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Abstract—The high computational capability provided by a
data centre makes it possible to solve complex manufacturing
issues and carry out large-scale collaborative cloud manufactur-
ing. Accurate, real-time estimation of the power required by a
data centre can help resource providers predict the total power
consumption and improve resource utilisation. To enhance the
accuracy of server power models, we propose a real-time energy
consumption prediction method called IECL that combines
the support vector machine, random forest, and grid search
algorithms. The random forest algorithm is used to screen the
input parameters of the model, while the grid search method
is used to optimise the hyperparameters. The error confidence
interval is also leveraged to describe the uncertainty in the energy
consumption by the server. Our experimental results suggest that
the average absolute error for different workloads is less than
1.4% with benchmark models.

Index Terms—Cloud manufacturing, power model, data centre,
energy consumption prediction, support vector machine.

I. INTRODUCTION

Cloud manufacturing is a new method of manufacturing that
utilises network and cloud manufacturing service platforms to
control online manufacturing based on the user’s requirements,
and to provide various on-demand manufacturing services.
Cloud-based manufacturing allows enterprises to constantly
improve the production process, adjust the production struc-
ture, and improve the efficiency and product quality.

As a critical component of the infrastructure of cloud
manufacturing, the data centre plays an essential role. The
high computational capability provided by a data centre makes
it possible to solve complex manufacturing issues and carry
out large-scale collaborative cloud manufacturing. To meet the
growing demand for high-performance computing, the sizes of
data centres are increasing. According to the latest data from
Synergy Research [1], the total number of large-scale data
centres operated by the world’s 20 cloud service providers
has increased to 597, representing double the total in 2015.

This rapid growth in the number of data centres gives rise
to two issues [2]. The first is an increase in energy costs
to service providers [3]. Statistical results [4] show that in
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2018, the total power consumption of China’s data centres
was 150 billion kWh, accounting for 2% of the total social
power consumption. This is expected to double to 4.05% by
2025. The second issue is the heavy social pressure in regard
to environmental protection. The Global e-Sustainability Ini-
tiative (GeSI) reported that the global carbon emissions from
data centres accounted for about 2% of the total global carbon
emissions in 2020, equivalent to the carbon emissions of the
global aviation industry [5].

Alo ngside this enormous energy consumption, there is
low resource utilisation. Statistical reports [6], [7]suggest that
resource utilisation by data centres is on average between 5%
and 25%, leading to wastage of resources. In general, the
energy consumption by data centres is mainly associated with
servers, refrigeration systems, lighting, and other equipment.
Power consumption by servers accounts for more than 50%
of the energy required by the whole data centre [8],and the
power consumption of the other components is also related to
that of the servers. Hence, reducing server power consumption
can help service providers to optimise the overall power
consumption within a data centre [9].

A data centre may consist of a large number (hundreds
or thousands) of servers. To improve resource utilisation and
decrease the energy consumption costs, energy-aware optimi-
sation algorithms are adopted [9], [10]. The issue of how
to evaluate the quality of these energy-saving optimisation
algorithms is an important one. In practice, an energy-aware
optimisation algorithm is based on a specific power model,
and hence the server power prediction model forms the basis
of the energy-saving optimisation algorithm. The accuracy of
the model is directly related to the quality of the optimisation
algorithm [11], [12]. Accurate, real-time estimation based on
the power consumption model for a data centre can therefore
help resource providers to predict the total power consumption,
improve resource utilisation, and reduce the energy consump-
tion costs of the cloud manufacturing enterprise.

A. Goal and contributions of the paper
Energy consumption measurements of a data centre server

can not only be used to establish a power model, but can also
provide a guide for cloud manufacturing. The goal of this
paper is to design a high-precision server energy consumption
model. To achieve this, we propose a server energy consump-
tion model called IECL. Unlike existing methods, our model
can effectively predict the energy consumption for different
types of workload. The main contributions of this paper are
as follows:
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• We use the random forest (RF) algorithm for feature selec-
tion. We leverage this algorithm to screen feature parameters
and select the main representative parameter for different
types of tasks.

• We use the grid search (GS) method to optimise the hyper-
parameters of the model.

