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Dynamic Bandwidth Slicing for Time-Critical IoT
Data Streams in the Edge-Cloud Continuum
Fawzy Habeeb, Khaled Alwasel, Ayman Noor∗, Devki Nandan Jha, Duaa AlQattan, Yinhao Li,

Gagangeet Singh Aujla, Tomasz Szydlo, Rajiv Ranjan

Abstract—Edge computing has gained momentum in recent
years, as complementary to cloud computing, for supporting
applications (e.g. industrial control systems) that require Time-
Critical communication guarantees. While edge computing can
provide immediate analysis of streaming data from Internet of
Things (IoT) devices, those devices lack computing capabilities to
guarantee reasonable performance for Time-Critical applications.
To alleviate this critical problem, the prevalent trend is to offload
these data analytics tasks from the edge devices to the cloud.
However, existing offloading approaches are static in nature
as they are unable to adapt varying workload and network
conditions. To handle these issues, we present a novel distributed
and QoS-based multi-level queue traffic scheduling system that
can undertake semi-automatic bandwidth slicing to process Time-
Critical incoming traffic in the edge-cloud environments. Our
developed system shows a great enhancement in latency and
throughput as well as reduction in energy consumption for edge-
cloud environments.

Index Terms—IoT, Edge, Cloud, SDN, Bandwidth slicing,
Multi-queues, Time-Critical, Data stream

I. INTRODUCTION

Internet of Things (IoT) is an emerging paradigm that shifts
routine daily workloads into smart, automated mechanisms
by gathering and processing an unprecedented amount of
data in a continuous manner [1]. It tracks and monitors
surrounding activities (e.g., automated industrial setup) to
make better decisions, increase efficiency, and improve the
quality of life. Coinciding with this paradigm, IoT-based
applications adopt several integrated ecosystems – from edge
and cloud computing to software-defined networking (SDN)
and software-defined wide area network (SD-WAN) [2], [3].
Each ecosystem offers rich features to process and transmit
data according to the given quality of services (QoS) of IoT
applications.
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The IoT paradigm with its associated industrial ecosystems
delivers unprecedented advances in technological develop-
ments. However, its heterogeneous computing and network
elements still encounter two fundamental problems, which
can be defined as (1) a transmission mismatch and (2) a
processing mismatch [4], [5]. The former problem occurs
when incoming data streams at a given network arrive faster
than the network can handle and transmit. This is typically
due to several reasons, such as the spike and fluctuation
of incoming data and the instability of network connectivity
between IoT ecosystem elements (senders and receivers) [6],
[7], [8]. On the other hand, the processing mismatch problem
arises when a given computing resource cannot process its
incoming requests immediately or in a timely fashion due
to the sharing mechanisms of computing resources [9], [10].
These two problems must be dealt with, especially in the
context of real-time IoT applications where network and/or
processing delays could lead to catastrophic incidents.

The two problems mentioned above have been tackled in
different ways. For example, a data buffer technique is one
typical solution that holds new arrival data for a period of time
before being processed [11], [12]. Another typical solution
is the leverage of classical congestion control mechanisms
where new incoming data are dropped when a given buffer is
overloaded [13]. Such techniques suffer from non-negligible
delays at both transmission and processing levels, especially
when IoT applications are latency-sensitive. Also, dropping
any part of data introduces a further problem that would lead
to data inconsistency with serious consequences in domains
such as Industrial IoT [14]. Moreover, such techniques ignore
the power of priority mechanisms at both network and host
levels, which can hardly guarantee the quality of QoS for
Time-Critical IoT applications.

Several efforts have been made to address the problem
of transmission and processing mismatching. For example,
[15] leverage computation offloading mechanisms where data
and tasks that require intensive computational resources are
forwarded to an external platform (e.g., cloud datacenters).
Another study [16] explores congestion control approach
focusing on tuning data transmission rates based on QoS
requirements. However, the usefulness of these studies is
limited to conventional environments (e.g., cloud datacenters,
edge computing) without considering the bigger range of
IoT ecosystems along with cutting-edge approaches, such as
dynamic network slicing, load-balancing, and prioritization.

Overall, this paper tries to solve the research question:
What is the best way to satisfy the latency constraints

along with accelerating data transmissions for IoT Safety-
Critical applications?
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To address the research question this paper presents a novel
distributed IoT framework which is based on a multi-level
network-host queuing mechanisms, prioritization, and SDN
network traffic slicing. The system is designed to make the
best utilization of network and host resources in the edge-
cloud Continuum (see Figure 1). It diminishes queuing delays
and increases the QoS assurance of IoT applications with high-
latency sensitivity as much as feasible. To do so, our proposed
system deploys global network agents in SDN and SD-WAN
controllers for data stream scheduling based on prioritization
along with slicing bandwidth based on each IoT stream
priority. The system also deploys IoT agents within each node
(e.g. edge nodes, cloud nodes) to schedule IoT task executions
based on multi-level queuing and prioritization. Given these
systems, we formulate two different optimization problems to
find the best solution for every IoT application such that the
overall execution time is minimized while network bandwidth
is utilized at maximum.

