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Optimizing Federated Learning With Deep
Reinforcement Learning for Digital Twin

Empowered Industrial IoT
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Abstract—The accelerated development of the Industrial
Internet of Things (IIoT) is catalyzing the digitalization of
industrial production to achieve Industry 4.0. In this arti-
cle, we propose a novel digital twin (DT) empowered IIoT
(DTEI) architecture, in which DTs capture the properties of
industrial devices for real-time processing and intelligent
decision making. To alleviate data transmission burden and
privacy leakage, we aim to optimize federated learning (FL)
to construct the DTEI model. Specifically, to cope with the
heterogeneity of IIoT devices, we develop the DTEI-assisted
deep reinforcement learning method for the selection pro-
cess of IIoT devices in FL, especially for selecting IIoT
devices with high utility values. Furthermore, we propose
an asynchronous FL scheme to address the discrete ef-
fects caused by heterogeneous IIoT devices. Experimen-
tal results show that our proposed scheme features faster
convergence and higher training accuracy compared to the
benchmark.

Index Terms—Deep reinforcement learning (DRL), digi-
tal twin (DT), federated learning (FL), Industrial Internet of
Things (IIoT), learning efficiency, real time.

I. INTRODUCTION

DRIVEN by the next generation of information technolo-
gies, including the Internet of Things (IoT), digital twin

(DT), 6G, etc., the Industrial Internet of Things (IIoT) enables
the transformation and development of digital networks and
intelligent enterprises [1], [2]. As an emerging application,
the IIoT has brought disruptive changes and impacts to the
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traditional manufacturing industry by connecting machines, in-
telligent algorithms, and industries. In an intelligent factory,
smart devices enable real-time collection and analysis of data to
make intelligent decisions and optimize production. However,
the IIoT requires distributed intelligent services to change in
real time with the dynamic environment, which is a challenging
task due to the complexity of the industrial environment and the
heterogeneity of IIoT devices [3].

The DT concept was first proposed in [4] and then adopted
by NASA in 2011 for fault diagnosis and maintenance of flight
systems, which attracted great attention. Currently, DT has been
extended to the military, smart cities, manufacturing, and so
on [5], [6]. DT can provide feedback and reflect the bi-directional
dynamic mapping process, which provides a feasible solution to
capture the dynamic industrial environment [7]. However, DT
modeling in IIoT still faces some difficulties. First, DTs need to
be driven by massive data distributed across IIoT devices, but
given privacy, competition, and security issues, integrating data
scattered across various devices is nearly impossible. Second,
the real-time interaction between the DTs and the entity object
requires frequent communications among the devices [8].

Federated learning (FL), a new type of distributed machine
learning paradigm, has great advantages in training private and
heterogeneous data [9]. It has become an advanced paradigm for
realizing distributed training of IIoT [10]. Specifically, FL trains
a model using local computing capability and the device data and
then aggregates the trained model parameters on the server side.
The aggregated parameters serve as the initial parameters for the
next round of local training. Because all client data is only used
for local model training, FL avoids direct data leakage to protect
client privacy and data security. Several advanced FL strategies
were designed to improve model accuracy from training effi-
ciency and privacy protection perspectives [11]–[14].

With the rapid development of IIoT, IIoT devices with wide
geographic distribution vary significantly in their forms, incur-
ring a series of problems such as the heterogeneous data and
the complex network environment. In this article, we propose a
new DT empowered IIoT (DTEI) architecture, where the virtual
models of the physical objects in IIoT are constructed through
capturing the real-time status of the base stations (BSs) and
devices. Then, to improve the training model efficiency of the
IIoT device, a deep reinforcement learning (DRL) assisted FL
framework is proposed. DRL has a natural advantage in solving
high-dimensional decision-making problems. Therefore, DRL
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is used to select some high-efficiency IIoT devices for aggre-
gation [15], [16]. It is also noted that the straggler effect of
heterogeneous IIoT scenarios causes serious training delays in
synchronous FL. To address these problems, we propose an
asynchronous FL framework, which is a DRL-supported device
clustering scheme. The major contributions of this article are
summarized as follows.

1) We propose a new architecture of DTEI to integrate DT
with the IIoT network, which maps a device’s real-time
operating state and behavior to a virtual space. In partic-
ular, we adopt DTEI to capture the characteristics of IIoT
devices for dynamic perception and intelligent decision.

