2304.12889v1 [cs.CR] 25 Apr 2023

arxXiv

Blockchain-based Federated Learning with Secure
Aggregation in Trusted Execution Environment for
Internet-of-Things

Aditya Pribadi Kalapaaking, Ibrahim Khalil, Mohammad Saidur Rahman, Mohammed Atiquzzaman, Xun Yi, and
Mahathir Almashor

Abstract—This paper proposes a blockchain-based Federated
Learning (FL) framework with Intel Software Guard Extension
(SGX)-based Trusted Execution Environment (TEE) to securely
aggregate local models in Industrial Internet-of-Things (IIoTs).
In FL, local models can be tampered with by attackers. Hence,
a global model generated from the tampered local models
can be erroneous. Therefore, the proposed framework lever-
ages a blockchain network for secure model aggregation. Each
blockchain node hosts an SGX-enabled processor that securely
performs the FL-based aggregation tasks to generate a global
model. Blockchain nodes can verify the authenticity of the
aggregated model, run a blockchain consensus mechanism to
ensure the integrity of the model, and add it to the distributed
ledger for tamper-proof storage. Each cluster can obtain the
aggregated model from the blockchain and verify its integrity
before using it. We conducted several experiments with different
CNN models and datasets to evaluate the performance of the
proposed framework.

Index Terms—Federated Learning, Internet-of-Things,
Blockchain, Secure Aggregation, Intel SGX, Trusted Execution
Environment, Deep Learning

I. INTRODUCTION

The Internet-of-Things (IoT) explosion has made it an
integral component of various intelligent applications. Intel-
ligent applications include but are not limited to healthcare,
manufacturing, critical system infrastructure, agriculture, and
transportation. IoT devices enable the collection of a large
volume of data and act autonomously in an intelligent system,
thanks to machine learning algorithms. The large volume of
IoT data plays an essential role in training a machine learn-
ing algorithm system. In general, IoT devices are resource-
constrained and cannot execute machine learning algorithms
independently. Edge computing technology is gaining accep-
tance at a tremendous rate to form intelligent networks in
conjunction with IoT and machine learning. An edge device
(referred to as an edge server throughout the article) and IoT
devices within the network form a cluster. In an intelligent
system, edge devices can host a machine learning algorithm
that uses a locally-built dataset and produce a trained model.
IoT devices generate data and receive control instructions
depending on the type of IoT device. Later, the trained model

can be used to make an intelligent decision in the system.
Although an edge and IoT-based system configuration with

machine learning capability can manage different system tasks
automatically, the level of accuracy impedes its success. For
example, a trained model produced by an edge server with
local data might not consider many features that could be

absent in the local dataset. The accuracy can be improved
if the edge device can collaborate with other edge servers
that have produced their trained model based on their local
datasets. This learning method is called Distributed Collabora-
tive Machine Learning|1l]]. Traditional distributed collaborative
machine learning (see Fig. allows different clusters to
send their locally-trained model and datasets to a centralized
server, such as the cloud. Cloud aggregates all locally-trained
models using datasets from different sources and produces an
aggregated trained model shared with all clusters to improve
decision-making accuracy.

Manufacturer 1 Manufacturer N

/'Warehouse IoT Sensors

Warehouse loT Sensors

g 2 A

Store [
data V

turer | E99¢ Manufacturer

Server \Server /
° Data Cluster T Data -
Local Local
Trained Dataset Trained Da:::et
Model Model
Third party Cloud
Training Training
—-— i F
Process : Result: @ 3
—] > esults E.,D
' Trained
Database Resources Model
Trained | Trained
Model Loca Model Local
Dataset Dataset
] Healthcare -
o= Cluster o=
Edge Medical Edge Medical
Server Data Server Data
Store EEEN Store
data data
)y =] y =]
R =S @ == S
Medical loT Sensors Medical IoT Sensors
Hospital 1 Hospital N

Fig. 1: Traditional collaborative learning application scenario

Distributed collaborative learning suffers from two signifi-
cant issues: privacy and trust [2]. A new form of distributed
collaborative learning, called Federated Learning (FL) [3]], en-
ables different clusters to build a trained model with their local
data, called a local model, and to share only the local model
with other participants for the purpose of aggregation. The
aggregated model is known as a global model. Data privacy
is ensured because the global model is generated without the
data being shared with other participants. Nevertheless, the
global model cannot be fully trusted as internal or external

attackers can launch several security attacks during the model
aggregation and the dissemination of the global model. Hence,
a trustworthy framework is required to ensure the privacy of
sensitive data and the trustworthiness of the generated global
model. Moreover, the receiver of the global model (e.g., edge
server) should verify the integrity of the global model before
using it.
A. Contributions

In this paper, we propose a complete framework for FL that
simultaneously safeguards the privacy of IoT data and ensures
security during the generation of aggregated trained models. In
addition, the proposed framework guarantees trustworthy stor-
age and sharing of the outcomes of any training. The proposed
framework comprises a Convolutional Neural FL architecture
that combines an Intel Software Guard Extension (SGX)-
based Trusted Execution Environment (TEE) and blockchain
platform. We assume that multiple IoT and edge devices
clusters produce locally-trained models based on their local
dataset and send the local model to the blockchain network
for aggregation. In this framework, each blockchain node hosts
an SGX-enabled processor that individually performs the FL-
based aggregation tasks to generate an aggregated model.
Once SGX-enabled processors of blockchain nodes perform
the aggregation, each node can verify the authenticity of the
aggregated model, run a blockchain consensus mechanism to
ensure the integrity of the model, and add it to a blockchain
for tamper-proof storage. An edge server from each cluster
can collect the latest aggregated model from the blockchain
and verify its integrity before using it. The key contributions
of our work are summarized below.

o The proposed framework introduces a new FL architec-
ture for IoT to ensure secure generation of the aggregated
model using Intel SGX-powered TEE.

o« We propose the hosting of an SGX processor by a
blockchain node that is responsible for the FL model
aggregation task.

o A blockchain-powered trustworthy aggregated model
storage and sharing model is proposed for FL-based
learning in IoT applications.

B. Organization

The rest of the paper is organized as follows. Section |lI| de-
scribe the problem scenario in collaborative learning. Section
discuss some of the closely related work. The proposed
framework is described in Section Section [V] presents the
experimental results and evaluates various performance aspects
of the proposed framework. Section [V]] concludes the paper.