Solving the above question might lead to insufficient use
of network resources. This can be formalized in a question
context as “How can we indicate the network slicing
percentage among several priority lists such that every
slice is fully used by every list?”. It is known that net-
work bandwidth is a scarce resource where network slicing
percentage should be divided according to application priority
ranks. One simple solution is to use a static percentage value
for each list (e.g., 50%, 30%, and 20% for three lists of
high, medium, and low respectively). However, sometimes a
network bandwidth slice is not fully used by a given priory
list, which leads to insufficient use of network resources. To
solve this problem, we propose a heuristic auto-adaptation
algorithm to dynamically tune bandwidth slicing depending
on the observed network utilization of every priority.
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Fig. 1: IoT-edge-cloud continuum modular architecture

In summary, the contributions of this paper are as follows:
• we formulate the transmission and processing mismatch

problem in the edge-cloud environment,
• we propose a novel distributed and QoS-based multi-level

queues traffic scheduling system,
• we evaluate the performance of our proposed approach

using a self-driving car test case scenario.

II. FORMAL MODEL

In this section, we present the system description necessary
to represent our research problem (Section II-A). Using these
definitions, we formulate our problem (Section II-B).

A. System overview

Our infrastructure system X consists of four infrastructure
elements and is represented as a quadruple ⟨D, E, C,N⟩. D
is a set of IoT devices Di and is denoted by Di = {idi, δi}.
Here, idi represents the identifier of the IoT device Di and δi
represents the data rate of IoT device Di. E is a set of edge
devices Ee with each Ee = {ide, he}. ide and he represents
the identifier and the set of host machines he1, he2, ... for
the edge device Ee respectively. C represents a set of cloud
datacenters Cc. Each Cc is represented as Cc = {idc, hc}
where idc is the identifier of the datacentre and hc is the set
of host machines hc1, hc2, .... Regardless of the host type i.e.
cloud host hci or edge host hei , each host hk has hardware hH

k

and software hS
k capabilities to satisfy the requirements of the

application. Now, host hk consists of a set virtual environment
v1hk

, v2hk
, v3hk

, ... where, each vlhk
can be either a virtual ma-

chine vm or a container cn. Similar to the host hk, each virtual
environment vlhk

also has a hardware specification vHlhk
and

software specification vSlhk
defined such that

∑
l v

H
lhk

= hH
k

and
∑

k v
S
lhk

= hS
k . Abstracting the hardware and software

processing capabilities as P , we can represent the processing
capability of an edge virtual environment as PEvl and for
cloud virtual environment as PCvl . Finally, N represents the
network connection between D, E and C and is a subset
of (D × E) ∪ (D × C) ∪ (E × E) ∪ (E × C) ∪ (C × C).
A set of switches S = {S1,S2, ...} and SDN controllers
σ = {σD, σE , σC} facilitates the network connectivity in the
existing system. An IoT application Ai is defined as a directed
acyclic graph (DAG) of microservice Ai = {Aµ1

i , Aµ2

i , ...}
where each A

µj

i represents a microservice to execute. Each
A

µj

i has specific hardware (H), software (S) and quality of
service (Q) requirements. Equation 1 shows the combined
requirements R(A

µj

i ) for a microservice.

R(A
µj

i ) = Hµj + Sµj +Qµj (1)

The overall requirement of Ai is given by the sum of
requirements of all the microservices as given below.

R(Ai) =
∑
∀j

R(A
µj

i ) (2)

At any point of time t, numerous applications A1, A2, ...
need to be executed on the given infrastructure X . Depending
on the type of application Ai, some of them require critical
response while others can handle some delay. To allow a
smooth execution sequence, a priority Pi is associated with
each application Ai. IoT devices are actively generating data.
We consider the IoT device Di as a passive entity i.e. it does
not process any data but transfers to the edge device. The
data transfer happens on a per second basis, therefore, the
total amount of data received by the edge device ei will also
be δi multiplied by time t. IoT devices are connected to a
switch or an SDN-controller σ which then forwards the data to
the respective edge device. Consider the maximum bandwidth
available to the IoT device d is Bd The time taken to transfer
the data from the IoT device d to the switch/SDN controller
σ can be computed as given in equation 3.
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T d→σ =
δd

Bd→σ
(3)

The controller then forwards the data to the respective edge
e while consuming Tσ→e time. Given the bandwidth of the
controller as Bσ , it is divided among different communication
flows based on how many IoT devices are connected to it. Only
an effective bandwidth Bef

σ→e is available for transferring one
IoT device’s data as given in equation 4.

Bef
σ→e =

Bσ→e

countt
(4)

Here countt is the number of IoT devices using the commu-
nication channel of the controller at time t. The time consumed
by transferring data from controller to edge device for IoT
device d is computed as given in equation 5.

Tσ→e =
δi

Bef
σ→e

(5)

Similarly, the data transfer time between edge devices e and
between edge and cloud c is computed as given below.