• We propose a real-time energy consumption prediction
method based on support vector machine (SVM). Unlike
other approaches, the proposed method can effectively han-
dle changes in the type of workload.

• We perform an extensive and comprehensive evaluation
of our model on CPU-intensive, web transaction and I/O-
intensive tasks. Our experimental results demonstrate that
the prediction accuracy of the proposed energy consumption
model is higher than other benchmark models.

B. Structure of the paper

The rest of the paper is organised as follows. Section II
describes related works. Section III introduces our IECL
model. Section IV presents our experimental results and an
analysis. Finally, Section V concludes the paper and suggests
directions for future work.

II. RELATED WORK

The construction of an accurate, real-time power consump-
tion model can help cloud manufacturing enterprises predict
and optimise the power consumption of a data centre, re-
duce energy consumption costs and increase the return on
investment for the enterprise [10]. Existing approaches can
be divided into three types based on the different modelling
objects used: cloud platform, server, and virtual machine (VM)
energy consumption models. In the following, we describe
these three power modelling methods.

The first type is a cloud platform energy consumption
model. Unlike the other approaches, in this method, a power
model is built for the whole data centre. To obtain the total
energy consumption of the data centre, this method does not
need to calculate the energy consumption of each server,
and is therefore suitable for testing and evaluation of the
overall energy consumption of the system. Specifically, in [13],
to measure the overall power consumption of the Hadoop
platform, the authors used 12 parameters that directly reflected
the energy used by the system.

The second approach is server energy consumption mod-
elling. A data centre is composed of numerous servers that
provide different services to users. If we can accurately build
a power model of one server using this modelling method, we
can then obtain the total energy consumption of all the servers.
This modelling method is not as straightforward as the first
approach. In addition, when the servers used by the data centre
are heterogeneous, the energy consumption prediction error of
this modelling method is large. More in detail, in [14], to
improve the prediction accuracy of the energy consumption
model, the authors proposed power models based on three
deep learning methods: an Elman neural network, a BP
neural network, and an LSTM neural network. To maximise
the energy savings and minimise the consumption costs, the

authors of [15]presented a power model based on the ENN
strategy for cloud servers. Their experimental results suggested
that the prediction accuracy was improved. In [16], the au-
thors developed an energy consumption estimation model for
computers in a data centre based on three parameters: page
faults, memory used, and processor time. To further improve
the energy consumption of the servers, the authors of [17] put
forward several energy consumption models based on energy-
related parameter selection and workload types. Experiments
showed that their model surpassed alternative approaches in
terms of prediction accuracy. To measure energy consumption,
the authors of [18] created a power model based on the
source-code structure. In [19], it was shown that the power
consumption of a server has no intrinsic connection with CPU
usage.

The third type of approach is VM energy consumption
modelling. In general, a server in a data centre can run sev-
eral VMs. By monitoring the resource utilisation and energy
consumption of these VMs, the energy consumption of the
server can be obtained. For instance, in [20], the authors
introduced a power model based on the relationship between
the resource utilisation of VMs and the energy consumption
of the server, and their experimental results indicated that their
approach outperformed other models in terms of relation error.
To evaluate the energy consumption of servers, the author
of [21] created a novel power model based on a performance
monitor counter. More recently, the authors of [22] introduced
a microservice placement strategy for edge-cloud collaborative
smart manufacturing. Their approach tackled the solutions
over semiconductor manufacturing case study and elaborated
the construction of the latency metric. Although their work
was promising, it did not include an automatic analysis of
cloud data which leads by machine learning methods that this
paper is addressing them.

III. IECL:AN INTELLIGENT ENERGY CONSUMPTION
MODEL BASED ON MACHINE LEARNING

In this section, we will introduce an intelligent energy
consumption model called IECL, based on a combination
of the SVM, RF, and GS algorithms. It consists of six
main steps: modelling the flow of energy consumption (Sec-
tion III-A), data sampling (Section III-B), feature extraction
(Section III-C), feature selection (Section III-D), feature analy-
sis (Section III-E), and construction of the energy consumption
model (Section III-F).

