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Healthcare Data Quality Assessment for Cybersecurity Intelligence 

Yang Li, Jiachen Yang, Senior Member, IEEE, Zhuo Zhang, Jiabao Wen, and Prabhat Kumar 

 

Abstract—Considering the efficiency and security of healthcare data processing, indiscriminate data 

collection, annotation, and transmission are unwise. In this work, we propose the normalized double entropy 

(NDE) method to assess image data quality in the form of meta-task. In specific, the probability entropy and 

distance entropy are both adopted and normalized to evaluate the data quality. The experimental results show 

the stable ability of the NDE to distinguish good and bad data in terms of information contribution. Further, 

the model’s diagnostic performances driven by selected good and bad data are compared, and a clear gap 

exists between them under the premise of the same amount of data. Screening 70% of the dataset can achieve 

almost the same accuracy as that based on all data. This work focuses on healthcare data quality and data 

redundancy and provides a practical evaluation tool to facilitate the identification and collection of valuable 

data, which is beneficial to improve efficiency and protect cybersecurity in healthcare systems. 

Index Terms—Data mining, Few-shot, Feature distribution, Information entropy, Meta-task.  
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I. Introduction 

WIRELESS intelligent healthcare system uses modern communication technology to provide long-distance 

medical services, allowing access to a large amount of medical data [1]. The healthcare data plays an 

essential role in patient treatment, diagnosis, and decision purpose, including current treatments, health 

history, medication allergies, and insurance information. Due to the explosion of healthcare data, the 

cybersecurity of patient privacy in a communication network cannot be ignored. In terms of medical images, 

the healthcare image quality assessment is helpful to support cybersecurity intelligence in healthcare 

systems. Given many medical images from different patients with the same disease, these images are very 

similar in appearance and feature, and they are redundant for training an intelligent diagnostic network. Since 

each data contains private patient information, it is better not to annotate and transmit medical data with less 

information contribution in the wireless network, protecting the data privacy in healthcare systems. 

Healthcare image recognition and intelligent diagnosis can alleviate the expert doctors’ burden of massive 

medical data processing [2], [3]. In the past decade, deep learning and intelligent computing have developed 

rapidly and made remarkable achievements in the image-based recognition areas. For example, timely and 

early skin lesion image detection is essential for suitable treatment, but manual detection is time-consuming 

and heavily relied on experience. So, the massive skin images are collected with the patient information, 

which is used to train the deep classification models to assist doctors to seek automatic and accurate 

diagnoses [4].  

To address the data cybersecurity problem in healthcare systems and protect patient privacy, there are two 

branches. One is the security protocol related, such as intrusion detection, firewalls, digital forensics, 

anti-virus software, access control, and encryption [5]. The other is the few-shot learning method, which aims 

to train the neural network based on limited labeled data [6]-[8]. Inspired by the idea of few-shot learning, we 

focus on the healthcare data quality assessment to reduce the use of unnecessary data with low information 

contribution, aiming at protecting privacy and security in healthcare systems. In general, we summarize our 

core contributions in this work as follows. 



 

1) A healthcare privacy protection approach based on data quality assessment is proposed. Different from the 

perceptual and subjective image quality assessment, this work focuses on the data information contribution. 

If some data has high information contribution to improve the model performance of intelligent healthcare 

systems, it should be collected and labeled; otherwise, it is better not to annotate and transmit online to 

protect patient privacy. 

2) A normalized double entropy (NDE) method is proposed to assess healthcare image quality, which 

considers the information entropy based on predicted probabilities and the distance entropy based on feature 

distribution, further normalizing the double entropy value to a standard scope to facilitate comparative 

analysis. 

3) Meta-task experiments are carried out to verify the applicability and stability of the proposed NDE method 

under different test sets. Further, the feature distribution of data with different information contributions is 

visualized. The NDE method is compared with the single entropy method, and the data redundancy and 

performance comparison based on good and bad data are conducted. 

The rest parts are arranged as follows. The related works are described in Section II. Section III presents the 

framework and proposed method, which consists of the probability entropy and distance entropy. Further, the 

analysis and discussions of the results are presented in Section IV. Finally, the conclusions are put in Section 

V. 

II. Related Works 

A. Medical image recognition and diagnosis 

Medical image recognition and diagnosis rely on deep learning and computer vision technologies, which 

extract the image feature using convolutional neural networks (CNN) and classify benign or malignant. 