T e→e =
δe

Bef
e→e

; T e→c =
δc

Bef
e→c

(6)

Effective bandwidth is computed at each step by the network
switch or the SDN controller thus, allowing the data to
follow a defined path. For any application Ai, the component
microservice Aµi executes on numerous edge and/or cloud
hosts, therefore, the total transmission time for application Ai

is given in equation 7.

T
E
Ai

= T
d→σ

+ T
σ→e

+
∑

∀e1,e2∈E′
T

e1→e2
+

∑
∀e∈E′,∀c∈C′

T
e→c (7)

The propagation time p is computed at the start of all
transmissions. Given the velocity of propagation of any trans-
missions as V , and the distance between the sender and the
receiver as D, now, we can calculate the propagation time for
the transfer time between IoT device, switch/SDN controller,
edge, and cloud as given in the following equations.

Tp
d→σ

=
Dd→σ

V
;Tp

σ→e
=

Dσ→e

V
;Tp

e→e
=

De→e

V
;Tp

e→c
=

De→c

V
(8)

Following the processing happening as given in equation 7,
the total propagation time for Ai is given in equation 9.

T p
Ai

= Tpd→σ + Tpσ→e + Tpe→e + Tpe→c (9)

Depending on the application Ai, virtual environment Evlhk

of edge device Ek processes the data and sends the processed
data to either another virtual environment Ev′

lhk on edge or
out cloud datacentre. Give the processing capability of an
edge and cloud virtual environment, the processing time of
any application microservice A

µj

i at both edge and cloud host
is computed as given below.

TPe =
R(A

µj

i )

PEvl

;TPc =
R(A

µj

i )

PCvl

(10)

Following the processing happening as given in equation
7, the total processing time is computed as given in equation
11. Here, E′ ⊆ E and C ′ ⊆ C are the edge and cloud hosts
executing the application microservice A

µj

i .

TP
Ai

=
∑

∀e∈E′

TPe +
∑

∀c∈C′

TPc (11)

Since, the processing capability of edge/cloud virtual envi-
ronment vh is limited, a queue Qvh is associated with each
of them. Data is buffered intermittently while the vh is busy
with the execution. The waiting time for the application Ai

in the queue is considered to be the queuing time TQ
Ai

. The
overall execution time for any application Ai is given by the
combination of execution, transmission and queuing time as
given in equation 12.

TAi = TP
Ai

+ TE
Ai

+ TQ
Ai

+ T p
Ai

(12)

B. Problem definition

Definition: Given a set of IoT applications A =
{A1, A2, ...} and the infrastructure X = {D, E, C,N}, a
suitable deployment solution ∆m is defined as a mapping for
Ai ∈ A to X (∆m : Ai → X∀Ai) if and only if:

1) ∀Aµj

i ∈ Ai, ∃(A
µj

i → vh) where, h ∈ {he ∪ hc}
2) ∀Aµj

i ∈ Ai , if Aµj

i → vh, then Hµj ⪯ vHh Sµj ⪯ vSh
3)

∑
µj

Hµj ≤ vHh and
∑

µj
Sµj ≤ vSh

The definition given above considers all the requirements
to find a suitable deployment solution. Requirement 1 states
that for all the microservices belonging to the IoT application
Ai, a mapping must exist between A

µj

i and a virtual envi-
ronment vh|h ∈ {he ∪ hc}. Requirement 2 confirms that if a
microservice A

µj

i is deployed to a virtual environment vh, the
hardware and software requirements of the microservice must
be satisfied by vh. Finally, requirement 3 limits the number of
microservices a virtual environment can execute at any time.

The main aim of this research is to find the best solution
for all the applications Ai such that the overall execution time
TAi

is minimum while the effective bandwidth Bef is utilized
at maximum. In addition to this, the queuing time TQ

Ai
for the

highest priority application AP should be as low as possible.
Given these requirements, we can represent our problem as
given below.

minimize TAi + maximize UBef (13)
subject to:

TAi ≤ TAj if αAi < αAj and PAi > PAj (13a)
∀i ∈ Ai,∀j ∈ µj ∃(A

µj

i → vh) (13b)

Constraint 13a specifies that if application Ai arrives before
application Aj i.e. αAi

≤ αAj
and the priority of application

Ai, PAi
is higher than the priority of application Aj , PAj

i.e.
PAi

> PAj
, then the overall execution time for application

Ai, TAi must be less than the execution time for application
Aj , TAj , i.e. TAi > TAj . Constraint 13b states that all the
microservices of the application A

µj

i should be executed in
some virtual environment vh.
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C. Complexity analysis.

The knapsack problem can be used to prove other NP-hard
problems by reduction. The knapsack problem is an NP-hard
problem that is not solvable in a polynomial time [17]. It is
defined as: given a maximum weight capacity W and a set
of K items (0, 1, . . . , K) each having a weight and value of
wi and vi respectively, maximize the sum of the values of the
items (maximize

∑K
i=0 vi xi) while the overall sum of the

weights is less than or equal to the maximum weight capacity
(
∑K

i=0 wi xi ≤ W ) with an item either selected or not (xi

∈ {0, 1}).
Proposition 1: Finding an optimal subset of applications

Ai for a given set of application A is an NP-hard problem.
Proof: The knapsack problem as per the previous definition

can be transformed, i.e., reduced, into the simplest form of
our problem in a polynomial time. The transformation is as
follows.