A. Modelling the flow of energy consumption

Fig. 1 illustrates the process flow for server power mod-
elling. It consists of five steps. Data sampling is the first step
in power modelling, and involves collecting related data from
the cloud resources and applications. In the feature extraction
step, the features related to energy consumption are identified,
while in the feature selection step, a subset of features are
chosen that are related to energy consumption. Model building
and training are the final steps in developing the energy
consumption model. In this paper, the server is leveraged to
establish the energy consumption model and conduct training.
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After training, the power model is evaluated to verify its
robustness and effectiveness. Finally, our energy consumption
model is compared with alternative approaches.
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Fig. 1: Process flow of our energy consumption model

B. Data sampling

Data sampling is a prerequisite for the construction of an
accurate energy consumption model. Fig. 2 illustrates the
process of data sampling. The main components used are a
power supply, a power meter, a test server, and a data centre
manager (recording equipment). Fig. 2 shows that the power
meter is connected to the testing server and the data centre
manager (recording equipment). The power meter is used
to record the power consumption data from the test server.
The data centre manager (recording equipment) also collects
parameter data. To obtain the working status of the server
and collect experimental data in real time, it is essential to
monitor and manage the performance indicators of the server.
At present, the most commonly used monitoring software
applications include Ganglia (http://ganglia.sourceforge.net/),
Zabbix (https://www.zabbix.com/) and Nagios.

This paper presents a joint monitoring approach based on
Ganglia and Zabbix. Ganglia is used to monitor the basic
performance metrics of the server, while Zabbix is used to
support secondary custom development. This approach effec-
tively combines the strengths of each software, allowing us to
jointly monitor more energy-related indicators and reduce the
overall system overhead.

C. Feature extraction

In this section, we describe the feature extraction step.
In the following sections, we introduce the feature selection
and feature analysis processes. Feature analysis allows us
to understand the relationship between the type of task and
the usage of the sub-components of the server, such as the
processor and disk. The feature extraction step is carried
out to identify features that are related to power modelling.
For instance, the disk time represents the percentage of disk
time spent on input/output operations. All of the characteristic
parameters can be captured by deploying Ganglia and Zabbix
software on the server. When feature extraction is complete,
we need to select a subset of suitable features.

Testing  servers

Power cord
Power meter

Cable
Serial port line

Data center manager
(Data collection and 
control)

Fig. 2: Equipment used in the data sampling process

In the paper, a total of 29 features are extracted and used
to establish the energy consumption model. Table I lists the
parameters and characteristics used in our model. Tasks can be
classified as CPU-intensive, I/O-intensive, or web transaction
workloads.

D. Feature selection

Some of the features are associated with energy consump-
tion, while others are not. We therefore need to choose a
suitable set of features to build our energy consumption model.
Since the RF algorithm has excellent overall classification
performance and strong generalisability, it is suitable for
feature parameter screening [23], [24]. We therefore adopt
this approach to screen the feature parameters. A schematic
diagram of the RF algorithm is shown in Fig. 3.
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Fig. 3: Schematic diagram of the RF algorithm

The steps used by the RF algorithm to calculate the impor-
tance of each feature can be summarised as follows:
i) i) For each decision tree, we choose corresponding out-
of-bag data (some remaining samples that have not been
extracted) to calculate the out-of-bag data error, denoted as
error 1.
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TABLE I: Parameter name and characteristics
No Parameter name Software Meaning
1 CPU user time Zabbix CPU usage percentage of user space
2 CPU idle time Zabbix Ratio of idle CPU time
3 Context switches/sec Zabbix Switching between processes or threads per second
4 Page faults/sec Zabbix Rate of page errors caused by threads executing in a process
5 bytes_out Ganglia Number of bytes per second going out
6 pkts_out Ganglia Packets going out per second
7 bytes_in Ganglia Number of bytes for coming in every second
8 pkts_in Ganglia Packets coming in per second
9 CPU softirq time Zabbix CPU percentage consumed by software interrupts
10 avgrq-sz Ganglia Average data size per input and output operation
11 I/O Data Bytes/sec Ganglia Input and output bytes for every second
12 CPU system time Zabbix CPU percentage used for kernel space
13 mem_free Ganglia Free memory size
14 Processor load(avg1) Zabbix Average system workload every one minutes
15 mem_cached Ganglia Cache memory size
16 cpu_idle Zabbix Percentage of idle CPU time after startup
17 disk_free Ganglia Free disk space
18 Disk Time Zabbix Percentage of time the disk is used for input and output operations
19 I/O Data Operation/sec Ganglia Number of input and output operations every second
20 svctm Ganglia I/O average service time
21 Processor load(avg5) Zabbix Average system workload every five minutes
22 await Ganglia Mean waiting time for input and output
23 avgqu-sz Ganglia Average I/O queue length
24 Processor load(avg15) Zabbix Average system workload every fifteen minutes
25 CPU iowait time Zabbix Maximum ratio of idle CPU I/O requests
26 proc.num Ganglia Total number of processes
27 part_max_used Ganglia Maximum ratio leveraged by all partitions
28 proc_run.num Ganglia Total number of processes running
29 cpu_nice Zabbix Proportion of processes whose priorities changed in the user process space