2) We exploit the optimized FL to construct the DTEI model.
Specifically, we develop a DTEI-assisted DRL method
for IIoT device selection to improve the efficiency and
performance of FL.

3) We propose the asynchronous FL, a DRL-based algo-
rithm, to avoid the straggler effect with device selection
and clustering mechanism. Experimental results show
that our proposed scheme significantly outperforms its
benchmark counterparts.

The rest of this article is organized as follows. We discuss the
related work in Section II. Then, Section III presents the system
model and the problem formulation. Next, Section IV introduces
our proposed DRL-assisted asynchronous FL algorithm. In Sec-
tion V, we conduct experimental evaluations. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Federated Learning for Digital Twin

Constructing a DT model requires synchronizing a massive
amount of data, but limited computing resources and commu-
nication capabilities hinder the digitization of the IIoT. In addi-
tion, people’s increasing attention to data security and privacy
has also brought new challenges to DT modeling. Due to the
unique advantages of FL in terms of efficiency and security,
some authors have exploited FL to construct DT models. Lu
et al. [17] proposed the DT edge network, which utilizes FL
to construct the DT model of IIoT devices based on the op-
erating status of IIoT devices. Sun et al. [18] applied DT to
the IIoT architecture, where DT reflects the dynamic properties
of the industrial device to assist FL. Lu et al. [19] proposed
the DT wireless network (DTWN) architecture, which transmits
the real-time data that is processed and calculated at the edge
servers, and the blockchain-empowered FL framework, which
runs in DTWN for cooperative computing and improves the
system’s efficiency and security. However, these works do not
consider the influence of heterogeneous devices and complex
network environments on the accuracy of the training model. We
balance data diversity and global model performance with the
DRL-supported device selection clustering algorithm to address
the heterogeneity challenge in IIoT.

B. Deep Reinforcement Learning for Industrial IoT

The DRL technology has been widely used in IIoT scenar-
ios for computation offloading decision-making and dynamic

resource management due to its advantages in solving problems
with large-scale time-varying features. Dai et al. [8] formulated
the problem of stochastic computation offloading and energy
management as an optimization problem. In order to solve this
optimization problem, the authors transformed the stochastic
programming problem into a deterministic time slot problem by
exploiting the Lyapunov optimization strategy and developed an
asynchronous DRL algorithm to explore the optimal resource
allocation strategy. Guo et al. [15] proposed an FL-based DRL
algorithm to adjust the critical parameters of the IIoT system
for achieving efficient and flexible resource management. Chen
et al. [16] transformed the optimization problem of resource
allocation into a Markov decision process (MDP) to minimize
the average delay of the task and proposed a dynamic resource
management scheme based on DRL to solve the MDP problem.
In this article, we propose the DTEI-assisted DRL scheme for
the selection process of IIoT devices to improve the efficiency
and performance of FL.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Digital Twin Empowered Industrial IoT Model

We introduce DT in actual IIoT scenarios, such as intel-
ligent factory and intelligent transportation. For instance, in
the intelligent transportation system, DT can assist a vehicle
in perceiving vehicle status and real-time road condition in-
formation and provide users with emergency avoidance and
navigation information. The DTEI architecture is illustrated in
Fig. 1. We propose a two-layer heterogeneous network in the
IIoT, which is composed of the physical layer and the DT layer.
The physical layer consists of BSs and client devices such as
intelligent machines, vehicles, and sensors in IIoT environments.
In reality, there are plenty of BSs as shown in Fig. 1, indexed
by B = {1, 2, . . ., B}. The BS is equipped with edge servers
and DRL agents with sufficient communication, calculation, and
artificial intelligence processing capabilities. The client devices
are denoted byN = {1, 2, . . ., N}, which collect data from sen-
sors and applications on the device and save it locally, denoted
by Di with dimension Di = |Di|. The BSs are connected with
the IIoT devices within their coverage through wireless commu-
nications. After training the model locally, the IIoT devices send
the trained local model parameters to the edge server for global
update. The DT of the client device is served by its corresponding
BS, which collects the physical status of the device in real time
and dynamically presents the current training status of the device
in digital form. In time slot t, the DTs of device i and BS b are de-
noted by DTi(t) = {Mi(t), fi(t), Pi(t), Di(t)} and DTb(t) =
{Mb(t), fb(t), Pb(t), Db(t)}, respectively, where Mi(t) and
Mb(t) refer to the current training statuses of device i and BS b,
respectively. fi(t) and fb(t) denote the current computing capa-
bilities of device i and BS b, respectively. Pi(t) and Pb(t) stand
for communication resources of device i and BS b, respectively.
And Di(t) and Db(t) represent the data of device i and BS b,
respectively, which are processed in time slot t.