Consider the problem with only single application compo-
nent Ai ∈ A, change the item’s value vi to qi = 1 and the
weight wi to δi and maximum weight W to budget Bi, with
parameter xi remains unchanged. The knapsack problem is
already strong NP-hard, thus making our problem ∈ strong
NP-hard.

Inherently, as given in proposition 1, finding a solution to
the knapsack problem in polynomial time leads to finding
a solution to our problem in polynomial time. As no such
algorithm exists for any NP-hard problem, therefore, we need
a heuristic algorithm to find a solution.

III. PROPOSED FRAMEWORK

To solve the problem specified in section II, we proposed a
novel framework that uses two greedy approach Multi-queue
and Bandwidth slicing. The details are provided below.

A. Multi-Queues

To reduce the queuing time, we used the concept of multi-
queues where the waiting queue is divided into a set of
priority queues. The principal objective of multi-queues is to
dynamically distribute and prioritize the incoming data streams
according to a fixed number of queues in edge and cloud.
Specifically, the key procedure involves ensuring that the best
queue for each IoT application is selected based on priority
and size of the IoT application. Alg. 1 presents the procedure
involved in the solution, wherein data δ are transmitted from
IoT devices and sent to edge devices at a specific time (t).

Subsequently, the first step is the computation of the Score
SC for each IoT application Ai, where the Score SC is the
final priority score that will be used to divide the data δ in
the queues. Thus we need to find the ratioi for each δi using
equation 14.

ratioPA =
sizePA∑j
i size

PA

(14)

Where ratioi is the process of converting the sizei that has
been provided by the user from MB to ratioi, where ratioi
ϵ {0, 1}, and size is the IoT application A size in MB. Next,

TABLE I: Symbol table

Symbol Description
X System infrastructure
Di An IoT device
δi The data rate of IoT device
E A set of edge devices
h A set of host machines
C A set of cloud datacenters
v Virtual environment
vm A virtual machine
cn A container
P Processing capabilities
N The network connection between D, E and C
S A set of switches
σ An SDN-controller
Ai An IoT application
S Software
H Hardware
Q Quality of service
R Requirements
Pi Priority
B The maximum bandwidth available

T d→σ The time taken to transfer the data from IoT device to SDN controller
T σ→e The time taken to transfer the data from SDN controller to edge device
T e→e The time taken to transfer the data from edge device to edge device
T e→c The time taken to transfer the data from edge device to cloud
Bef Effective bandwidth
count The number of IoT devices using the communication channel of the controller
TE
Ai

The total transmission time for an application
V The velocity of propagation of any transmissions
D The distance between the sender and the receiver
Tp The propagation time
T p
Ai

The total propagation time for an application
T Pe The processing time of any application microservices
Q A Queue
TQ
Ai

The queuing time of any application
TAi

The overall execution time for any application
SCi The final priority score
ratioi Compute size from MB to ratio
sizei The IoT application size in MB
λ The static deciding factor among Pi and sizei

path The channel inside the bandwidth
Fi A flow

PCT i The priority percentage for each path
pathSizei An amount of data inside the path

total An amount of data inside all paths
B Bandwidth

Algorithm 1: Multi-Queues
1 Data δi coming from IoT devices that submitted to edge device Ei

within the time interval t. Calculate the Score SCi for each δi
2 SCi ← using Eq. 15
3 waitingList ← to δi //Buffering all δi to a waitingList
4 // Add each δi to their specific queue Qi

5 for (each Qi (Qls,Qnm,Qlt)) do
6 for (waitingList) do
7 if (δi.SCi = Qi.value) then
8 Qi ← δi
9 end

10 // now send the δi to the execution to be processed starting
with Qls queue but first check if the node has enough
CPUs

11 if (δi.requireCPUs ≤ Ei.currentCPUs) then
12 execution ← δi waitingList ← remove δi
13 end
14 end
15 end

to separate the data to the queues we need to find the Score
SCi for each IoT application A using equation 15:

SCi = Pi × λ+ (ratioi × (1− λ)) (15)

Where, λ is a static deciding factor among the priority Pi

and δi size of the IoT application Ai, where SCi and priority
Pi ϵ {0, 1}, and λ = {0.8}. The Score SC results comes in
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three types, low priority where the SC ϵ {0.1, 0.3}, normal
priority where the SC ϵ {0.4, 0.6}, and high priority where
the SC ϵ {0.7, 0.9}. For example, if we have Pi = 0.9, and
ratioi = 0.5, then the Score SCi = 0.8, which means that it is a
high priority and should be forwarded to the latency-sensitive
queue that we will discuss next. Then, we buffered all the
data δ and their Scores SC in the waitingList (Lines 2 - 6).
In the second step, each δ is added to the appropriate queue
Q depending on their SC. Specially, we have three types of
queues Q, latency-sensitive Qls, normal Qnm, and latency-
tolerant Qlt. Last step, we send the δ to the execution to be
processed, starting with Qls, Qnm, then Qlt, according to the
currentCPUs in the edge device.