ii) ii) We randomly add interference to feature X of all samples
of out-of-bag data, and calculate the out-of-bag data error
again, denoted here as error 2.
iii) If there are N trees in the forest, the importance of feature
X =

∑
(error2− error1)/N .

iiii) Finally, features with high importance are selected as the
new dataset.

To choose a subset of features, we deploy three types of
applications (CPU-intensive, web transaction and I/O-intensive
applications) on a Dell server. The parameters of the server
are shown in Table II. Table III shows the workload bench-
mark [17] used for each type of application.

TABLE II: Server parameters

Name Value
CPU frequency Intel Core i3-7100 3.9 GHZ

Mainboard ASUS H110M-D3V
Memory size 8GB

Disk size 1TB
Network Interface Card (NIC) RTL8168 Gigabit Enthernet controller

TABLE III: Workload benchmarks

Workload types Benchmarks
CPU-intensive workloads SPEC_CPU2006
I/O-intensive workloads Iozone

Web transaction workloads Loader Runner 11

After applying the RF algorithm and deploying the appli-
cations on the server, the importance ratio of each feature is
obtained (see Table IV). If the importance ratio is lower than
1%, we assume the contribution of this feature to the server
energy consumption can be ignored. Hence, 1% is chosen as
the boundary value. By analysing the data in Table IV and
selecting features with an importance ratio higher than 1%,

we obtain the following results: for CPU intensive tasks, a
total of 27 features are selected to build the power model; for
I/O-intensive tasks, a total of 26 features are chosen; and for
web transaction tasks, a total of 26 features are selected.

E. Feature analysis

Feature analysis allows us to understand the relationship
between the task type and the power consumption of the sub-
components of the server. Figs. 4-6 illustrate the usage of three
server sub-components (the processor, memory, and disk) for
three different types of tasks. Fig. 4 shows the utilisation of the
CPU, I/O, and memory over time for a CPU-intensive task. It
can be seen that the CPU utilisation remains relatively stable at
10–35%, the memory utilisation is relatively stable at 18–40%,
and the disk utilisation increases repeatedly and gradually
between 0–20%, 0–40%, and 0–100%, and then decreases to
0% and remains relatively stable. Fig. 4 also shows that the
utilisation of the sub-components of the server (the processor,
memory, and disk) varies over time, with no fixed pattern.

Similarly, Fig. 5 shows the CPU, memory and I/O usage
over time for I/O-intensive tasks. It can be seen that the
CPU usage is stable at 5–27%, the memory usage is stable
at 40–50%, and the disk usage is stable at 54–100%. The
figure also shows that the usage of the server sub-components
varies over time.

Fig. 6 shows the CPU, memory, and I/O usage over time for
Web transaction tasks. The CPU usage remains stable when it
increases from 10% to 100%, and the memory usage remains
stable when it ranges from 42% to 48%. The disk utilisation
ranges from 0 to 44%.