II. PROBLEM SCENARIO

To demonstrate and discuss the problem that exists with
traditional collaborative machine learning, we use an IoT-
enabled smart warechouse scenario (see Fig. 2). Assume that
several smart warehouses are geographically dispersed. Each
warehouse receives multiple pre-packed boxes of various gar-
ments (for both men and women), including shirts, trousers,
shoes, jackets, and bags for storage. Each warehouse uses
machine learning and an IoT-enabled camera to automatically
sort the boxes according to the type of garment they con-
tain. The camera scans the generic photo of the garment,

which is shown on the box. However, IoT-enabled cameras
are resourced-constrained and cannot execute the machine
learning algorithm. Hence, each warehouse is equipped with
an edge server with access to the local dataset and hosts the
machine learning algorithm to train a model for recognizing
garment items based on the local dataset. Nevertheless, the
accuracy of a training model derived from the local dataset
may not be good. Therefore, the edge server of each warehouse
participates in a cloud-based collaborative machine learning
platform to share its local dataset and the trained model. The
cloud-based collaborative machine learning platform produces
an aggregated model based on the received local datasets and
models. The aggregated model is sent to all edge servers to

achieve higher accuracy in recognizing the garment items.
Although the aforementioned collaborative learning sce-

nario improves overall accuracy, it suffers from the following
security risks:

e Risks of data privacy: Sending local datasets to the cloud
introduces the risk of a privacy breach. For example, a
dishonest employee from the cloud service provider can
act as an internal attacker and collect the warehouse’s
sensitive product information and share it with a business
competitor for financial gain. Hence, there is the need
for an aggregation model that would not require local
datasets to generate an aggregated model.

o Risks of generating biased aggregated trained model: The
aggregated model produced by a cloud service provider
can be biased, as a cloud-based platform cannot be
trusted. For instance, an internal attacker can generate a
biased aggregated model not using the given local models
or inject a faulty trained model to interrupt the generation
of aggregated models. Therefore, a secure environment is
required to prevent biased model generation.

o Risks of receiving alteration or faulty aggregated trained
model: In the traditional cloud-based collaborative learn-
ing environment, an internal attacker of the cloud plat-
form can interfere with disseminating the aggregated
model. For example, an attacker can alter some part of the
aggregated model before the cloud sends it to the edge
servers. The traditional method does not allow a receiver
of the aggregated model (i.e., edge server) to verify its
integrity before using it. Hence, a trustworthy platform
is required for sharing the aggregated model with edge
Sservers.

III. RELATED WORK

This section discusses several studies that are closely related
to our work.
Privacy-preserving Federated Learning. Several works

on privacy-preserving federated learning have been presented
recently. Yin ef al. [4] and Liu et al. [3]] proposed a federated
learning framework where the training is performed on each
node and only the model is sent to the central server to perform
the model aggregation. Wei et al. [6] and Zhao et al. [7]]
proposed a framework where data privacy is improved by
means of differential privacy. However, the use of DP will
slow down the training process and reduce accuracy. In [§]
the author proposes anonymous federated learning by adding

Training Somm \ Third Party
I{ %9' == Cloud
Low Edge |
IAct:uracy Server |
: Model I | Training and Global
P
o, Store 1 DB Aggregation Model
: ,bdata e | LD - - E%
I ToT - E &
\vaice ,/1 ’,’
Manufacturer 1 ’/’
—————— ’,

| @ Collect and tamper |
' the datasets stored in !
! Cloud !

Low

|
IA,f,,c:;c,v @ Interrupt Training :
= | and aggregation 1
I e =/ & Grornal I process |
] = ! ® Alter the Global !
I loT Local Model !
\Device Data, = emmmmmm————- I
N o - -
Manufacturer 2

Fig. 2: Possible threat on collaborative learning architecture

a proxy layer and DP to the data. However, the proxy layer
will add communication overhead, and the result shows that
the DP decreases the ML accuracy. Li er al. [9] leverage
SMPC-based federated learning to secure aggregation. Hence,
their framework relies on a centralized server to arrange the
secret sharing. This could be a problem since all the models
can be seen in plaintext after the cloud collects the secret
share. Federated learning is delicate to an attacker that can
launch backdoor attacks. Bagdasaryan et al. [10] found that a
backdoor can compromise the federated learning and poison
the machine learning model. Our framework will create a
secure end-to-end federated learning process to overcome this
problem by securing the machine learning model and the

aggregation process.
TEE-based Machine Learning. Recently, TEE has gained

popularity in the field of privacy-preserving machine learn-
ing. Ohrimenko et al. [11] investigated centralized machine
learning processes in an SGX-enabled data center to improve
data privacy and avoid data leaks. In his framework, the server
requests the dataset from all the participants and computes it
in a centralized server. Tramer et al. [12] and Juvekar et al.
[L3] proposed a secure inference process inside of the TEE.
Hynes et al. [14] and Hunt et al. [15] demonstrated centralized
privacy-preserving machine learning by running all the CNN

processes inside the enclave.
The available frameworks use a single deep learning model,

and none of them performs within the federated learning setup.
The current work also shows that the time cost is significantly
increased when the training process is performed in the TEE.
Hence, we run the aggregation process inside the enclave to

maximize the performance and reduce time consumption.
Blockchain-based Federated Learning. Blockchain was

first launched as a cryptocurrency technology. However, it
has now been expanded for data storage across multiple

computational nodes in a distributed fashion. Blockchain is
structured as a linked list of blocks holding a set of trans-
actions. Ali et al. [16] proposed a method to ensure the
privacy and security of healthcare systems using blockchain.
Their approach focuses mainly on securing patient data from
active collision attacks by leveraging novel smart contracts and
encryption algorithms. Nowadays, many studies are incorpo-
rating blockchain into their federated learning methodologies
because federated learning is based on a centralized server,
which is vulnerable to attack. Zhao et al. [17]] designed a
system where each of the clients will sign the model after
the training process and send it to the blockchain. However,
if this model has many clients, the computation cost will be
very high. In recent works, [18], [19], and [20] proposed
a framework where the model is stored in the blockchain
node, and federated learning is performed. However, in their
architecture, the model is not totally encrypted. Also, the
aggregation is performed by an untrusted party. Kim et al.
[21]] proposed a method where they deploy the blockchain
on the edge devices. The disadvantage of this method is that
the edge devices will require a lot of computation power. The
author in [22] proposes a blockchain architecture to collect the
locally-trained model weights collaboratively from different
sources for healthcare scenarios. However, the local model
that is stored in the blockchain is not protected by any privacy
measure. In this case, other parties can see the model, thereby
raising privacy issues.

Samuel et al. [23] proposed blockchain-based FL for health-
care system. Their proposed framework protects the local
model training with differential privacy (DP). The central
server aggregates the global model and stores it in the
blockchain. However, the global model accuracy is lower than
the locally trained model. The use of DP in this framework can
preserve privacy while sacrificing accuracy. Alsamhi et al. [24]
and Otoum et al. [25] proposed an edge intelligence over smart
environments with the support of FL and blockchain. Their
proposed architectures leverage drones as an edge intelligence
to perform the aggregation in FL. The aggregation process on a
drone is vulnerable to tampering attacks and poisoning attacks.
Since drones are deployed on the field and open networks,
hardware security such as TEE can secure the aggregation

process.
In Table |l we summarize some of the works to identify

their research gaps and discuss how our proposed method
differs from them. As shown in the table, existing works
are mostly unsecured, inefficient, and have low accuracy.
Hence, we deploy the blockchain on the server-side to reduce
training model storage costs and leverage TEE to ensure secure
and trustworthy model aggregation before sending it to the
blockchain.