B. Bandwidth Slicing

Bandwidth slicing is primarily designed to slice the band-
width statically between the paths, where paths is the chan-
nels inside the bandwidth. The procedure aims to determine
the best slicing percentage for the bandwidth based on the
priority and data size of each application. Algorithms 2 and 3,
illustrate the bandwidth slicing procedure, where algorithm 2
receives flows, computes the score for each of them, and sorts
each of them to the queues depending on the score. Then,
algorithm 3 slices the bandwidth on the queues depending on
the priority type. So, algorithms 2 and 3 complement each
other. In detail, the first stage is the receipt of flows F that
is sent to either edge devices or the cloud, where, each F
contains a packet that include one δi from one IoT application
Ai. After that, the SC for each F is computed using equation
15 and buffered in the flowList (Lines 7-11). In order to slice
the bandwidth, the number of paths must be known. This is
determined by checking the priorities of all the F stored in the
flowList and identifying the number of paths (Lines 13-22).

Algorithm 2: Bandwidth slicing
Input: ls, nm, lt: priority types, total: number of flows,

availableBw: available bandwidth, usedBw: used
bandwidth, weightedAverage: compute the average
between multiple paths

1 Received flows F contains δ to be sent to node Ei.
2 Calculate the Score SC for each flow F
3 SCF ← using Eq. 15
4 flowList ← to F //Buffering all F to a flowList
5 // Count the types of paths
6 for (flowList) do
7 pathi ← Fi.SCi

8 switch path do
9 case 0 do

10 lt ← path
11 end
12 case 1 do
13 nm ← path
14 end
15 case 2 do
16 ls ← path
17 end
18 end
19 end
20 total=flowList.size
21 slicing()

In the next stage slicing() procedure is applied as per
the details in Alg. 3, whereby the slicing of the bandwidth

Algorithm 3: Slicing
1 if (total==0) then
2 usedBw = 0
3 end
4 else
5 switch (lt, nm, ls) do
6 case (lt ! = 0) do
7 usedBw = availableBw / lt
8 end
9 case (nm ! = 0) do

10 usedBw = availableBw / nm
11 end
12 case (ls ! = 0) do
13 usedBw = availableBw / ls
14 end
15 case (lt & nm ! = 0) do
16 weightedAveragelt,nm ← using Eq. 16
17 usedBw = availableBw * weightedAveragelt,nm

18 end
19 case (lt & ls ! = 0) do
20 usedBw = availableBw * weightedAveragelt,ls
21 end
22 case (ls & nm ! = 0) do
23 usedBw = availableBw * weightedAveragels,nm

24 end
25 case (lt & nm & ls ! = 0) do
26 usedBw = availableBw *

weightedAveragelt,nm,ls
27 end
28 end
29 end

is based on the number of available paths. There are two
types of slicing, the first takes place when there is only one
type of path (e.g. lt, nm, or ls), after which the entire
bandwidth is given to that path (Lines 4-10). The second
type of slicing occurs where there is more than one type of
path (e.g. lt and nm, or lt and ls, or ls and nm, or lt,
nm, and ls). Subsequently, the weightedAverage for each
path is calculated using equation 16 and multiplied by the
availableBw. After this, the bandwidth is divided among the
paths in line with the weightedAverage for each path, with
the largest percentage of the bandwidth being allocated to the
ls path, followed by the nm path and the lt path (Lines
11-24).

weightedAverage =

j∑
i

PCT i ∗ pathSizei
total

(16)

equation 16, shows the weighted average for each path.
Where i and j ϵ {ls, nm, lt}, and PCT i is the priority
percentage for each path that will be defined by the user.
Then we have a path size that clarifies how many δi inside
it is represented by pathSizei. Lastly, we have total that
represents the total number of δi inside all paths.

NU% =
sizei ∗ 100

availableBw ∗∆t
(17)

equation 17, shows the network utilization for each path,
where sizei in bits is multiplied by 100, and divided by
availableBw multiplied by the ∆t time interval.
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IV. EVALUATION

In this section, we evaluate our proposed work on a self-
driving car test case.

A. Experiment Set-up

1) Test Case: Figure 2 gives a basic architecture of the de-
ployment in a self-driving car. Cars with self-driving systems
are contemporary technology in which each car has numerous
sensors, cameras, radars, speed controllers, etc. Each sensor
will exchange its data with the SDN controller that is located in
low-latency 5G towers. The controller will make the decisions
about the routing and the priority of the data exchanged. In
addition to this, SD-WAN ensures a smooth network traffic
flow from and to the self-driving cars and enables the devel-
opment of self-driving cars being at the same time smarter and
safer [18]. edge and cloud datacenters which are situated at
different locations in the city will send the data received from
the smart cars to be processed in the host machines residing in
the datacenters. For additional processing, the data are sent to
other host machines in different edge and cloud datacenters via
the controllers and respond back to make run-time decisions.
Moreover, communications are also established for edge-to-
edge and cloud-to-cloud through the SD-WAN network. Also,
the application’s response and processing time requirements
need to be guaranteed.