Zhang et al. [9] proposed a model to obtain the multimodal feature mapping between medical images and 

reports and then trained an end-to-end network for interpretable medical diagnosis. Tournier et al. [10] 

designed a software package named MRtrix3, which is commonly used for medical image processing and 

visualization. Balakrishnan et al. [11] presented a deformable and pairwise image registration framework for 



 

medical images. The used network was trained based on auxiliary data to improve testing registration 

accuracy. Ghalejoogh et al. [12] used a meta-learning method to conduct the classification of skin melanoma, 

which included two basic classifiers and their fused version. Gu et al. [13] designed a network model based 

on an encoder, extractor, and decoder to extract better high-level features for medical images in terms of 

image segmentation tasks. Karimi et al. [14] used three kinds of label noise to analyze the commonly used 

medical image datasets and designed many approaches to reduce the negative influence of label noise on 

medical image recognition. 

In this work, the focus is not to design model algorithms to improve recognition accuracy but to analyze data 

differences and collection necessity from the viewpoint of data information contribution.  

B. Few-shot Learning 

Few-shot learning, also called low-shot learning, aims to use limited labeled data to conduct the computer 

vision tasks, such as recognition, detection, and segmentation. Hu et al. [15] used the data augmentation 

method to generate more images based on the generative adversarial network, and the augmented images 

were further adopted to train the diseases classification model. Feng et al. [16] proposed the MPrNet to 

conduct the few-shot segmentation based on only a few labeled samples, which were called support data. The 

support data was directly used to guide the segmentation of query images. Argüeso et al. [17] set the 

PlantVillage dataset as a source and target domains with different classes. Then the few-shot classification 

task was conducted using transfer learning. Li et al. [18] used the triplet loss to train the few-shot 

classification model, the triplet samples were combined from the few original data, and the designed model 

was finally optimized and deployed on FPGA. Li et al. [19] established the few-shot classification dataset, 

considered the domain effect, provided meta-learning methods, and analyzed many impact factors on the 

performance. Li et al. [20] used semi-supervised learning to overcome the shortage of few data, many pseudo 

labels are obtained by the adaptive threshold to supplement the deficiency of initial labeled data. Tang et al. 

[21] proposed a few-shot segmentation framework for healthcare images based on the prototypical network. 



 

Singh et al. [22] designed the MetaMed model based on the meta-learning method to solve the few-shot 

medical diseases recognition, and was tested on several medical image datasets. 

However, the current few-shot learning community mainly focuses on the few data augmentation and 

algorithm design, ignoring the data differences in information contribution. Many studies adopt random 

sampling to analyze few-shot problems. In this work, we tend to focus on how to identify good data with high 

information contribution in the few-shot scenarios. 

C. Image Quality Assessment 

Perceptual image quality assessment (IQA) mainly focuses on the subject feelings of human beings about 

pixel distortion and visual comfort, which can be adopted in many specific applications. Zhu et al. [23] used 

the meta-learning method to carry out the no-reference IQA. Many different tasks with various image 

distortions were collected. Then, these images were evaluated by some human volunteers to provide the meta 

knowledge. Yang et al. [24] designed a no-reference evaluation metric for the screen content images, which 

consisted of two networks. The method obtained good consistency with the human visual system in several 

datasets. Hosu et al. [25] created a large-scale dataset, named KonIQ-10k, including over ten thousand 

images, considering different image distortions and various indicators. Sim et al. [26] used deep similarity 

and local similarity to conduct the full reference IQA for 2D images and compared the similarity between 

original and distorted deep feature maps from trained CNN. Yang et al. [27] used the stacked autoencoders to 

design a blind IQA method for screen content images, where the scores of two autoencoders were weighted 

and summed as the perceptual quality score. Li et al. [28], [29] focused on the high-level AI task-oriented 

IQA and proposed several assessment methods based on information entropy and feature embedding to 

improve model performance. 

This study is not focused on subjective visual perception but explores the high-level task-oriented data 

quality evaluation from the perspective of information contribution based on our previous work. 

III. PROPOSED METHODOLOGY 



 

The overall framework of this study is shown in Fig .1, which consists of two fundamental steps. First, the 

ResNet18 model was used and finetuned based on the base data, which refers to those existing labeled 

healthcare data in storage. The reason not to select a deeper model is that the shallow network has been 

shown with a good ability to extract image features [30]. The skin medical images in the base data set are fed 

to the model, and the Global Average Pool (GAP) layer is used to obtain the high dimensional feature vector 

to represent the input image. Then, a classifier is trained based on the feature vectors to conduct the diagnosis. 

Second, to protect patient privacy, the unlabeled patient data with patient privacy are evaluated by the 

proposed normalized double entropy (NDE) metric, only the necessary data with high information 

contribution is collected, annotated, and transmitted in wireless communication network. In this way, 

through the healthcare image quality assessment, the amount of medical image data transmission is reduced, 

the privacy security is protected, and the learning is more efficient. 