IV. PROPOSED FRAMEWORK

In this section, we present the proposed blockchain-
based federated learning with Trusted Execution Environ-
ment (TEE)-powered secure aggregation framework. First, we
present an overview of the system architecture. Next, we
discuss in detail the various components of our proposed
framework.

Methodology

Description

Remarks

Yin et al. [4]

A privacy-preserving machine
learning approach based on
DP and sparse vector tech-
nique.

Low model accuracy and secu-
rity is poor.

Wei et al. [6]

A FL approach with DP to se-
cure the data on edge devices.

Centralized approach with
lower accuracy and efficiency.

Ohrimenko et
al. [11]

TEE-based machine learning
approach.

Centralized approach with
lack of data privacy. TEE
is leveraged during local
training. Hence, may not be
suitable for Edge devices.

Hunt et al. [15]

TEE-based privacy-preserving
Machine Learning approach

Secure model generation
through TEE; however, the
global model is generated
and stored in the unsecure
centralized server.

Qu et al. [26] A blockchain-based FL ap- | The model aggregation is per-
proach. Blockchain is used | formed in an untrusted envi-
to store model securely. Edge | ronment; hence, susceptible to
for cognitive computing in | tampering attacks.
industrial IoT. Their frame-
work keeps the local data
on their edge devices and
uses blockchain to secure the
model.

Kim et al. [21] | A blockchain of edge devices | Inefficient and the blockchain-
and FL based fully decentral- | based design is too heavy to
ized approach. implement in edge devices.

TABLE I: Summary of Related Works

TABLE II: Notations

My, Local Model
Me Global Model
M Lfl Updated Local Model
ML Updated Global Model
D; Local Image Dataset
C; 10T Cluster
E; Edge Server
B; Blockchain Node
S; SGX-enabled CPU
E(Mp;, K;) Encrypted Training model
R; Remote Attestation Report
Q Quotation for Global Model

A. System Architecture

We consider a Federated Learning (FL)-based collaborative
learning model in this system that leverages Trusted Execution
Environment (TEE) for secure aggregation and blockchain for

tamper-proof data sharing and storage.
We assume that there are p warehouses equipped with sev-

eral IoT cameras to scan product photos and recognize the type
of products. Because IoT cameras are resource-constrained
when running machine learning algorithms, each warehouse
uses an edge server to host and execute a machine learning
algorithm. As a result, [oT cameras and the edge server form a
cluster C;(1 < i < p). Initially, the edge server trains a model
based on the local dataset and generates a trained model called
a Local Model, denoted as M. However, if the size of the
local dataset is small, the accuracy of My might not be high.
Hence, the edge server of a cluster C; joins in FL involving
multiple clusters of similar warehouses by sending its M,
to generate an aggregated model known as a Global Model,
denoted as M. In our proposed scenario, we adopt Federated
Averaging (FedAVG) [27]] algorithm for generating the global

model, which will be discussed in Section IV-C.
A typical FL approach involves three steps: initialization,

— Tamper Proof Storage
(mma] [EEE] [

Blockchain
Net\ivork

TEE, TEE, TEE,

Secure Aggregation

Global

Global Model

Local
Model

Secure Federated Learning

Cluster 1 Cluster P

Fig. 3: Overview of the proposed framework

aggregation, and update. Unlike the traditional FL approach
where M7, are aggregated in a centralized server (e.g., a cloud
server), our proposed framework uses a blockchain platform
for the aggregation of M. Multiple nodes form a blockchain
network, and each node receives all M and individually
aggregates My to produce their own copy of a Mqg. We
assume that each blockchain node has a TEE host. To ensure
the security during the aggregation process, each blockchain
node performs the aggregation in its TEE host and produces
a M. Blockchain nodes execute a consensus mechanism to
ensure that all nodes have identical M. Once the consensus
has been reached, each blockchain node stores the M in its
respective blockchain. Finally, the blockchain network sends
Mg to all edge servers. Edge servers validate Mg once
received and update their initial model with M. Edge servers

use the M for product recognition in the warehouse.
Fig. [3| gives an overview of the proposed framework, which

consists of three main phases: Local Model Generation, Se-
cure TEE-Enabled Aggregation, and Blockchain-Based Global
Model Storage. The following subsections describe each phase
in detail.

B. Local Model Generation

The Local Model Generation (LMG) phase is performed
in each cluster to generate a locally-trained model similar to
the initialization phase of the original FL. An overview of
the LMG phase is given in Fig. [d In the proposed system,
we assume that the edge servers of different clusters train
models using Convolutional Neural Network (CNN)-based
image classification in which model parameters are retrieved
from the global model stored in the tamper-proof storage.
Example of the CNN models are AlexNet[28]], LeNet[29] and

VGG16[30].
In general, CNN image classification takes an input image,

processes it and classifies it under certain categories of ¢
objects. An edge server E; of cluster C; has a local image
dataset D;. The edge server sees an input image as an array
of pixels, and it depends on the image resolution. Based on

Warehouse 1_______________ TEE Blockchain
‘ CNN Algorithm o
! Ccomaluton g Flvom wcted
[e n \‘
]]
=F 0 o=
| cxm -]
| .]
1 L]
mmmmmmmmmmmmmmmmmmm .
| Local Generate !
1 Training Local Model 1
| Generate o, 1
i —] Datasets , b _:_
! = ot L | 1
\ Local loT ocal /
Upload
'~ Dataset ______ Sensors____ | Model it
WarehouseN___ ° ___________
- CNN Algorithm TN

Storing .
! Global Model !

Generate Process

Local Modell

I 1
]]
]]
]
L T g Aggregation; |
]
! Local :
: Training '
1]
]]
]
]
'

Generate
—] . Datasets “
-—

\ Local loT
~ Dataset Sensors

Fig. 4: Local model generation

the image resolution, it will see h x w x d (h = Height, w
= Width, d = Dimension). For example, an image of 6 x
6 x 3 array of a matrix of RGB (3 refers to RGB values)
and an image of 4 x 4 x | array of a matrix of a grayscale
image. Technically, the deep learning CNN model works via
different layers to train and test a local model. The layers
are convolution layers with filters (kernels), pooling, and fully
connected layers (FC). In the end, CNN applies the SoftMax
Sfunction to classify an object according to probabilistic values
between 0 and 1. In each edge server, E; locally trained the
machine learning model My;. An edge server E; updates the
ML model using its dataset in every FL round r as follows:

Myt = Mg —nVF(Mg, DY) Q)]

where Mﬂrl denotes the updated local model of client i,
MY, is the current global model, 7 is the local learning rate,
V is used to refer to the derivative with respect to every
parameter, and F is the loss function. Later, E; send M, to
the blockchain network and aggregated iteratively into a joint

global model Mg.
To ensure the security of the local model, E; leverages

symmetric key encryption algorithm, such as Advanced En-
cryption Standard (AES), to encrypt Mp,; before sending it
to the blockchain nodes. We assume that the AES secret key
between FE; and the blockchain network is established using a
secure key establishment mechanism, such as Diffie—-Hellman
key exchange mechanism. We do not discuss this process
in detail as we leverage the state-of-the-art mechanism for
encrypting the local model.