The proposed DTEI architecture connects IIoT devices at the
physical layer with virtual systems at the DT layer. The DTEI
can not only reflect the characteristics of physical entities in
real time but also simulate and predict the system, which plays a
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Fig. 1. Federated learning for digital twin empowered IIoT.

vital role in the optimization of service quality. In this article, we
exploit DTEI to monitor the dynamic network environment to
provide assistance for the system’s intelligent decision-making.

B. Federated Learning for Digital Twin Empowered IIoT

As illustrated in Fig. 1, we exploit FL to construct the DT
model in DTEI, which can respond according to the status
and rules of the actual device. The client devices collect large
amounts of running data from monitoring the environment in
real time, which are used to train local models. Then, the local
devices upload their model to the edge server, which aggregates
and updates the model parameters and returns them to the local
devices. The loss function of the error between the quantified
estimated value and the true value is denoted by l(w). The
loss function L(wi) of the client device i on dataset Di can
be expressed as

L(wi) =
1
Di

∑
Xj∈Di

l(wi, Xj) (1)

where Xj refers to the sample point of local dataDi. The global
loss function is

L(wg) =
1
N

∑
i∈N

L(wi) (2)

where N ⊆ N indicates that the collection of the selected N
client devices participates in FL, andwg denotes the aggregation
model parameter. The goal of FL is to minimize the following
global loss:

min
w∈Rd

L(wg). (3)

In practical applications, we need to select efficient devices for
some specific applications to construct the DTs because of the
client devices’ heterogeneity and the complex dynamic network
environment.

C. Data Utility Model

In order to select the efficient device, we first evaluate the
utility of device data. When performing FL tasks, the higher

utility of the device’s training data can result in the higher accu-
racy of the local model and the better prediction performance of
the aggregated global model. Therefore, a metric is required to
quantify the device’s potential contribution to task completion.
To quantify the contribution and utility of device data in the
task, we define the prediction accuracy of the local model as the
evaluation metric. Considering the unique characteristics of IIoT
device data in FL, we focus on three crucial factors of device
data, i.e., the data quality, the data size, and the data distribution.
Based on the experimental validation in [20], a large training
data size or high data quality usually contributes to improving
the model’s prediction performance. Let Dmax

i be the maximum
training data size that device i can contribute to task λj , and we
have 0≤ Di≤ Dmax

i . Here, Di = 0 indicates that device i fails
to participate in task λj . Let qi represent the data quality of
the training sample of device i in task λj , and the constraint
conditions are met

qi =

{
0 Device i is invalid

(0, 1] otherwise
(4)

where qi = 1 denotes the highest data quality of device i’s
training sample; qi = 0 indicates that device i is “free-riding” or
malicious, which tricks BS j by providing redundant and fake
local training samples.

In terms of data distribution, it is frequently assumed that
data is independent and identically distributed (i.i.d.) in tradi-
tional centralized learning, but in FL scenarios, data is usually
non-i.i.d. The weight divergence, measured by the earth mover’s
distance (EMD) metric, is the main reason for the decrease in
FL accuracy [21]. A larger EMD value leads to a larger weight
divergence, which will have an adverse effect on the model’s
training. We consider an L-classification task, where the data
sample Di = {xi, yi} of device i is distributed on X × Y and
follows the distribution Fi, in which X and Y indicate the
compact space and the label space, respectively. Here,φi denotes
the EMD of Di. Considering the overall distribution Fa in task
λj , the EMD of device i is defined as

φi =
∑
b∈Y
‖Fi(y = b)− Fa(y = b)‖ (5)
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where Fi(y = b) and Fa(y = b) represent the proportion of the
data sample labeled b in the local data sample of device i and
the proportion of all devices involved in task λj , respectively.
According to the experimental results in [22], the local model
prediction accuracy of device i in task λj is expressed as ρi ∈
[0, 1], which is given by

ρi = μ(Di, qi, φi)

= ν(φi)− α1e
−α2(α3qiDi)

ν(φi)

.
(6)

Here, ν(φi) = α4e
−
(
α5+

φi
α6

)2

< 1, where αk > 0 (1 ≤ k ≤ 6)
is the curve fitting coefficient. The first term ν(φi) reflects the
deterioration of the model performance with the increase of the
EMD φi. The exponential term α1e

−α2(α3qiDi)
ν(φi) indicates

that the larger data size and the higher data quality contribute to
the better performance of the trained model.