5G

CloudEdge

Fig. 2: Data transfer and processing in Self-driving cars

In this scenario, a car’s IoT device captures raw data and is
assigned a priority. Based on the priority, each data packet is
ranked and sent to an edge datacenter. When the data packet
arrives at the edge datacenter, it is sorted and buffered into
different queues depending on data priority and size, and then
sent to the edge devices for processing. Next, the data is sent
to cloud datacenters through the SD-WAN in the 5G towers for
further processing. The SD-WAN controller buffers the data
to make the best and fastest route and slices the bandwidth
to fit the data. In the cloud datacenter, same as the edge
datacenter, the data will be sorted and buffered in different
queues depending on the priority and size of each piece of
data to be sent to the VMs for processing. Figure 3 shows the
detailed illustration of the whole process.

2) Configuration: We model the scenario using the open
source simulator IoTSim-Osmosis [19]. Table II shows the
specific configuration details for the given test case. We vary
the number of IoT devices from 10 to 60 for the given test case.
The details about the number of devices are given in Table III.
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Fig. 3: Scenario process in our IoT-edge-cloud environment

We compared our results with two approaches, First Come
First Serve (FCFS) and Shortest Job First (SJF) methods.

TABLE II: Test case configuration
IoT Device Edge Device Host(Edge) VM(Cloud)

IoT type car Edge type Raspberry Pi Storage 640 GB Storage 10 GB
Max BW 100 Mbps Max BW 100 Mbps Max BW 10000 Mbps Max BW 1000 Mbps

Required CPUs 10 Pes 10 Pes 4 Pes 4
Network 5G RAM size 10000 RAM size 32000 RAM size 512

Max battery cap 100 mAh MIPS 250 MIPS 1250 MIPS 250

B. Experiment results

This section presents the results of our proposed MQ-BC
approach. Figure 4a shows the average processing time of each
test as compared to the FCFS and SJF. As shown in the Figure,
our proposed approach achieves an average gain of 71% as
compared to FCFS and 73% compared to SJF. The trend is
also followed for the transmission time with 49% savings as
compared to the FCFS and 74% with SJF as shown in Figure
4b. The trend is also followed for the queue waiting time with
164% savings as compared to the FCFS and 98% with SJF
as shown in Figure 4c. Table 5 shows a comparison of the
results in details between FCFS, SJF, and our proposed MQ-
BC policies.

1) Scalability result: Figure 5a shows the average simula-
tion time of each test as compared to the FCFS and SJF. As
presented in the Figure, our approach achieves an average gain
of 143% as compared to the FCFS and 149% compared to SJF.
Finally, Figure 5b shows the average energy consumption of
each test as compared to the FCFS and SJF. As presented in
the Figure, our approach achieves an average gain of 24% as
compared to the FCFS and similar 24% compared to SJF.

In summary, the proposed system makes a significant im-
provement compared with FCFS and SJF in edge and cloud.
It decreases the processing time up to four times and the
transmission time in the network from the IoT device to the
cloud via edge and SD-WAN up to nine times. Besides the

TABLE III: Infrastructure device configuration

Number of IoT Devices Number of Edge Devices Number of hosts Number of VMs
10-60 2 2 2
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Fig. 4: The experiment results

TABLE IV: A comparative table for the results

Processing Time Transmission Time Queues Waiting Time
IoT Device MQ-BC FCFS SJF MQ-BC FCFS SJF MQ-BC FCFS SJF

10 1.9 2.21 1.93 73 748 749 36 105 710
20 2.05 3.06 2.46 160 1526 1527 88 474 1427
30 2.38 4.60 4.42 286 2308 2331 140 978 2140
40 2.45 7.36 8.17 375 3095 3401 192 1713 2858
50 2.52 9.43 8.43 475 3870 3996 240 2368 3571
60 2.58 12.11 12.01 571 4648 4842 292 3259 4284

improvements in data processing and transmission times, it
is noted that the new system policies contribute to decreasing
energy consumption by three times. The more data, the greater
the improvements in both time and energy.
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Fig. 5: Scalability results
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Fig. 6: Comparing the network utilization for the three policies

C. Network Utilization

This section describes the network utilization measurement
results for all systems from the start to the end of the

simulation using equation 17. Figure 6 shows the network
utilization percentage for FCFS, SJF, and MQ-BC policies.
It can be seen that at the beginning, it started to use 100%
of the network when it was sending data from IoT devices
to microservices. Then immediately after that, it drops to 0%
because the data had arrived at destination microservices and
started the processing phase. Next, 100% was used from the
network, because microservices started to send the data to
the cloud. Finally, it drops again to 0% because the data had
arrived at destination VMs and started the processing phase.
However, our proposed system shows the same way of using
the network as in the previous systems but it decreases the
overall time of network usage. So, this illustrates that our
system improved the time of network utilization by up to 7
times and 7.5 times compared with the FCFS and SJF systems,
respectively.