C. TEE enabled Secure Model Aggregation

Once different local models are received by a blockchain
node, a TEE is used to securely aggregate all models. For
TEE, we use Intel Software Guard Extension (SGX) [31] in
this framework. SGX is a set of CPU extensions, which can
provide isolated execution environments, named enclaves, to
protect the confidentiality and integrity of the data against

all other software, even a compromised OS, on the platform.
When a platform is equipped with an SGX-enabled CPU (such
as a blockchain node in our framework), as an enclave, the
memory, BIOS, I/O, and even power are treated as potentially
untrustworthy. Firstly, the encrypted data is transmitted into
an enclave for decryption. Then the decrypted data will be the
input of function f. Finally, the output of f will be encrypted

and then sent to the outside of the enclave.
Using the same principle, FL’s local model aggregation task

is performed in the SGX-enabled CPU. We assume that there
are b blockchain nodes in the blockchain network, and each
blockchain node B;(1 <4 < b) in the blockchain network is
equipped with an SGX-enabled CPU §S;. A blockchain node
B; cannot access the code and data within its SGX-enabled

CPU S,.
Assume that a blockchain node B; receives the set M,

of local models from all clusters which can be denoted as
My, = {MLl,MLQ, .. .,MLP}. B, sends MLz(]- <1< Cl) to
S;. The secure aggregation tasks of all local models in M, is
done using multiple operations which are discussed below.
1) Generation of Encrypted Local Models: The SGX en-
clave receives only encrypted data to ensure security. Hence,
B, needs to encrypt Mp,; before sending it to S;. Let, E(., K)
be a Symmetric Encryption (SE) algorithm E(., K;) with a
secret key K; that is shared between B; and its S;. The
shared secret key K, is established by leveraging a secure
key exchange protocol such as Diffie-Hellman Key Exchange

Protocol.
B; generates an encrypted local model E(Mj;, K;). B;

sends E(My;, K;) to S;.

Encrypted Blockchain Node B,

$po——Local Model Blockchain Node B
cad SGX Enabled Processor S
Remote
E= a» :L-ocal Model Remote Attestation Enclave Attestation
— Decryption Enclave
R e T Key | Decrypt | Quoting Enclave
B3 8 & Plaintext :l
Rag Model .
Cluster C; Remote :
Attestation Blockchain Node B,
Intel Report R, Remote
Provisioning § Attestation
Service 57 Remote Enclave
Attestation Quoting Enclave @l
Key
(Seal Key)

Fig. 5: Remote attestation of local model

2) Remote Attestation: The remote attestation allows the
verification of the integrity of the aggregated model (i.e.,
global model) generated by the SGX enclave. In this frame-
work, the SGX enclave acts as the attestator, and the software
module of a blockchain node B; that is responsible for inter-
facing between SGX enclave and the blockchain network plays
the role of a verifier of the attestation. First, the SGX enclave
S; receives the set M of p encrypted local models which
can be denoted as MF = {E(M1,K1),...,E(Mp,,K,)}.
S; decrypts each E(Mp;, K;)(1 < i < p) with the shared
secret key k; to retrieve the plaintext set of local learning
models Mjy;. Second, S; performs the aggregation using the
Federated Averaging (FedAVG) [27] algorithm to generate the
global model Mg as follows:

n ‘D7| . n
Mgt =) ML N =) Dy 2)

i=1 i=1
where Mg[l denotes the updated global model, n is a
number of clients on the federated learning round r, |D;]| is
the number of data items (images) owned by E; to train local
model ME;H and N the total number of data used to train all

of the local models. M is final updated global model M[}.
Third, S; generates a remote attestation, called report R; =

Sign(Mg;, Ak;). Here, Sign(., Ax;) is a signature function
and A, is the attestation key of S;. The generated report
enables a verifier (i.e., blockchain node) to verify the M¢;. The
pseudocode of the overall aggregation and remote attestation
is illustrated in Algorithm [I] The algorithm takes encrypted
trained models as input and outputs aggregated global models,
and its remote attestation report All tasks of Algorithm [T] are
executed under a running enclave of the SGX. SGX uses a
quoting enclave to verify reports produced by the application
enclave and signs as a quote. The quoting enclave is used to
determine the trustworthiness of the platform. Later, the quote
is sent to another party for verification. In our scenario, each
B; will have one S; and works as an aggregator and verifier
of attestation reports. Fig. [5] shows the details of the quoting
enclave process.

Algorithm 1: Aggregation Process and Remote Attes-
tation in TEE
Input:
Encrypted Trained Models M¥ = {E(Mr1, K1), ..,
E(Myp, Kp)}
Output:

Aggregated Global Model (M¢g) and
Remote Attestation Report R;

1 while SGXServerRunning do

2 while EnclaveRunning do

3 Initialize:

4 Memory Buffer, Mem = ()

5 for each E(My;, K;) € MF do

6 Decrypt E(Mp;:, K;) with the key K; to obtain

the corresponding decrypted local model My;.
Add Mp; to memory buffer Mem.
8 endForEach
9 Aggregate all decrypted local models in Mem
according to FedAvg algorithm as shown in (3)
and generate global model M¢.