D. Energy Consumption Model

In the process of FL, the client device’s energy consumption
includes the consumption of local data, the computation of local
training, and the communication of the global aggregation [23].
The energy consumption of local data arises from the deploy-
ment of smart devices and preprocessing of device data, while
data annotation and cleansing require expensive human efforts.
We denote the number of central processing unit (CPU) cycles
required for device i as εi to execute a unit of the data sample,
and fi indicates the CPU cycle frequency of device i. The local
data consumption Cdata

i is expressed as

Cdata
i = Diεiqif

2
i (7)

where Di > 0 represents the size of device i’s local data. The
computational energy consumed by training device i can be
written as

Ccmp
i = DiεiE

l
imif

2
i (8)

where El
i is the local training epoches’ number, and mi is the

model size. In order to synchronize the model parameters to the
BS, the local device shares the U uplink subchannel on the basis
of orthogonal frequency division multiple access, denoted as a
set H = {1, 2, . . ., H}. Let B be the number of bits of model
parameters. The communication energy consumption of device
i for model aggregation is

Ccom
i =

δB∑H
h=1 Ti,hGlog2(1 +

Pi,hξi,h
L )

(9)

where δ represents the normalization factor of communication
energy consumption, G is the subchannel bandwidth, Ti,h de-
notes the device i’s time fraction allocated on subchannel u,
Pi,h indicates the device i’s transmission power, L represents
the noise power, and ξ refers to the channel power gain.

E. Problem Formulation

The clients’ requirements and geographic distribution of IIoT
devices are usually diverse, resulting in heterogeneous data and
uneven data quality. The main challenges of FL in the field of

IIoT are the inefficiency of data training, the high cost of wireless
communication, and the long time of model aggregation due to
data features. Hence, to enhance the efficiency and accuracy of
model aggregation, the DRL algorithm is adopted to select IIoT
devices with high utility values for training.

In order to formulate the device selection problem, we in-
troduce kt = [κt

i] as the indicator vector of the device selec-
tion state in time slot t. κt

i = 1 means that device i has been
selected/activated, while κt

i = 0 indicates that it has not been
selected/activated. The total energy cost of device i is equal to
the sum of the costs in (7), (8), and (9), expressed as

Ci = Cdata
i + Ccmp

i + Ccom
i

= Diεiqif
2
i +DiεiE

l
imif

2
i +

μB∑H
h=1 Ti,hGlog2(1+

Pi,hξi,h
L )

.
(10)

We define the utility function of device i in time slot t as

ut(κi
t) = ωσρi

t − (1− ω)Ci
t (11)

whereω ∈ (0, 1] is the weight coefficient that balances costs and
benefits, and σ represents the adjustment parameter.

We employ the MDP M = (S,A,P,R, γ) to describe the
combinatorial optimization problem of device selection, where
S denotes the state space,A indicates the action space, P is the
state transition probability,R represents the reward function, and
γ ∈ (0, 1] is the reward discount factor. The devices selection
problem is expressed as follows:

max
kt

ut
(
kt
)

(12)

s.t. κt
i ∈ {0, 1} ∀i (12a)

0 ≤ Di ≤ Dmax
i ∀i (12b)

fmin
i ≤ fi(t) ≤ fmax

i ∀i (12c)

pmin
i ≤ pi(t) ≤ pmax

i ∀i (12d)

Ci(t) ≤ Cthd ∀i. (12e)

Constraint (12a) is the selection status of device i in time slot t.
Constraint (12b) denotes the amount of training data that device i
can contribute to task λj . Constraints (12c) and (12d) represent
the computation resource and transmission power constraints,
respectively. Constraint (12e) indicates the client’s energy con-
sumption limit, where Cthd is determined by the device power
supply.