 

Fig. 1.  The overall framework. 

A. Probability entropy 

The probability entropy refers to the information entropy calculated based on the model’s predicted 

probabilities [28]. For skin images, the input image is fed to a trained model to get the predicted probability to 



 

belong to each class, denoted as pi. And K corresponds to the number of categories. In this case, the 

probability entropy Ep is expressed in (1). 
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                                                                      (1) 

Equation (1) represents the whole confidence of the trained model on the image to judge its category. As 

known, when each predicted probability is equal, the entropy is the largest value. In this condition, the current 

model is completely not familiar with it, thus this kind of data is the informative data with high information 

contribution to improving the model performance. Since the total number of target classes varies, the scope of 

the calculated value of entropy in (1) is not fixed, which is not a coinvent to evaluate. In this paper, we 

proposed the normalized probability entropy Ep*, expressed in (2). 
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According to the Maximum Entropy Theory, the maximum value in (2) appears when the prediction 

probability to belong to each class pi is the same, refer to as 1/K, and the maximum value of the normalized 

probability entropy will be 1. So, the full range of normalized probability entropy values is 0 to 1. 

B. Distance entropy 

Distance entropy refers to the information entropy calculated based on the distance similarity between new 

data and each center of categories, used to assess the information contribution [29]. The schematic diagram is 

shown in Fig. 2. 

 

Fig. 2.  The schematic diagram of data information contribution. 



 

The colored square dots represent labeled samples in base data and the colored triangles are the prototypes of 

the classes. Here, Sc denotes the samples in the class c, and xs denotes a sample in the class c. The prototype 

of each category, denoted as wc, is computed via taking the mean vector, as (3). Where 
f  stands for the 

feature extractor and converts input samples into feature vectors. Here, the ResNet-18 is used as the feature 

extractor. 
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 Then, the distance function is used to measure the similarity between the feature vectors of new data and per 

class prototype, which is denoted as di. The commonly used distance metrics are Euclidean distance and 

Cosine distance. Given two feature vectors A (a1, a2, ..., an) and B (b1, b2, ..., bn), the Euclidean and Cosine 

distances are calculated as (4) and (5), respectively. 
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As known, the Cosine similarity metric is used to measure the direction similarity. According to Fig. 2, the 

spatial feature distribution cannot well be explained by vector direction. Thus, in this work, we use the 

Euclidean distance to conduct the distance entropy. In specific, the similarity distance di is converted to the 

proportional distribution S(di) according to the exponential transformation, written as (6). So, the original 

distance entropy Ed is shown as (7). 
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According to the Maximum Entropy Theory, the maximum value in (7) appears when the distance to each 

class is the same. To normalize the distance entropy, the formula is revised as (8). 
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In the case of normalized distance entropy, the value range is from 0 to 1. 

C. Proposed NDE 

The proposed normalized double entropy (NDE) includes two entropy modules, i.e., the normalized 

probability entropy and normalized distance entropy, expressed in (2) and (8). The combination of double 

entropy is helpful to the quality evaluation of data information, the data uncertainty and space feature 

distribution can be simultaneously considered. 

To obtain a standard data quality score from 0 to 1, the NDE formula is shown as (9). In this study, we set 

0.5   . 

 * *NDE  1p dE E        ，
                                                     (9) 

The large NDE score means that the data is more informative to the current model, with high data information 

contribution. Otherwise, if the quality score is low, the corresponding data is redundant and not necessary to 

collect, annotate, and transmit via a network. Although such data is less helpful to improve model 

performance, it still faces the risk of privacy disclosure of patient data during transmission. 

IV. Results and Analysis 

A. Experimental Setup 

To verify the effectiveness and stability of the proposed NDE method, the meta-task experimental approach 

is adopted in this work. In specific, we use the skin lesion images to conduct the experiment. As unbalanced 

training data has a non-negligible impact on the training results of deep learning model, to fairly compare the 

effect of data information contribution without any specially designed loss function, the images from the 

ISIC 2019 are augmented to establish a balanced dataset. Some image samples are shown in Fig. 3, including 



 

image rotation, scaling, mirroring, and other means. Moreover, the balanced dataset well supports the 

analysis of performance differences under the same data size in each class. 

 

Fig. 3.  Some image samples in the ISIC dataset. 