2

10 Generate a remote attestation R; for M¢ by signing
it with the attestation key Ax; of S;.
1 return {M¢, R;}

12 endWhile
13 endWhile

D. Blockchain-based Tamperproof Global Model Storage and
Distribution

In this phase, the blockchain network receives all remote
attestations produced by SGX enclaves and runs a consensus
mechanism. The consensus mechanism verifies the remote
attestations of a global model produced by the SGX enclaves.
If all remote attestations are verified, and the majority hashes
of corresponding models are the same, the blockchain nodes in

Blockchain of Global Models Mg

Add Global Models Mg

Consensus

Set of Global Models {Mg;, .. ,Mgp}

Sends Q
Sends R, GetsR

Sends Q

| |
Verifies Reports R and
Generates Quote (Q)
for All Reports

Verifies Reports R and
Generates Quotes for
All Reports

Fig. 6: Blockchain based global model storage

the blockchain network add the global model Mg as a block
in the blockchain. Also, the global model is sent to all edge
servers as the update operation FL. An overview of this step
is given in Fig. [

1) Verifying Attestation Reports by a Blockchain Node:
Assume that each blockchain node is equipped with a quoting
enclave and has an attestation key Ag; to sign a remote
attestation report R; produced by S;. R; is signed with Ay; to
generate a quote (;. A quote contains the identity of the attest-
ing enclave S;, execution mode details (e.g. Security Version
Number level S;), and additional metadata. The function that
is used to generate (); can be shown as: Q; = Sign(R;, Ak;).
Q; is encrypted using the public key PKj4g of Intel Attes-
tation Service (IAS) and generates E(Q;, PK;as). PKras
is embedded in the quoting enclave of all SGX-enabled
processors. Each S; shares its F(Q;, PK1as) to other SGX-
enabled processors of the blockchain network. Once all en-
crypted quotes are received from SGX-enabled processors
of all n blockchain nodes, B; creates a collection of En-
crypted Quotes received from all which is denoted by QF =

{E(Q1,PKras), E(Q2, PK1as),. .-, E(Qn, PK1as)}.
A blockchain node B; verifies each encrypted quote

with the help of IAS and determines if the quote is
correct and the corresponding remote attestation enclave
has created it. The verification is done using a function
verify(E(Q;, PKras), PRras), where PRrag is the pri-
vate key of IAS. Once the quotation is verified, () is broadcast
to the blockchain network to obtain a consensus for the global
model. Algorithm [2] provides an overview of this step.

2) Consensus by Blockchain Network: The consensus
mechanism has several steps. First, a blockchain node B;
checks the validity of each quote and the authenticity of
the quote-generating enclave. Second, the global model is
extracted from each quote, and their hashes are verified. If
the hashes of all global models are the same, the consensus
is achieved. If all hashes are not the same, the blockchain
node B; determines the global model Mgy, that has maximum

Quoting Quoting Quoting
Enclave Enclave Enclave
Blockchain Blockchain Blockchain
Node-1 Node-2 Node-b
Extracts Extracts Extracts
;) Global Global Global
Model Mg, Model Mg, Model Mg,
from Q, from Q, from Q,
Computes: Computes: Computes:
h, = hash(Mg;) h, = hash(Mg;) h, = hash(Mgy)
Sends h,
Sends h,
Sends h,
Sends h,
Sends h,
Sends h,
Obtains a set of Obtains a set of Obtains a set of
D hashes ;) hashes) hashes
H={hy, hy,..., hp} H=¢{hy, hy,..., hg ¥ H=1{hy, hy,.., b}
Check if all of Check if all of Check if all of
the hashes are the hashes are the hashes are
same and adds same and adds same and adds
Mg, to Mg, to Mg, to
blockchain blockchain blockchain
ACK
ACK
ACK
ACK
ACK
ACK

Fig. 7: Overview of the consensus mechanism

Block

I Previous Hash
Current Hash

Block 4

Previous Hash
<J_ Current Hash

t- ——
19POI |Eq0|is 1s01E

Global Model Global Model Global Model
Version: | Version: I+1 Version: m
Timestamp Timestamp Timestamp

[] 4
1
1
1
1
1
1
i
" Previous Hash
| i
e i | currentHash
1
1
1
1
1
:
\
\

Block containing
the latest global model

Fig. 8: Data structure of the global model blockchain

matched hash values, where k < p. Third, B; proposes Mgy
to the blockchain network to add in the blockchain. Finally,
if Mgy is the same for the majority of the node’s global
model, the consensus is achieved and added to the blockchain.
Algorithm [3] shows the pseudocode and Fig. [7] provide an
overview of of consensus mechanism. The blockchain data
structure of global models is illustrated in Fig. [§]

Algorithm 2: Quote Generation for Global Model
Input:
Remote Attestation Reports R = {(R1, Pk1),. ..,
(Rp, Php)}
Output:

Quotation for Global Model (Q)
1 while SGX Server is Running do
2 while While Quoting Enclave is Running do
3 Collection of Quotes, Q@ = NULL
4 for each R; € R do
5 Verify the validity of the report R; done by

Enclave S;
6 Generate a Quote, Q; = Sign(R;, Ar;)
7 Q.add(Q;)
8 endForEach
9 Broadcasts () to Blockchain Network

10 endWhile
11 endWhile

Algorithm 3: Consensus Mechanism on Global Model

Input:
Quotation for Global Model (Q)
Output:

Global Model (M¢)
1 while Blockchain Node B; is Running do
2 Set of Global Models, GM = NULL
3 Set of Hashes of Global Models, H = NULL
4 for each QQ; € Q do
5 Verify the validity of the Quote @); done by Enclave
S;
Extract global model M¢; from Quote Q;)

6

7 Add Mg, to GM

8 Send Mg; to other nodes in the blockchain network
9 endForEach

10 for each Mq; € GM do

11 | Get the hash h; of Mg; and it to H

12 endForEach

13 Add Mg, to Blockchain if all hashes in H are same.
14 endWhile

V. RESULTS AND DISCUSSION

In this section, we report on several experiments conducted
to evaluate the performance of our proposed framework.
Experimental setup, and dataset and model are discussed
in Section [V-A] and [V-B] respectively. Section [V-C| shows
experimental results and evaluates the performance.

A. Experimental Setup

In our experiments, both the server and participant appli-
cations were run on an Azure Cloud. We used the DCsv2
series VM with 4 vCPU and 16 GB Memory. This DC series
from Azure provides confidentiality and integrity of the data
and code while they are being processed in the public cloud.
DCsv2-series using Intel® Software Guard Extensions was
used, which enables the end-user to use secure enclaves for
protection. These machines are backed by 3.7 GHz Intel®
Xeon E-2288G (Coffee Lake) with SGX [31] technology. We
built our federated learning application based on PyTorch
and PySyft [33]]. To run the PyTorch application in the SGX
environment, we build our application on GrapheneOS [34].