IV. DRL FOR DEVICE SELECTION BASED ON DT

A. MDP-Based Device Selection Problem

For the sake of addressing the device selection problem in
(12), the system first constructs MDP M = (S,A,P,R, γ)
and adopts the DRL scheme to explore actions. We exploit
DT to monitor the model’s training state and complex network
environment, where the system state s(t) ∈ S is created by
the DT and transmitted to the DRL agent. Specifically, in the
workflow design of the DTEI-assisted DRL system, as shown
in Fig. 2, the agent interacts with the DT in the DRL setting, in
which the agent is the decision-maker for device selection, and
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Fig. 2. Workflow of using DTEI-assisted DRL for devices selection
design.

the DT sets the restrictions, rules, and reward mechanism. In
time slot t, the agent selects the actionκ(t) ∈ Awhen perceiving
the state s(t). After performing this action, the current state is
transferred to the next state s(t+ 1) with the consequence of
the agent obtaining the reward r(t). The DRL aims to maximize
the expected discounted cumulative reward through searching
for the optimal strategy π, which maps state s(t) to action κ(t).
The parameters of the MDP model we defined are described as
follows.

1) State Space: In time slot t, the system states consist
of transmission power p(t) = {pt1, pt2, . . ., pti}, available
computing resource of devices f(t) = {f t

1 , f
t
2 , . . ., f

t
i },

state of the model q(t) = {qt1, qt2, . . ., qti}, and the selec-
tion state of devices k(t− 1) = {κt−1

1 , κt−1
2 , . . ., κt−1

i }.
The current state s(t) ∈ S is expressed as

s(t) = {p(t), f(t),q(t),k(t− 1)}. (13)

2) Action Space: The agent’s action is the device selection
decision in round t. The action κ(t) ∈ A is defined as

k(t) = (κt
1, κ

t
2, . . ., κ

t
i) (14)

where κt
i = 1 indicates that device i is selected as the

device participating in the training, and κt
i = 0 implies

that device i has not been selected during the training
process.

3) Policy: The policy π : S → A denotes the mapping
between the state space and the action space. In round
t, the executed action can be obtained through strategy
κ(t) = π(s(t)). The DT states transition based on the
device selection actions.

4) Reward: The system utilizes the reward function r to
evaluate the action. In round t, the agent implementing
the decision of device selecting adopts action κ(t) in state

s(t). The reward function of action evaluation is

r(s(t), κ(t)) =
1

|∑n
i=1 κi|

n∑
i=1

ut
iκ

t
i

=
1

|∑n
i=1 κi|

n∑
i=1

κt
i

[
ωσρti − (1− ω)Ct

i

]
.

(15)

The effect of performing action κ(t) in round t is eval-
uated by the reward function r(s(t), κ(t)). The total
cumulative reward is expressed as

R =

T∑
t=1

γr(s(t), κ(t)) (16)

where γ ∈ (0, 1] is the reward discount factor.
5) Next State: When finishing performing actionκ(t) in state

s(t), the next state s(t+ 1)⇐ s(t) + π(s(t)) is the pre-
diction obtained through DT operating deep Q-network
(DQN). The new updated state contains p(t+ 1), f(t+
1), q(t+ 1), k(t).

The goal of device selection is to minimize energy consump-
tion and maximize model accuracy in FL. The DRL agent aims
to maximize the cumulative reward by exploring κ as follows:

κ = argmaxE

[
T∑
t=1

γr(s(t), κ(t))

]
. (17)

B. DRL-Based Device Selection Algorithm

Currently, RL is one of the widely adopted approaches to
address dynamic programming problems [24]. The efficiency of
the traditional RL-based methods is relatively low because they
require calculating the value functions of all possible state and
action space pairs. The DRL explores policy and value functions
through deep neural networks (DNN), which is considered as
the most effective method to solve complex MDP models [25].
In our constructed MDP model, the state space and the action
space are continuous and high-dimensional. We address this
MDP problem through the deep deterministic policy gradient
(DDPG), a DRL framework based on actor-critic. The DDPG
contains the actor policy network, critic value function network,
and target network. In addition, the DDPG employs the replay
memory buffer B to store the experience transinformation, in-
cluding the system state s(t), the action κ(t), the corresponding
reward r(s(t), κ(t)), and the next state s(t+ 1), for training the
network.