Fig. 7 illustrates the server power consumption for different
types of tasks. Fig. 7a shows that the server power ranges from
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TABLE IV: Importance ratio for characteristic parameter
CPU-intensive Importance I/O-intensive Importance Web Importance
task ratio (%) task ratio (%) transactional task ratio (%)
CPU user time 7.122 avgqu-sz 6.0789 CPU_nice 7.2684
CPU idle time 6.4263 await 4.8794 CPU system time 6.7709
Context switches/sec 6.4076 I/O Data Bytes/sec 4.8683 Page faults/sec 5.9472
Page faults/sec 6.2208 CPU idle time 4.8597 pkts_in 5.8824
bytes_out 4.9083 bytes_out 4.8498 bytes_out 5.2759
pkts_out 4.8063 CPU iowait time 4.747 pkts_out 5.2399
bytes_in 4.5558 Page faults/sec 4.7417 bytes_in 5.2079
pkts_in 4.5018 CPU user time 4.6673 Context switches/sec 4.8678
CPU softirq time 4.1719 Context switches/sec 4.6551 CPU softirq time 4.3539
avgrq-sz 4.0342 pkts_out 4.649 CPU idle time 4.2793
I/O Data Bytes/sec 3.8358 pkts_in 4.2352 CPU user time 3.9839
CPU system time 3.7393 CPU system time 4.1981 proc_run.num 3.8259
mem_free 3.6801 bytes_in 4.1917 Processor load (avg1) 3.5158
Processor load (avg1) 3.6421 CPU softirq time 3.7109 avgrq-sz 3.4787
mem_cached 3.5938 Processor load (avg1) 3.6127 mem_free 3.4525
CPU_idle 3.1503 svctm 3.5583 mem_cached 3.1276
disk_free 2.9587 mem_free 3.4732 I/O Data Bytes/sec 3.1166
Disk Time 2.9231 Processor load (avg15) 3.2206 proc.num 3.1085
I/O Data Operation/sec 2.8142 Processor load (avg5) 3.1757 Processor load (avg5) 2.863
svctm 2.6496 IO avgrq-sz 3.0295 cpu_idle 2.7754
Processor load (avg5) 2.5151 CPU_idle 2.9944 Processor load (avg15) 2.6258
await 2.4926 mem_cached 2.975 I/O Data Operation/sec 2.0785
avgqu-sz 2.284 IO Data Operation/sec 2.9639 disk_free 1.895
Processor load (avg15) 1.9766 proc.num 1.5298 svctm 1.6994
CPU iowait time 1.597 proc_run.num 1.2876 await 1.3249
proc.num 1.3624 disk_free 1.1567 Disk Time 1.1181
part_max_used 1.1828 part_max_used 0.8763 avgqu-sz 0.654
proc_run.num 0.4474 Disk Time 0.8142 part_max_used 0.2627
CPU_nice 0 CPU_nice 0 CPU iowait time 0

46 to 64 W for CPU-intensive tasks, while Fig. 7b shows that
the power range fluctuates continuously between 47 and 59 W
for I/O-intensive tasks, with an average power consumption of
48 W. Fig. 7c shows that the range of server power for web
transaction tasks is between 46 and 71 W. From Figs. 4-7, we
can see that there is a correlation between CPU utilisation and
power consumption.

To build an accurate energy consumption model, we not
only need to consider the type of task, but also the resource
utilisation rate of each component and the rule of change. To
solve this problem, we adopt the SVM algorithm to build our
energy consumption model, which is introduced in the next
section.

F. Energy consumption model

In this section, we describe the SVM and GS methods,
which are used to build our energy consumption model. In
the following, we discuss these two strategies in detail.

1) SVM: In the last section, we showed that the server
energy consumption is influenced by many factors and has
nonlinear and uncertain characteristics. The SVM algorithm is
a supervised machine learning method that can effectively deal
with nonlinear classification and regression problems [25].
We therefore select this algorithm to establish our energy
consumption model for a server. To deal with a regression
problem, the SVM algorithm uses the data in the training set,
and the regression function is as follows:

f (x) = ⟨w, g (x)⟩+ b (1)

where w is the weight vector, x is the input vector, g(x)
represents the mapping function, and b is a constant.