D. Auto-Adaptation

Although the results so far show promising optimal per-
formance, sometimes bandwidth static slicing can lead to a
degradation in the network utilization. Figure 7a shows an
example of how such problem might arise. Note that set-up
and configuration is similar to the previous experiment but
with only 10 IoT devices. The Figure 7a has 100 MB of
bandwidth where it is sliced/divided into three parts: 70% is
assigned to the latency-sensitive (ls) path, 20% is given to
the normal (nm) path, and 10% is assigned to the tolerant-
sensitive (lt) path. Suppose that the ls path receives 30 MB
of data every second, nm path receives 70 MB of data every
second, and lt path receives 100 MB of data every second
(as shown in the Figure). If the ls path is only using 30
MB per second, then 40% of its sliced network would be
wasted. As such, this paper contributes to solving this problem
by proposing an auto-adaptive network slicing algorithm. The
algorithm is designed to dynamically tune the network slicing
percentage based on the network utilization of each path, as
shown in Figure 7b.

pathRatio =
pathF lowsi

total
(18)

equation 18, shows the pathRatio of each path. Where
pathF lowsi is the F numbers of qi, and qi is one of our
proposed paths (ls, nm, lt), divided by the totali number of
flows in that path.
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Every path receives multi flows every second, depending
on the data coming from IoT Devices. So, after computing
the number of flows that are used in every path, we use it
in our Alg. 4 to calculate the new percentage for every path
every time the bandwidth is updated in the system.
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Fig. 7: The Auto-Adaptation example

Algorithm 4: Auto-Adaptation
Input: minPCT : The minimal percentage for Auto-Adaptation,

newWeightedAveragei: The weightedAveragei with
the new PCT i, oldWeightedAveragei: The
weightedAveragei that computed in Alg.3

1 pathRatiolt,nm,ls ← using Eq. 18 // Measures the network
utilization NU for all paths

2 if (pathRatioi ≥ minPCT ) then
3 usedBw = availableBw * newWeightedAveragei
4 end
5 else
6 usedBw = availableBw * oldWeightedAveragei
7 end
8 return usedBw

The main goal of auto-adaptation is to dynamically allocate
the percentage of paths in the bandwidth slicing mechanism.
Thus, the procedure seeks the optimal slicing percentage for
the bandwidth based on the network utilization NU for each
path. Alg. 4 clarifies the auto-adaptation procedure, which
starts by measuring the NU for each path as per equation 17.
Following this, the resulting percentage pathRatio is com-
pared with the minPCT defined by the user. If the pathRatio
is equal to or bigger than the minPCT , the new pathRatio
is employed in the weightedAverage using equation 16 to
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Fig. 8: Auto-Adaptation transmission time

comprise an improved percentage that improves the bandwidth
slicing between the paths. If the pathRatio is smaller, the
static percentage that was previously employed to the path
will be utilized. Figure 8 shows the results of a comparison
between the MQ-BC system and the MQ-BC system with the
Auto-Adaptive network slicing algorithm, which showed an
improvement in the transmission time of 46%.

V. FURTHER EVALUATION AND VALIDATION

We not only evaluate our proposed system in a simulation-
based environment, but also validate it in a real-world IoT-
based SDN environment. We used real edge hardware devices
(three Raspberry Pis, one SDN-enabled switch, and one lap-
top). We use sensor emulators in order to mimic IoT devices
and generate IoT data. We ran the sensor emulator in one
Raspberry Pi, an edge processor emulator in the second Pi, and
a VM in the third Pi. The Raspberry Pis come with 1.4GHz
4 cores and 1 GB RAM. On the networking side, we ran an
Open vSwitch (OvS) on a Linux-based switch with an Intel
N3700 Processor and 8GB RAM. We ran a Ryu controller as
an SDN controller on the laptop with Intel 4 cores i7-8565U
1.99GHz CPU and 16 GB RAM.

Workload and Dataset: We use a real-world smart building
(Urban observatory, Newcastle University) dataset to generate
a realistic workload. This dataset consists of samples are
collected from temperature, NO2, and gas etc. We used the
MQTT protocol to send and receive the data between the
devices. We applied our multi-queues policy on the edge
emulator and the VM, to prioritize the data depending on the
priority of each sensor. Also, we implemented the bandwidth
slicing policy in the SDN controller to manage the bandwidth
in the network between the devices.

Methodology: We have three applications for testing, 10,
20, and 30 sensors. Starting from the sensor emulator, we set
the input rate to 10-30 record/s, then, the records will be sent
to the edge. Next, in the edge, the data will be sorted through
the multi-queues policy to be processed by the edge. Then,
after processing is finished the data will be sent to the VM
via the switch. The switch will redirect the data to the SDN
controller, it will manage the routing and the bandwidth slicing
depending on the priority, then, it will send the data to the
VM for further analyse. The VM will be sort and processed
the data.