1) Actor Network: The optimal device selection action can
be provided by the actor network which takes system state s(t)
as input and action κ as output. In order to generate different
actions to explore potential superior policies, random noise is
added to the decision-making mechanism as follows:

κ(t) = π (s(t)|wπ) + ϑ(t) (18)

where wπ is a parameter of the actor network and ϑ(t) is
the random noise. The actor network update adopts the policy
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Algorithm 1: DRL-Based Device Selection Algorithm.
Require: The actor network parameters wπ , the critic
network parameters wQ, the target actor network
parameters wπ′ , the target critic network parameters wQ′ ;

Ensure: Optimized neural network parameters wπ and wQ;
1: Init: Initialize the network parameters wπ , wQ,

wπ′ ← wπ , wQ′ ← wQ; Initialize replay buffer B;
2: for each episode do
3: Initialize the IIoT environment setup and receive the

initial state s(1); Initial random noise ϑ(t);
4: for t = 1, . . ., T do
5: Choose and execute action κ(t), calculate

r(s(t), κ(t)) with (15) and receive s(t+ 1);
6: Store transition (s(t), κ(t), r(t), s(t+ 1)) in B;
7: Sample M experiences (s(i), κ(i), r(i), s(i+ 1))

from B;
8: Calculate the target value y(i) based on (24);
9: Update the actor network π(s|wπ) based on (21);

10: Update the critic network Q(s, κ|wQ) by (26);
11: Update the target network parameters wπ′ and wQ′

based on (27);
12: end for
13: end for

gradient descent, which is defined as

∇wπJ =
1
M

M∑
i=1

[∇κQ(si, κ|wQ)|κ=π(si|wπ)∇wππ(si)
]
(19)

where M is the number of samples of experience data
(s(t), κ(t), r(t), s(t+ 1)).

It is verified that the deterministic policy gradient is equivalent
to the stochastic policy gradient ∇π(κ|s, wπ) [26]. Therefore,
the deterministic strategy gradient is shown as

∇π (κ|s, wπ) ≈ Eπ

[∇κQ(s, κ|wQ)|κ=π(si|wπ)∇wππ(s)
]
.

(20)
In each training iteration, a mini-batch of experiences

(s(t), κ(t), r(t), s(t+ 1)) from replay memory buffer B is ran-
domly sampled to update network parameters wπ , in which the
update formula is

wπ = wπ + ηπ · E [∇κQ(si, κ|wQ)|κ=π(si|wπ)∇wππ(si)
]

(21)
where ηπ is the actor network’s learning rate.

2) Critic Network: For policyπ(s(t)|wπ), we define an state–
action pair value function Q-value Qπ(s(t), κ(t)|wQ), which
represents the expected return of κ(t) taken in s(t). Based
on the Bellman optimality equation, the value function can be
represented as

Qπ
(
s(t), κ(t)|wQ

)
= E

[
r (s(t), κ(t)) + γQ

(
s(t+ 1), π

(
s(t+ 1)|wQ

))]
.
(22)

The critic network evaluates the taken action whose results are
compared with the target value of the target network to ensure
that the training parameter wQ can be updated in the correct

direction. The loss function of the critic network’s training
network parameters is defined as

L(wQ) = E
[(
Qπ

(
s(t), κ(t)|wQ

)− y
)2
]

(23)

whereQπ(s(t), κ(t)|wQ) refers to the return value of actionκ(t)
and y(t) denotes the objective value generated from the target
network through

y(t)=r (s(t), κ(t))+γQ′
(
s(t+ 1), π′

(
s(t+ 1)|wπ′

)
|wQ′

)
(24)

where wπ′ and wQ′ are the target network’s parameters.
Then the loss function’s gradient can be expressed as

∇L(wQ) = E
[
2
(
y −Q

(
s(t), κ(t)|wQ

))∇Q (s(t), κ(t))
]
.

(25)
The critic network’s training method is similar to that of the

actor network where a mini-batch of experience data is randomly
sampled from the replay memory buffer B to update network
parameters, in which the update formula is

wQ = wQ + ηE
[
2
(
yi −Q

(
si, κi|wQ

))∇Q (si, κi)
]

(26)

where η is the critic network’s learning rate.
3) Target Network and Experience Replay: To improve the

robustness of network training, we introduce the target network,
Q′(s(t), κ(t)|wQ′) and π′(s(t)|wπ′), which are the copy net-
work of the critic network and the actor network. The parameters
of the target network are updated as follows:{

wQ′ = τwQ + (1− τ)wQ′

wπ′ = τwπ + (1− τ)wπ′ (27)

where τ ∈ (0, 1] constrains the change of the target value.
Our scheme exploits the replay buffer mechanism in each

training step to ensure that the training data is independently
distributed. The device selection algorithm for the DRL-assisted
FL is presented in Algorithm 1.