B. Datasets and Model

For the experiments, we selected three datasets popularly
used for the machine learning process: Fashion MNIST
[35], CIFAR-10 [36], and MNIST [37]. These datasets are
commonly used for benchmarking in the machine learning
framework. Therefore, we have used them to evaluate the
performance of our proposed approach. The dataset is used
to train and test the local model on the client-side in the
proposed FL-based approach. For all our experiments, we
split the training and testing sets. Based on the number of
participants, we evenly distribute the training and test sets
among all participants. Fashion MNIST [33] is a collection of
datasets containing fashion images. The training set comprised
60,000, and 10,000 images were used as a test set. Each
image had a 28x28-pixel grayscale, and nine different classes
were represented (trousers, dress, bag, etc.). MNIST [37] is a
dataset consisting of handwritten digits (60,000 images in the
training set and 10,000 in the test set). Each image is a 28x28-
pixel image of a handwritten digit. CIFAR-10 [36] consists of
50,000 images in the training set and 10,000 in the test set.
It comprises 10 different classes (such as cars, dogs, planes),
and there are 6,000 images in each class, where each image
contains 32x32-colored pixels. Table shows the overview

of the dataset used in the experiments.
We consider three models for our experiment. First, the

LeNet model was used, which was proposed by LeCun et
al. [29]. The model contains two convolutional layers and
two fully-connected layers. This model is suitable for running
experiments using the Fashion MNIST and MNIST datasets.
Second, the AlexNet [28] model is used with five convo-
Iutional layers and three fully-connected layers. This model
can use batch normalization layers for stability and efficient
training. AlexNet is suitable for testing on the CIFAR-10
datasets. Finally, the VGG16 [30] model is used that has
16 layers and about 138 million parameters. This machine
learning model is also suitable for CIFAR 10 datasets.

Datasets Training set | Test set | Size Color
MNIST [37] 60.000 10.000 | 28x28 | Grayscale
F-MNIST [35] 60.000 10.000 | 28x28 | Grayscale

CIFAR-10 [36] 50.000 10.000 | 32x32 RGB

TABLE III: Datasets specifications

C. Experimental Results and Performance Evaluation

First, we evaluate the performance of our framework for the
global model aggregation process(see Fig. [9). This experiment
shows the time cost difference when performing the secure
aggregation process with enclaves and without enclaves with
various numbers of edge devices ranging from 2 to 40. Results
show the aggregation times required by LeNet, AlexNet, and
VGG16 for a batch size of 128. In Fig. [9a] and Fig. 0d] we
show the LeNet model with Fashion MNIST and MNIST
dataset, respectively. The experimental results show that the
LeNet model exhibits a similar trend when used on Fashion
MNIST and MNIST datasets. The time is consistently stable
when it has 20 edge devices, and the time cost rises a little bit
when it reaches 30 edge devices during the aggregation in the

b T T T 25— T T
—@— Without SGX —@— Without SGX
g g
£ 15 £ 15
o0 =0
= =
'z 10 Z 10f
8 8
o - o
£ 5 £ 5
I 3 I =
NI » N »
Edge Devices Edge Devices
(a) LeNet - Fashion MNIST (b) VGG16 - CIFAR-10
25— . ' ' ' 25— . ' ' '
—8— Without SGX —&— Without SGX
2 g y
£ 15 2 150 e |
o0 =)
B g
z 10} Zz 10
£ 5 £ 5
I 3 D I B
NI B NI B

Edge Devices Edge Devices

(c) AlexNet - CIFAR 10 (d) LeNet - MNIST

Fig. 9: Processing time of secure aggregation process with and
without SGX using various machine learning models and datasets
considering batch size = 128.

TEE. The average additional time cost is 1.2 seconds. Figures
[Ob] and Pd show the results of AlexNet and VGG-16 models
with CIFAR-10 dataset. When we perform the VGG-16 model
with 40 edge devices, the aggregation process without SGX
requires 19.1 seconds. The aggregation process is higher with
SGX, which is 21.8 seconds. The required time to aggregate
local training models of VGG-16 is the highest due to the
involvement of 16 layers. Nevertheless, it is only 2.7 seconds
slower than the time cost of aggregation without SGX. Fig. [9]
shows that the aggregation time cost is 1.3 seconds higher on
an average in SGX due to the paging mechanism and memory
limitation of SGX.

—@- Without SGX
-m- Using SGX

Processing Time (S)
Processing Time (S)
'S

L]

Batch Size

(a) LeNet - Fashion MNIST

400 = T
—@- Without SGX m
-m- Using SGX _

Batch Size

(b) VGG16 - CIFAR-10
300 — ‘ ‘ :

Z 300} =
E E 200
=] E
o 200 o
£ 2
2 2 100}
g s
g 100 g
=¥ =%
0= % RS N 0= % L >
Batch Size Batch Size

(c) AlexNet - CIFAR 10 (d) LeNet - MNIST

Fig. 10: Processing time of training process with and without SGX
for different number of batch size using various machine learning
models and datasets.

In Fig. we test the performance of our framework
using different machine learning models and datasets. The
experiment is conducted within and outside the enclave with

different batch sizes (1, 8, 16, and 20), and the time costs of
the training processes are shown in Fig. The time cost
of the LeNet machine learning model with Fashion MNIST
datasets running outside the enclave starts from 7.2 seconds
for one batch size. The time cost increases linearly to 8.7
seconds for 16 batch size. Fig. [I0b] shows the time costs
of VGG-16 with CIFAR 10 datasets. The time cost is 1.1
seconds for batch size is 1 and 2.2 seconds for batch size
16. The time costs increase slightly, keeping the same linear
characteristics when the experiments are performed inside the
enclave with the same settings. The LeNet model requires 8.1
seconds to 9.4 seconds, while VGG-16 requires 1.5 seconds
to 2.9 seconds. The experiment results show that the time cost
increases for both inside and outside enclave training when all
the machine learning models use 20 batch sizes. The time costs
also increase if the number of images in a batch increases.

10

: : : ; 300 = T
@ AggregationWithout SGX) —~@-Deploy
- Aggregation Using SGX —m- Verify

Processing Time (Min)
Processing Time (Ms)

ol = = >
Number of Nodes

(a) (b)

Fig. 11: Processing time: (a) for the federated learning process using
LeNet model[29] with Fashion MNIST datasets[35]] with different
number of nodes, and (b) for adding the global model to the
blockchain with different number of blockchain nodes.

TS S S
Number of Nodes

Fig. [ITa] shows the required time for the FL process with
different numbers of edge servers. In this experiment, we per-
formed multiple federated learning processes that use normal
aggregation and SGX-based secure aggregation. We used pre-
processed the Fashion MNIST dataset and the LeNet machine
learning model with 128 batch sizes for the experiment. We
consider different number of edge servers ranging from 2 to
40. Results indicate that the time cost increases gradually for
the federated learning process with and without SGX-based
aggregation. When comparing the results of normal CPU and
SGX based approach, the time differs about 70 milliseconds

with 10 edge servers and 91 milliseconds with 40 edge servers.
Fig. shows the time required to execute both the verifi-

cation and deployment of the global model in our blockchain
network. In this experiment, the TEE aggregates all the models
from the edge server to form a global model. The global model
is then verified and deployed in the blockchain network. Our
simulation tested the performance using several blockchain
nodes ranging from 5 to 20. The deployment phase requires
roughly 100 milliseconds (with 5 blockchain nodes) to 230
milliseconds (with 20 blockchain nodes). The verification
phase is faster than the deployment phase and requires 60
milliseconds and 180 milliseconds with 5 and 20 blockchain
nodes, respectively. The processing times of both phases

increase linearly with the increment of blockchain nodes.
Table shows the results of testing our framework to

see the effect when we apply the machine learning model
in a federated way inside the enclave and standard CPU. In