The meta-task experimental approach means that several different tasks are prepared, where each task has 

different test data. The reason to adopt the meta-task setup is that the index of the deep learning model is 

based on the performance of test sets, but there is a contingency in a single test set. If the proposed method 

has stable performance in different test sets, it indicates that the proposed method can have better 

generalization. In this work, the number of meta tasks is ten, the used ISIC dataset consists of 5 classes. Each 

category has 3000 images, with a uniform image size of 224*224*3. The random split of the dataset is 2500 

samples as the train set and the rest 500 samples as the test set. Note that, according to the meta-task setting, 

there are ten different test sets. The labels in the dataset include melanoma (MEL), melanocytic nevus (NV), 

basal cell carcinoma (BCC), actinic keratosis (AK), and benign keratosis (BKL). The experiments are 

performed based on a Linux computer with a GPU of NVIDIA TITAN Xp, whose memory is 12GB. The 

software tool is Jupyter Notebook, using Python language with packages of Keras (2.2.4), TensorFlow 

(1.12.0), Numpy (1.19.2), and OpenCV (4.1). 

Here, we briefly describe the experimental steps as follows. First, establish ten tasks and randomly split the 

dataset as train set and test set in each task. Second, randomly choose the base data from the labeled train set, 

and the ratio is 10%. Then, finetune the ResNet-18 model based on the base data, and the rest data in the train 

set is regarded as a pool set. Further, the samples in the pool set are evaluated by the proposed NDE, utilizing 

the model’s predicted probabilities and feature distribution. Finally, the data information contribution is 

distinguished by the value of NDE, and the comparison experiments are carried out based on good data with 

high information contribution and bad data with low information contribution. 

B. Performance Analysis 



 

The results of meta-task testing accuracy are analyzed in this section, based on training data with different 

information contribution assessed by the proposed NDE metric. Table I presents the average testing accuracy 

of ten different tasks. Each row in Table I represents an iterative update of the model under data addition. The 

model parameters in the latter iteration are initialed as the trained parameters in the previous iteration and 

each iteration has 100 epochs. The cross-entropy loss function and the stochastic gradient descent method are 

used to train the model, and the test set is evaluated after the model converges. The data with large NDE score 

stands for good data with high information contribution, which would be helpful to improve the model 

performance. Otherwise, the small NDE sore means bad data with low information contribution. Through the 

performance comparison between the second and last columns, the contrast gap between good and bad data 

from the perspective of information contribution is obvious. For instance, when using half of the train set, 

there exists a 6% difference in the average testing accuracy between selected good and bad data, according to 

the proposed NDE.  

TABLE I 

Meta-task average testing accuracy based on selected data 

Percentage of selected training 

data 

Select according to large NDE 

score 

Select according to small NDE 

score 

10% 0.754 0.754 

20% 0.787 0.762 

30% 0.816 0.77 

40% 0.843 0.785 

50% 0.861 0.795 

60% 0.871 0.811 

70% 0.876 0.833 

80% 0.877 0.848 



 

90% 0.878 0.864 

100% 0.879 0.879 

 

The comparison of the above experimental results is plotted in Fig. 4, where the beginning and end points of 

the two curves overlap, not by accident. The reason is that in these two cases, the used training data are the 

same, i.e., one is the initial base data, and the other is all data in the train set. 

 

Fig. 4.  The comparison of experimental results according to NDE. 

The experimental results show that the proposed NDE is a suitable metric to assess data quality in terms of 

information contribution, targeted at the model performance improvement. A large NDE score means that the 

data has more uncertainty and difference in high-dimensional space feature distribution. Otherwise, a small 

NDE score means that the data brings less new information and the model has been already familiar with it. 

In this case, the collection and annotation of the data are of little significance and increase the cybersecurity 

risk during wireless transmission. 

Besides, the above experimental results also shed light on data redundancy, which is worth seriously thinking 

about to achieve a trade-off between medical data quantity and quality. In Fig. 4, the good data with high 

information contribution help to improve model performance quickly, and tend to be flat after 70%, 

indicating the existence of large redundancy. However, low-information samples have a poor effect and weak 



 

contribution in the initial stage but improve quickly in the later stage. But note that, this is because the 

remaining data are relatively high information, due to the experimental setting. 

As known, the stability of designed algorithms is very important for practical applications. In this work, the 

NDE method is proposed and meta-task experiments are carried out. We analyze ten different experiments 

with different test sets and plot the accuracy distribution in terms of the box diagram, shown in Fig. 5 and Fig. 

6, corresponding to the large and small NDE score respectively. 

 

Fig. 5.  The box plot of meta-task testing accuracy under large NDE. 

 

Fig. 6.  The box plot of meta-task testing accuracy under small NDE. 