Results: We measured the average transmission time start-
ing from the sensor via the switch until it reached the VM,
for all three apps, and then we compared it with the average
transmission results from the simulation experiment. Also, we
measured the average processing time in the edge and the VM
for all three apps, and then we compared it with the average
processing time results from the simulation experiment. As
shown in Figure 9, the higher the number of sensors, the higher
the processing and transmission time. As a result, it can be
seen that the results have a positive correlation, which reveals
that the accuracy and correctness of our simulation-based
results are comparable to the real IoT-based SDN environment.
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(a) Average transmission time (b) Average processing time

Fig. 9: Validation results

TABLE V: Comparison of various scheduling systems with the one proposed

Systems Features
Cloud

processing
SDN

support
Auto

Adaptation
BW

slicing
Stream

processing
Queuing

delay
Edge

processing
IoT

devices Latency

LEO [20] ✓ ✓ ✓
MAUI [21] ✓ ✓ ✓ ✓ ✓

Frontier [22] ✓ ✓ ✓ ✓ ✓ ✓
Approxiot [23] ✓ ✓ ✓ ✓ ✓

Nebulastream [24] ✓ ✓ ✓ ✓
Homa [25] ✓ ✓ ✓
pHost [26] ✓ ✓
NDP [27] ✓ ✓
SDQ [28] ✓ ✓ ✓ ✓
NS [29] ✓ ✓ ✓ ✓

QJUMP [15] ✓ ✓ ✓
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VI. RELATED WORK

There has been much prior work on related topics, such
as cloud task offloading, IoT stream processing, bandwidth
slicing and congestion control. In the field of mobile com-
puting, general-purpose offloading refers to offloading tasks
to the cloud. It is necessary to consider the influence of
different computation resources on data transmission. LEO
[20] have optimized energy consumption through performing
various multiple sensor processing tasks on mobile devices.
Nonetheless, the dynamicity of the IoT network was not
considered. MAUI [21] do not take into account the queuing
delay from edge to cloud even though they are deemed to be
diverse resources. Thus, it would be advantageous for these
networks to be improved by our system.

Advancements to edge computing have moved cloud-based
data processing towards the ground, which has led to a
substantial reduction in process latency. The researchers in
[22] proposed an edge-based stream processing system to
process data from multiple IoT devices in parallel. Nonethe-
less, the key objective of this new system is to enhance the
reliability to changes in wireless network conditions rather
than addressing bandwidth slicing issue. Moreover, the authors
in [23] concentrate on enhancing analytical task performance
instead of taking into account queuing delays when processing
stream data. NebulaStream [24] is a platform that directs data
streams towards different processing tasks for specific data-
flow programs using APIs. Nonetheless, this system is unable
to differentiate between the latency sensitivity of different IoT
applications. Therefore, it cannot manage queue delays. Our
proposed system is considered an effective traffic scheduling
system that can be used throughout the IoT-edge-cloud con-

tinuum environments, especially those with different types of
data records and specific QoS requirements. In the field of
networking, SDQ [28] proposes a solution that selects the
best queue and route for each incoming flow to decrease
network workload imbalances. However, the cloud network
and the bandwidth slicing were not considered. In NS [29],
the authors propose a network slicing-based communication
solution. However, the bandwidth slicing, edge, and cloud
processing were not considered.

Congestion control is a common feature throughout the
network community and is usually achieved by restricting the
transmission rate and sending network packets to destinations.
The QJUMP system [15] enables messages to be forwarded
to different queues according to their priority levels. This is
very similar to the multi-level queues management feature in
our system. However, QJUMP does not support stream data
processing applications. Several receiver-driven flow-control
systems (including Homa [25], pHost [26], and NDP [27])
can effectively reduce the latency of small-scale messages,
but such networks contain switch-based mechanisms that are
based primarily on an assumption that ingress throughput and
egress throughput are equal. Thus, they are considered to be in-
valid in the IoT-edge-cloud continuum. Our system effectively
combines dynamic bandwidth allocation and holistic traffic
coordination at the application layer. It is thus sufficiently flex-
ible to enable throughput throttling and bandwidth adjustments
during data streaming processes. The detail properties of recent
and our proposed systems are compared in Table V.
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VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel distributed and QoS-based
multi-level queues traffic scheduling system. This system is
designed to maintain the general system throughput while
diminishing the queuing delay and increasing the QoS assur-
ance of applications with high-latency. Our scheduling system
relies on multi-level queues for incoming traffic depending on
their latency sensitivity. It also relies on bandwidth slicing,
which divides the bandwidth of the network on the incoming
traffic depending on their latency sensitivity. Moreover, the
bandwidth slicing of our system is synchronously auto-tuned
by analysing network utilization at the time. Using these two
methodologies in our system greatly enhances latency and
throughput for edge-cloud environments. The results showed
that the processing latency in edge and cloud hosts has been
reduced by up to 4x and the network by up to 9x comparing
with the state-of-the-art (i.e. FCFS and SJF). In addition, the
energy consumption of edge and cloud hosts and the network
has been reduced by 3x. In future work, we will focus on
advanced and more complex algorithms aimed to find the
optimal solution for the bandwidth slicing problem.

REFERENCES

[1] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé.
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