The SVM algorithm minimises the sum of the squares of
the weight coefficients to ensure a smooth function relation.
At the same time, the less error is allowed to improve the
generalisation performance of the model. Hence, w and b
are determined by solving the following quadratic convex
programming problem:

min
w,b,ξi,ξ

∗
i

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (2)

s.t.


yi − ⟨w, g (x)⟩ − b ≤ ε+ ξi
−yi + ⟨w, g (x)⟩+ b ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2 · · ·n

(3)

where ||w|| is the description function, and C means the
penalty factor, C > 0, and ξi and ξ∗i is the relaxation factor,
and yi refers to the output of the i-th sample, and ε is the
fitting error.

By using an implicit kernel function rather than g(x), a
nonlinear problem can be mapped to a higher dimensional
space, and the optimal linearly separable plane can be searched
for and solved in this new space. To solve the nonlinear
relation between the energy consumption and the impact factor
of the data centre, a radial basis function (RBF) is selected as
the kernel function in this paper. This is because the RBF is
superior to other kernel functions in dealing with nonlinear
problems and requires fewer parameters. The RBF equation is
defined as follows:

kRBF

(
a
′
, a

)
= e

∥∥∥∥a′
−a

∥∥∥∥2
2σ2 (4)

where a
′

and a are two low-dimensional vectors, and 1
2σ2
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Fig. 4: Resource utilisation under CPU-intensive workloads
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Fig. 5: Resource utilisation under I/O-intensive workloads
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Fig. 6: Resource utilisation under Web transaction workloads
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Fig. 7: Energy consumption under different types of workloads
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is also known as γ parameter, which reflects the degree of
separation of the mapping.

The three parameters (C, ε, and γ) are called model
hyper-parameters and are constant. In the process of model
training, adjusting model hyper-parameters can change model
performance.

2) GS: This is an exhaustive search method for specifying
parameter values [26]. It is a learning algorithm that optimises
the hyperparameters of the model through cross-validation to
obtain the optimal parameter combination. At present, the most
commonly used methods for adjusting the hyperparameters
include a random, the genetic algorithm (GA), GS, and particle
swarm optimisation (PSO). However, GA and PSO take a long
time to find an optimised solution, whereas the GS method can
search a wide parameter space while controlling the calculated
amount [27]. The GS algorithm is therefore selected as the
method of adjusting the hyperparameters. The basic principle
of GS can be summarised as follows: the parameters to be
searched are divided into grids of the same size within a certain
space range, and all points in the grid are traversed to find
value. The performance of each point in the given interval
can then be determined by passing it to the SVM system.
The point at which the performance of the entire system is
highest is called the optimal parameter. In other words, the
performance of the model can be optimised by adjusting the
hyperparameters to optimise the model evaluation index.

IV. PERFORMANCE EVALUATION

To measure the performance of our IECL model, we per-
formed a series of experiments, and these are described in
detail below.

A. Experimental environment and settings

Our experiments were carried out using a Dell server, with
the parameter configuration shown in Table II. Three different
types of workloads were used (CPU-intensive, I/O-intensive,
and web transaction workloads), as shown in Table III. A
dataset containing 3,000 items of data for CPU-intensive, I/O-
intensive, and web transaction tasks was collected for the
experiment. The steps in the experiment were as follows. First,
the collected data were normalised, and the dataset was divided
into training and test sets consisting of 80% and 20% of
the data, respectively. Following this, the parameters of the
training set were searched and modelled. Finally, the test set
was used for evaluation, and the performance of the model was
confirmed. The SVM package from the SciKit-Learn library
was used to construct our energy consumption model. The
default parameters of the algorithm package were set, and
the default parameters were set as grid reference values, C=
1, γ = 0.036, and ε = 0.1, and the grid was built near the
grid reference values [28]. In this paper, an exponential grid
with a base of 10 was used for searching, and the parameter
settings for each node were drawn from the following sets:
C ∈ {0.01, 0.1, 1, 10, 100}, γ ∈ {0.001, 0.01, 0.1, 1, 10}, and
ε ∈ {0.001, 0.01, 0.1, 1, 10}. The nodes intersected to form
a 5×5×5 grid. The Java implementation of IECL is available
in [29].