The box plots indicate that the proposed NDE metric is stable and effective when faced with different test 

samples. All the trends in meta tasks are consistent with those in Fig. 4, and the difference is some specific 



 

values, which is due to the differences in the composition of experimental data each time. Further, the middle 

red line of the boxes is the median of the data and represents the average level of the meta-task performance. 

This finding can guide the scheme of the limited amount of high-quality data collection rather than roughly 

pursuing a large size dataset. 

C. Discussion 

In this section, the ablation experiments, visualizations, and limitations are carried out to give an in-depth 

discussion of this work. 

Ablation: In this work, the proposed NDE metric consists of two entropy modules and shows the good 

ability of quality assessment. To explore the influence of different parts in the proposed method, a 

comparative experiment with single entropy is carried out. According to the same experimental setting, the 

average testing accuracies of ten tasks are shown in TABLE II. In particular, the single probability entropy 

(SPE) and single distance entropy (SDE) are used and compared with normalized double entropy (NDE) to 

select good data in terms of high information contribution. 

TABLE II 

Ablation results based on good selected data 

Percentage of selected training 

data 

NDE SPE SDE 

10% 0.754 0.754 0.754 

20% 0.787 0.774 0.776 

30% 0.816 0.809 0.813 

40% 0.843 0.836 0.839 

50% 0.861 0.855 0.857 

60% 0.871 0.866 0.868 

70% 0.876 0.875 0.874 



 

80% 0.877 0.877 0.877 

90% 0.878 0.878 0.878 

100% 0.879 0.879 0.879 

 

The results indicate that the single module is also effective to distinguish the data information contribution. 

Because the proposed NDE metric considers both the uncertainty of prediction and the diversity of feature 

distribution, it has better performance than the single module. However, all the three methods illustrate the 

objectivity of data redundancy. 

Visualizations: To explain the effect of NDE more intuitively and explore the metric’s working basis, we 

conduct the visualization of the feature distribution of selected good and bad samples in terms of data 

information contribution. In specific, the feature embeddings obtained from the trained model are some 

512-dimensional vectors. The t-distributed stochastic neighbor embedding (t-SNE) method is further used to 

reduce the dimension of feature embeddings to 2 dimensions for easy visualization. 

Since the experiments are conducted by iterative addition, the intermediate step is selected as an example, 

i.e., some existing samples in all classes are represented by colored dots, and supplementary data are assessed 

and screened based on the NDE, denoted by black stars. The good and bad samples in terms of data 

information contribution selected by the NDE are shown in Fig. 7 and Fig. 8, respectively. 

 

Fig. 7.  The distribution visualization of screened good samples. 



 

 

Fig. 8.  The distribution visualization of screened bad samples. 

Through the above visual comparison, it can be found that when NDE screens high informative samples, it 

tends to look for data with different distributions, which have little overlap with the existing distribution. In 

other words, the model is not familiar with these high informative samples and needs to re-learn and map 

them to a new distribution. However, the screened low informative data by NDE fall in the existing 

distribution, bringing relatively little information contribution. There will be many application scenarios of 

this phenomenon in the actual medical data processing, such as screening limited high informative medical 

data to reduce large-scale information leakage and improve model learning efficiency. 

Limitations: In order to implement healthcare data quality assessment to reduce the collection and 

transmission of low informative and unnecessary data, this work adopts the balanced dataset setting to 

evaluate information contribution under the premise of the same data size. But in practical applications, the 

data corresponding to those rare or malignant diseases is certainly unbalanced, and this case will be further 

analyzed in our future work. In addition, the same coefficient is adopted in the NDE equation, that is, the 

weight of the probability entropy and the distance entropy is the same. In the future, this issue should be 

further optimized to discuss the influence of different weighted coefficients. 

V. Conclusion 

The digital and intelligent healthcare systems have been generating lots of healthcare data and bringing many 

challenges to cybersecurity and privacy. In this study, we focus on healthcare data quality assessment in 



 

terms of information contribution to reduce the annotation and wireless transmission of low informative and 

unnecessary data. The normalized double entropy (NDE) method is proposed and many experiments are 

conducted in the form of meta-task to verify the generalization and validity of the NDE method to screen 

good and bad data from the perspective of information contribution. The results show that the NDE method is 

stable and effective, and exceeds that of the single entropy module. Furthermore, the feature distribution 

visualization of screened results is also carried out to intuitively analyze the principle of NDE. The 

performance comparison between screened high and low informative data has a clear gap, which illustrates 

the serious redundancy of the dataset. Finally, this work makes a positive attempt to call for the community to 

pay more attention to the issues of data quality in different aspects. 
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