6] J. Yan, D. Guo, X. Luo, and X. Guan, “AUV-Aided localization for
underwater acoustic sensor networks with current field estimation,” IEEE
Trans. Veh. Technol., vol. 69, no. 8, pp. 8855–8870, Aug. 2020.

[7] A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, and M. Alouini, “End-
to-end performance analysis of underwater optical wireless relaying and
routing techniques under location uncertainty,” IEEE Trans. on Wirel.
Commun., vol. 19, no. 2, pp. 1167–1181, Feb. 2020.

[8] N. Saeed, T. Y. Al-Naffouri, and M. Alouini, “Outlier detection and
optimal anchor placement for 3-D underwater optical wireless sensor
network localization,” IEEE Trans. Commun., vol. 67, no. 1, pp. 611–
622, Jan. 2019.

[9] H. Chen, G. Zhang, and Y. Ye, “Semantic loop closure detection with
instance-level inconsistency removal in dynamic industrial scenes,” IEEE
Trans. Ind. Informat., vol. 17, no. 3, pp. 2030–2040, Mar. 2021.

[10] J. Jung, Y. Lee, D. Kim, D. Lee, H. Myung, and H. T. Choi, “AUV
SLAM using forward/downward looking cameras and artificial land-
marks,” in 2017 IEEE Underwater Technology (UT), 2017, pp. 1–3.

[11] Y. Wang, X. Ma, J. Wang, and H. Wang, “Pseudo-3D vision-inertia based
underwater self-localization for AUVs,” IEEE Trans. Veh. Technol.,
vol. 69, no. 7, pp. 7895–7907, Jul. 2020.

[12] D. Połap, M. Wozniak, M. Korytkowski, and R. Scherer, “Encoder-
Decoder based CNN structure for microscopic image identification,” in
Int. Conf. Neural Inf. Process., 2020, pp. 301–312.
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[21] C. Cadena, D. Gálvez-López, J. D. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Trans. Robot., vol. 28, no. 4,
pp. 871–885, Aug. 2012.
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