B. Comparison with alternative algorithms

To evaluate the effectiveness of the IECL model, we used
the power regression [17], Cubic [24], CMP model [16], FSDL
model [13], and AEC algorithms [25] for comparison. Of
these, power regression [17] and CMP [16] are two typical
linear regression models. The FSDL model in [13] is a typical
supervised machine learning method that can effectively deal
with nonlinear classification and regression problems. The
cubic [24] and AEC [25] algorithms establish a power model
based on the system resource utilisation. In the following
section, we evaluate these in detail.

C. Evaluation of the prediction accuracy of the proposed
model

Fig. 8 shows a comparison between the real-time en-
ergy consumption and the predicted energy consumption of
the server under different types of workloads. Web transac-
tion workloads require more power consumption than CPU-
intensive and I/O-intensive workloads. This is because the
processor consumes more power than the memory and I/O
components. Fig. 8-9 show the prediction errors of the IECL
model, using as evaluation criteria the MAPE (mean absolute
error percentage) and RMSE (root mean square error). The
data in Table IV show that for CPU-intensive workloads, the
MAPE is 3.104% and the RMSE is 3.05. For I/O-intensive
workloads, the MAPE is 1.793% and the RMSE is 1.18. For
web transaction workloads, the MAPE is 1.426% and the
RMSE is 2.195. Fig. 9 shows the predicted interval for the
IECL model. Based on the results from Fig. 8-9, it can be
concluded that our IECL model yields excellent performance
and that there is little difference in the test results under
different workloads, which can provide a reference for the
prediction and optimisation of energy consumption for server
operation.

D. Comparison with other baseline models

To evaluate the effectiveness of IECL, we compared it with
other baseline power models as described above. The results
are shown in Fig. 10-11. It can be seen that compared with
the five alternative approaches, our IECL model achieves the
highest prediction accuracy in most cases, and the average
MAPE and RMSE are reduced by 2.9% and 2.7%, respec-
tively. This is because IECL selects more features, uses the
RF algorithm to filter features, and applies GS and SVM to
conduct modelling, which improves the accuracy.

In terms of the MAPE and RMSE, the FSDL model is better
than the other four power models (the power regression, CMP,
AEC, and cubic algorithms). This is because it adopts a deep
learning method to construct the power consumption model
based on the Hadoop platform and to estimate its total power
consumption. The power regression model is better than the
other three approaches (the CMP, AEC, and cubic models).
This is because power regression model considers the char-
acteristics of the application and the power component (such
as the processing unit, memory, and disk). Compared to the
AEC and cubic models, CMP gives better performance, since it
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Fig. 8: Power consumption prediction under different types of workloads
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Fig. 9: Power consumption prediction interval under different types of workloads
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Fig. 11: RMSE results for each energy consumption model

considers the three main energy consumption parameters when
constructing the power model. The cubic model generates
the worst performance, since it only takes into account the
processing unit, and is not suitable for varying workloads.
Based on the results shown in Fig. 10 and 11, we can conclude
that the IECL model achieves better performance than the

other benchmark models.
The IECL model can be used in cloud data centres and can

provide theoretical and practical guidance for cloud manufac-
turing. Cloud manufacturing enterprise systems are mutually
bound to industrial information systems and smart modelling
could automatically integrate this in deploying frequently used
applications. The IECL model can predict the server energy
consumption in real time, and can estimate the trends in this
energy consumption. It is also better able to evaluate the
advantages and disadvantages of the energy-aware algorithm,
and hence can contribute to the optimisation of energy con-
sumption for cloud manufacturing.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

Due to the nonlinear and uncertain characteristics of server
energy consumption, achieving real-time evaluation of energy
consumption is becoming increasingly difficult. This paper
proposes a new server energy consumption model called
IECL, based on a combination of the RF, SVM, and GS
algorithms for different types of IoT tasks. Our experimental
results suggest that the IECL model can predict server energy
consumption with an accuracy of about 97%.

The proposed energy consumption model can be used
in cloud data centers cloud data centres, and can provide
theoretical and practical guidance for cloud manufacturing.
Although our model is promising, it does not consider the
energy consumption and time costs of training, and this is an
important direction for future research on energy consumption
models.
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