C. DRL-Based Asynchronous Federated Learning

Devices in the IIoT application scenario are highly heteroge-
neous, and the slowest device will limit the training speed of the
synchronous learning solution, causing the so-called straggler
effect. Therefore, we propose an asynchronous FL framework
to address this issue. The main idea is to select the optimally
participating devices, classify the devices with different utility
values by cluster, and configure the corresponding aggregator for
each cluster to realize asynchronous learning. In this case, each
cluster can be trained at different local aggregation frequencies.
In addition, we adopt Algorithm 1, based on the actor-critic DRL
framework, to select devices that participate in asynchronous FL.
Our proposed asynchronous FL framework mainly includes the
following four steps.

1) Device selection: For the sake of improving the con-
vergence rate and the model accuracy, a device with
higher utility is selected to participate in FL within the
given communication time. In the beginning, the server
initializes the FL process through broadcasting the global
model and the initialization parameter wini. The server
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then selects the optimal subset of devicesNi ∈ N through
the DRL-based algorithm.

2) Device clustering: We classify devices based on the data
size and computing power by clustering algorithm K-
means [27] and then assign corresponding aggregators to
constitute the local training cluster. Hence, in the identical
cluster of the local model, the training time of the device
is similar which eliminates the straggler effect.

3) Local training: The distributed stochastic gradient de-
scent is used for local training. In round t, the model
wi(t) is trained by the local device i on its dataDi through
calculating the local gradient descent∇Fi(wt−1) accord-
ing to wt−1, as shown in (28). Then, device i transmits
the updated local parameter wi(t) to the corresponding
aggregators for aggregation

wi(t) = w(t)− τ∇Fi(wt−1) (28)

where τ represents the learning rate.
4) Global aggregation: The aggregator obtains the model

trained by the local devices and performs global aggre-
gation by aggregating the local model wi(t) into the
weighted global model w(t) as follows:

w(t) =

∑N
i=1 βiwi(t)∑N

i=1 βi

(29)

where N is the number of training devices and βi denotes
device i’s contribution capability factor to the global
model in iteration t, which is determined by the data utility
model, and

∑
i βi = 1.

The synchronous weighted average training strategy has its
drawbacks. For instance, it ignores the influence of differences
between training data and is prone to overfitting and other prob-
lems. Moreover, the decision-making process usually merely
considers the training accuracy without optimizing the problem
from multidimensions. The proposed asynchronous framework
with the device selection and clustering mechanism eliminates
the straggler effect, effectively avoids inefficient devices and
even malicious attacks, and improves the convergence rate
and learning quality. Although the DRL-based method requires
massive samples for training, it can improve the training effect
and maintain the practical significance through addressing the
problems like resource consumption and sample distribution.

V. EXPERIMENTS

The evaluation of the performance of the proposed asyn-
chronous FL protocol is conducted on the MNIST dataset, which
contains 60 000 training examples and 10 000 testing exam-
ples [28]. We simulate real IIoT applications, such as intelligent
factory instrument recognition, traffic flow monitoring, robot
path exploration, etc., through learning on the image dataset. To
simulate the IIoT settings, we assume that there are 100 smart
devices in the system and consider a scenario where a single BS
is used as an aggregation server. The dataset is divided into 100
pieces, which are allocated to 100 smart devices. The convolu-
tional neural network model, which includes two convolutional
layers, two fully connected layers, and an average pooling layer,

Fig. 3. Evaluation of the data utility function.

is utilized as the local training model. We adopt the state-of-
the-art asynchronous and synchronous FL schemes, i.e., asyn-
chronous federated stochastic gradient descent for vertically
partitioned (AFSGD-VP) [13] and communication-efficient for
federated averaging (CE-FedAvg) [14], as the baselines to eval-
uate the effect of the proposed scheme. In addition, we add two
common baselines, namely centralized training and stand-alone
training. The former is that the centralized dataset training has
the optimal model accuracy, and the latter is that the training
model on the local dataset has poor model accuracy.