Methodologies CNN Model Dataset Baseline | SGX Accurs{cy

Reduction
Proposed Method LeNet[29 F-MNISTI[35 93.2% 90.8 2.4%
Proposed Method AlexNet[28 CIFAR-10[36 73.3% 70.4% 2.9%
Proposed Method VGG-16[30] CIFAR-10[36] | 87.4% | 84.8% 2.6%
Proposed Method LeNet[29 MNIST[37 95.7% 93.6% 2.1%
Myelin[14] RESNET-32(38] | CIFAR-10[36 89.5% | 84.4% 5.1%
Chiron[15] VGG-9(30] CIFAR-10[36] | 88.5% | 81.1% 7.4%

TABLE IV: Comparison of machine learning model accuracy in
federated learning process when using normal CPU and SGX

this experiment, all the datasets have 28x28 pixels and 128
batch size. We ran the experiment with 50 training iterations.
The experimental results show that the differences in the
accuracy of the proposed methodology and two benchmark
methods proposed in [14] and [15]]. Initially, we record the
accuracies of our proposed method with and without SGX.
The accuracies of the aforementioned methods are obtained by
applying various CNN models on different datasets. According
to the results, the accuracies are reduced by 2.2% to 2.9%
when SGX is used. Later, we measure the accuracies of
Myelin[14] and Chiron[[15] with and without SGX. Results
show that accuracies of the Myelin and Chiron are lower than
our proposed method. Moreover, the accuracies of Myelin
and Chiron are reduced around 5.1% and 7.4% with SGX,
respectively. Hence, our method has better accuracy compared
to Myelin and Chiron.

D. Discussion

In this section, we summarize the performance of our
proposed method. As discussed in Section we conducted
a series of experiments to evaluate the efficacy of our pro-
posed method. Based on the empirical results, the following
conclusions can be drawn.

e Privacy of Local Dataset: Federated learning allows
computational parties to collaboratively learn a shared
model while preserving all training data locally, sepa-
rating the machine learning process from the storage of
data in the central server. The method is unlike traditional
centralized machine learning where local datasets are
stored in one central server. Therefore, federated learning
can ensure the privacy of the client’s sensitive data.

o Privacy of Local Training Model: In our framework,
the local training model is encrypted using a shared key
before it is sent to the blockchain node. The shared key is
established using a secure key-exchange protocol. Later,
the local training model will be decrypted inside the
enclave for secure aggregation. As the local model is
encrypted, model inversion attacks [39]], and parameter
stealing [40] cannot be performed on a local model by
an adversary.

o TEE-based Secure Aggregation: In federated learning,
aggregation is typically performed on a normal server.
Several researchers [6]], [7] have proposed a differential
privacy (DP) method to secure the model during the ag-
gregation process. However, DP will significantly reduce
the accuracy of the global model. Table. [IV| shows that
the use of secure TEE-based aggregation can overcome
this problem while maintaining the privacy of the model.

As the aggregation is performed in the TEE, adversaries
cannot tamper with or steal the model parameters during
the aggregation process. As blockchain technology is be-
ing used with emerging technologies, such as drones[41]],
[42], [43]], the proposed blockchain and TEE-based model
aggregation in FL would enhance the trust in applications
where drones are used as edge intelligence in FL [24]],
[25].

 Resilience of the Global Model: Blockchain is a de-
centralized technology that can maintain data integrity
by means of an extensive network that can withstand
security breaches from untrusted parties. In the proposed
framework, we use blockchain to store the global model
after the aggregation process in the TEE. This decentral-
ization makes it almost impossible for an adversary to
compromise the network. Moreover, model updates are
protected by digital signatures and hashes. Hence, the
adversary cannot tamper with or contaminate the global
model since this will change the hash value.

e Model Performance: Although our proposed method
can ensure the privacy of the model and the security
of the aggregation process, performance is still a crucial
metric for measuring the quality of the framework. The
experimental results show that the performance of the
proposed framework is better than that of the baseline
model. Our proposed framework is different from [12],
[L3], [14], and [15] where the whole training process
occurs inside the enclave for a single deep-learning
model. On the other hand, our framework uses a federated
learning setup, and only the aggregation is performed
inside the enclave. We also examine the reduction of our
model’s accuracy when we leverage TEE. Our proposed
method has only up to 3% accuracy reduction compared
to Myelin [14], and Chiron [15] that have more than
5% and 7% accuracy reduction, respectively. In other
words, our proposed framework achieves a good balance
between privacy and model performance.

VI. CONCLUSION

In this paper, a blockchain and Trusted Execution Envi-
ronment (TEE) enabled Federated Learning (FL) framework
is proposed for IoT. The main objective of this framework
is to ensure the trustworthy aggregation of local models
to obtain a global model. The aggregation is done within
the blockchain network. The proposed framework leverages
the Intel Software Guard Extension (SGX)-based Trusted
Execution Environment (TEE) to ensure secure aggregation
where each blockchain node executes the aggregation task.
In this framework, each blockchain node is equipped with
an SGX-enabled processor that securely generates a global
model to ensure trustworthiness. Later, the global model is
verified by the blockchain network via a consensus mechanism
before it is added to the blockchain, thereby maintaining
tamperproof storage. Users of the global model can access it
and verify its integrity only through the blockchain network.
We use different Convolutional Neural Network (CNN) based
algorithms with several benchmark datasets to generate local
models and aggregate them under FL settings. We conducted

several experiments that show that our proposed framework’s
processing time is almost similar to that of the original FL
model. In addition, our framework has only around 2% less
accuracy compared to the original FLL model. It is essential
to mention that this framework has leveraged a hash-based
consensus mechanism to ensure the model’s integrity. In the
future, we intend to develop an efficient consensus mechanism
for the proposed TEE and blockchain-based FL framework
in order to make it more practical. In this paper, we assume
that all participants perform homogeneous tasks and use same
approach to generate their respective local models. Each
participant uses their own private dataset and the federated
learning architecture to obtain a global model. However, we
plan to extend our current work in the future to support
heterogeneous tasks in Blockchain-based federated learning
with TEE based secure aggregation.

ACKNOWLEDGEMENT

This work is supported by the Australian Research Council
Discovery Project (DP210102761).

REFERENCES

[1] M. Alazab, S. P. RM, M. Parimala, P. Reddy, T. R. Gadekallu, and Q.-V.
Pham, “Federated Learning for Cybersecurity: Concepts, Challenges and
Future Directions,” IEEE Transactions on Industrial Informatics, 2021.