We set four different EMD values φ = 0, φ = 0.2, φ = 0.4,
and φ = 0.8 for evaluating the data utility function in (6).
Different EMD values can be obtained by varying the number of
labels and the data size on the local device. The larger EMD value
results in the higher data similarity, which provides low-quality
local model parameters for global aggregation, thereby reducing
the global model accuracy. Here, the data utility is measured
by the accuracy of the model prediction. Fig. 3 shows that
the data utility function in (6) can fit the experimental results
well. When φ = 0 and φ = 0.8, the training model accuracy
is the highest and lowest, respectively. We refer to low-quality
devices as inefficient devices, which have low data utility, poor
communication, and computing capabilities, and an adverse
effect on global aggregation.

In order to evaluate the impact of inefficient devices on FL,
we compare the performance of the proposed schemes with
different numbers of inefficient devices under the condition of
no device selection. Among the 30 devices participating in the
training, we set up 4, 8, and 12 inefficient devices, respectively.
Figs. 4 and 5 show that the performance drops significantly with
the increase of inefficient devices. In particular, when there are
12 inefficient devices in training, the model fails to converge
due to the large proportion of inefficient devices. In addition to
low-quality data, the reason for the rapid deterioration of per-
formance is that devices with poor communication capabilities
quit in the training process. The experimental results show that
optimizing the selection of training devices plays an important
role in improving the system’s performance.

We evaluate the proposed scheme’s performance on different
numbers of training devices. To verify the developed device
selection scheme’s performance, we established three training
device groups, 30, 50, and 70, with 10 inefficient devices in
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Fig. 4. Accuracy of different numbers of inefficient devices.

Fig. 5. Loss of different numbers of inefficient devices.

Fig. 6. Accuracy of different numbers of training devices.

each group. Then, the proposed device selection algorithm is
evaluated on the three groups of training devices and compared
with the first group of devices without using the device selection
algorithm. Figs. 6 and 7 show the prediction accuracy and the
loss of the training model, respectively. The experimental results
demonstrate that the scheme has excellent convergence and
accuracy. As the number of devices involved increases from 30 to
50 to 70, the model’s accuracy increases slightly. This is because
a larger number of utility devices involved in the training results
in a higher quality model. The comparison result of whether
to adopt device selection or not shows that the device selection
scheme can eliminate the adverse effect of the inefficient device
on the training results.

Fig. 7. Loss of different numbers of training devices.

Fig. 8. Global accuracy of different benchmark schemes.

Fig. 9. Training time of different benchmark schemes.

The proposed scheme is compared with the baseline methods,
and the accurate comparison of the resulting model is shown in
Fig. 8. The accuracy of the centralized model is the highest,
while the model accuracy of the stand-alone training methods
is the lowest. Due to the insufficient number of samples and the
single type of samples used for local training, the performance
of the local optimal solution is lower than that of the global
optimal solution. Our proposed scheme’s performance is close
to that of centralized training and better than AFSGD-VP and
CE-FedAvg. In addition, our scheme requires fewer iterations
than AFSGD-VP and CE-FedAvg to reach its optimum. How-
ever, the superior performance of concentrated training comes
at the expense of security. The asynchronous training method
AFSGD-VP ignores the influence of the inefficient device, while
the synchronous training method CE-FedAvg is affected by
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the straggler effect. Our method takes these two aspects into
consideration, resulting in a better performance. In addition,
we evaluate our proposed scheme in terms of time cost and a
comparison with the baseline scheme, as shown in Fig. 9. As
seen from the figure, our proposed scheme is superior to other
methods in the case of minimal training time. This is because
the device selection and clustering mechanism in our scheme
eliminate the straggler effect and effectively avoid inefficient
devices, through which the convergence speed and learning
quality are improved.

VI. CONCLUSION

This article proposed the DTEI architecture which employs
DTs in IIoT for real-time perception and intelligent decision-
making. We exploited FL to construct DTs model on the basis
of the operating state and the behavior of devices. With the ob-
jective of improving the model training efficiency and accuracy
of the IIoT device, we developed a DRL-assisted FL framework.
The DRL is used to select some high-efficiency IIoT devices for
aggregation. In addition, the straggler effects of heterogeneous
IIoT scenarios can be eliminated by our proposed asynchronous
FL framework. Experimental results were presented to show
that the proposed scheme performs better than the benchmark
scheme in aspects of convergence rate and training accuracy.
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