[2] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Feakage in Collaborative Learning,” in 2019 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2019, pp. 691-706.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[4] L. Yin, J. Feng, H. Xun, Z. Sun, and X. Cheng, “A Privacy-preserving
Federated Learning for Multiparty Data Sharing in Social I0Ts,” IEEE
Transactions on Network Science and Engineering, 2021.

[5] Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao,
“Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework With UAV Swarms,” IEEE Internet of Things Journal, vol. 8,
no. 12, pp. 9827-9837, 2021.

[6] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. Quek, and H. V. Poor, “Federated Learning with Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3454-3469, 2020.

[7]1 Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and
K.-Y. Lam, “Local Differential Privacy-Based Federated Learning for
Internet of Things,” IEEE Internet of Things Journal, vol. 8, no. 11, pp.
8836-8853, 2021.

[8]1 B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang, “Anonymous
and Privacy-preserving Federated Learning with Industrial Big Data,”
IEEE Transactions on Industrial Informatics, 2021.

[91 Y. Li, Y. Zhou, A. Jolfaei, D. Yu, G. Xu, and X. Zheng, “Privacy-
Preserving Federated Learning Framework Based on Chained Secure
Multiparty Computing,” IEEE Internet of Things Journal, vol. 8, no. 8,
pp. 6178-6186, 2021.

[10] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
Backdoor Federated Learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938-2948.

[11] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-party Machine Learn-
ing on Trusted Processors,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 619-636.

[12] E Tramer and D. Boneh, “Slalom: Fast, Verifiable and Private Ex-
ecution of Neural Networks in Trusted Hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[13] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A Low Latency Framework for Secure Neural Network Inference,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 1651-1669.

[14] N. Hynes, R. Cheng, and D. Song, “Efficient Deep Learning on Multi-
source Private Data,” arXiv preprint arXiv:1807.06689, 2018.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving Machine Learning as a Service,” arXiv preprint
arXiv:1803.05961, 2018.

A. Ali, H. A. Rahim, M. F. Pasha, R. Dowsley, M. Masud, J. Ali, and
M. Baz, “Security, Privacy, and Reliability in Digital Healthcare Systems
Using Blockchain,” Electronics, vol. 10, no. 16, p. 2034, 2021.

Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and
Y. Liu, “Privacy-Preserving Blockchain-Based Federated Learning for
10T Devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1817-
1829, 2021.

Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A Blockchained
Federated Learning Framework for Cognitive Computing in Industry 4.0
Networks,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4,
pp. 2964-2973, 2021.

Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-Efficient Federated Learning and Permissioned
Blockchain for Digital Twin Edge Networks,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 22762288, 2021.

L. Feng, Y. Zhao, S. Guo, X. Qiu, W. Li, and P. Yu, “Blockchain-
based Asynchronous Federated Learning for Internet of Things,” IEEE
Transactions on Computers, 2021.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained On-Device
Federated Learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279-1283, 2020.

R. Kumar, A. A. Khan, J. Kumar, A. Zakria, N. A. Golilarz, S. Zhang,
Y. Ting, C. Zheng, and W. Wang, “Blockchain-federated-learning and
Deep Learning Models for COVID-19 Detection Using CT Imaging,”
IEEE Sensors Journal, 2021.

0. Samuel, A. B. Omojo, A. M. Onuja, Y. Sunday, P. Tiwari, D. Gupta,
G. Hafeez, A. S. Yahaya, O. J. Fatoba, and S. Shamshirband, “IoMT:
A COVID-19 Healthcare System driven by Federated Learning and
Blockchain,” IEEE Journal of Biomedical and Health Informatics, pp.
1-1, 2022.

S. H. Alsamhi, F. A. Almalki, F. Afghah, A. Hawbani, A. V. Shvetsov,
B. Lee, and H. Song, “Drones’ Edge Intelligence over Smart Envi-
ronments in B5G: Blockchain and Federated Learning Synergy,” IEEE
Transactions on Green Communications and Networking, pp. 1-1, 2021.
S. Otoum, I. A. Ridhawi, and H. Mouftah, “A Federated Learning and
Blockchain-enabled Sustainable Energy-Trade at the Edge: A Frame-
work for Industry 4.0,” IEEE Internet of Things Journal, pp. 1-1, 2022.
Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
“Decentralized Privacy using Blockchain-enabled Federated Learning in
Fog Computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.
5171-5183, 2020.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient Learning of Deep Networks from Decentral-
ized Data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273-1282.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84-90, 2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

V. Costan and S. Devadas, “Intel SGX Explained.” JACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1-118, 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
Imperative Style, High-performance Deep Learning Library,” Advances
in neural information processing systems, vol. 32, pp. 8026-8037, 2019.
A.Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-
M. Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose et al., “PySyft:
A Library for Easy Federated Learning,” in Federated Learning Systems.
Springer, 2021, pp. 111-139.

C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A Practical Library
{OS} for Unmodified Applications on {SGX},” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645—
658.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

A. Krizhevsky and G. Hinton, “Convolutional Deep Belief Networks on
CIFAR-10,” Unpublished manuscript, vol. 40, no. 7, pp. 1-9, 2010.

(371

[38]

[39]

[40]

[41]

[42]

[43]

L. Deng, “The MNIST Database of Handwritten Digit Images for Ma-
chine Learning Research,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 141-142, 2012.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-resnet and the Impact of Residual Connections on Learning,”
in Thirty-first AAAI conference on artificial intelligence, 2017.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322-1333.

B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine
Learning,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 36-52.

M. S. Rahman, I. Khalil, and M. Atiquzzaman, “Blockchain-powered
policy enforcement for ensuring flight compliance in drone-based service
systems,” IEEE Network, vol. 35, no. 1, pp. 116-123, 2021.

S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki, “Survey
on Collaborative Smart Drones and Internet of Things for Improving
Smartness of Smart Cities,” IEEE Access, vol. 7, pp. 128 125-128 152,
2019.

M. S. Rahman, I. Khalil, and M. Atiquzzaman, “Blockchain-Enabled
SLA Compliance for Crowdsourced Edge-Based Network Function
Virtualization,” IEEE Network, vol. 35, no. 5, pp. 58-65, 2021.

	I Introduction
	I-A Contributions
	I-B Organization

	II Problem Scenario
	III Related Work
	IV Proposed Framework
	IV-A System Architecture
	IV-B Local Model Generation
	IV-C TEE enabled Secure Model Aggregation
	IV-C1 Generation of Encrypted Local Models
	IV-C2 Remote Attestation

	IV-D Blockchain-based Tamperproof Global Model Storage and Distribution
	IV-D1 Verifying Attestation Reports by a Blockchain Node
	IV-D2 Consensus by Blockchain Network

	V Results and Discussion
	V-A Experimental Setup
	V-B Datasets and Model
	V-C Experimental Results and Performance Evaluation
	V-D Discussion

	VI Conclusion
	References

