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GCN and GRU based Intelligent Model for
Temperature Prediction of Local Heating

Surfaces
Wanghu Chen, Chenhan Zhai, Xin Wang, Jing Li, Pengbo Lv and Chen Liu

Abstract— A boiler heating surface is composed of hun-
dreds of tubes, whose temperatures may be different be-
cause of their positions, the influences of attempering wa-
ter and flue gas. Using a criteria based on DBI, we propose
to partition a heating surface into local ones, whose interac-
tions in temperature are represented as a weighted Heating
Surface Graph (HSG) at each point of time, and their current
features are embedded in the HSG’s nodes. Then, a local
heating surface temperature prediction model WGCN-GRU
is proposed. Graph Convolutional Network (GCNs) receive
a series of HSGs, and extract the features of local heating
surfaces and their spatial dependences in a time window.
Features output by GCNs are finally directed to Gated
Recurrent Units (GRUs) for temperature predictions. Exper-
iments show that WGCN-GRU can averagely maintain the
prediction error below 0.5°C. Compared with other models,
it can reduce the errors by a rate from 5.6% to 46.8%, and
shows advantages in RMSE and R2. It also shows that the
node-to-node weights for GCN can reduce the prediction
error by 11.4%.

Index Terms— Heating Surface, Temperature Prediction,
Spatial-Temporal Features, Graph Convolutional Network
(GCN), Gated Recurrent Unit (GRU)

I. INTRODUCTION

DUE to the increasing demands on electric power as well
as its efficient, safe and clean production, intelligent

technologies are expected to play more important roles in
the production management of thermal power plants. As
to thermal power production, boilers are indispensable for
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providing heat energy, which is converted into mechanical
energy in the steam turbine to drive the electricity generator.

As illustrated in Fig. 1, when a coal-fired supercritical boiler
begins to work, pulverized coal is pumped into the furnace
with air [1]. As the burning of pulverized coal in the furnace,
Water Cooling Wall keeps absorbing the radiant heat. Saturated
steam produced in the wall with water evaporation will pass
through the tubes of a series of superheaters in succession.
During the process, the high temperature flue gas produced by
the pulverized coal combustion keeps transferring heat to the
tube surfaces of these superheaters, and the steam transported
in their tubes will be heated further. When leaving from High
Temperature (HT) Superheater, the high temperature steam
will be superheated and transferred to High Pressure Turbine
(HPT) for electricity production. To improve the efficiency and
emission reduction, after being reheated by Low Temperature
Reheater (LTR) and High Temperature Reheater (HTR), the
low temperature and pressure steam left in HPT will be
transferred to Intermedia Pressure Turbines (IPT) again.

Fig. 1: Composition and working principles of a 600MW
supercritical boiler.

Both superheater and reheater are also named heating sur-
face because they absorb the radiant heat of combustion and
the conduction heat of flue gas. During the production, a
reasonable temperature control of the heating surface is crit-
ical, especially that of High Temperature Superheater, which
supplies superheated steam for HPT. On the one hand, if the
heating surface temperature is too high, tubes and inlets of
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HPT may be damaged. In the worst case, this damage may
cause big disasters due to tube bursts. On the other hand, too
low temperature can greatly affect the efficiency of electricity
production and increase harmful gas emission [2]. So, it is
important to maintain a high temperature as far as possible for
a heating surface but avoiding overheating. During production,
the adjustment of attempering water spray (Fig. 2) and flue
gas flow plays an important role in temperature control of the
heating surface.

Fig. 2: Attempering water flows among various superheaters
in a boiler.

The prediction of heating surface temperature is critical for
the control systems to perform a better adjustment in attemper-
ing water, flue gas and so on [2]. So, model predictive control
of heating surface temperature has drawn wide attention in
recent years [3]. The parameters of a working boiler, such
as tube temperature, attempering water spray and flue gas
flow, can be gathered by various sensors [1], and are recorded
as multivariate time series. Therefore, the paper intends to
explore a data-driven approach to predict the temperature of
heating surfaces depending on multivariate time series.

However, a superheater usually contains hundreds of tubes
arranged as platens. These tubes often have different real-time
temperatures because of the delayed effects of attempering
water and the uneven temperature field of flue gas in the
boiler. What’s more, as time going, tubes in various inner
spaces of a boiler may be in different conditions owing to their
erosion, oxidation and so on. Assuming it is time-consuming
to predict the temperature of hundreds of tubes in one heating
surface, we can partition the heating surface into local ones
and predict the temperature of each local heating surface. From
the other aspect, we found that, when the temperature of one
local heating surface rises or drops, so do some of others. We
call such phenomena as spatial dependencies, which can be
exploited to improve the temperature prediction. Assuming the
average temperature of a heating surface keeps in a reasonable
range, however, some of its tubes may become overheating
so that disasters still could be caused. On the contrary, when
the temperature of one of its tubes is too low, it may have
been damaged. So, in the paper, the highest, mean and lowest
temperature of all tubes in a local heating surface will be
predicted. To be simple, we call them the highest, mean and
lowest temperature of a local heating surface.

Therefore, this paper focuses on the prediction of local
heating surface temperature by combining temporal features of
multivariate time series and spatial dependency features among
various local heating surfaces. It is well known that the Graph
Convolutional Network (GCN) [4] is widely used in graph

learning. It uses a graph convolution operation to obtain node
embeddings by gathering the embeddings of its neighbours.
In reality, the relations among local heating surfaces can be
represented as a graph, which is called Heating Surface Graph
(HSG) in the paper. We consider the partition of a heating
surface as its tube clustering, and the number of nodes of a
HSG will be determined based on a policy to minimize Davies-
Bouldin Index (DBI), which is widely used to evaluate the
effect of clustering. Besides, a Gated Recurrent Unit (GRU)
is also be verified to have advantages in learning long-term
dependencies in time series with its reset and update gate.
Compared with Long Short-Term Memory (LSTM), a GRU
has simpler structure and fewer parameters. Based on these,
we explore the temperature prediction approaches for local
heating surfaces based on GCN and GRU in this paper.

The expected contributions include: (1) A DBI based policy
is proposed to partition a heating surface into local ones,
whose interactions of temperature varying are represented with
a HSG in each time window and features are embedded
into each HSG node. (2) By receiving a series of HSGs,
weighted and directed GCNs are proposed to extract the
features of local heating surfaces and their spatial dependences
in a time window, and their output features are delivered to
GRUs for temperature predictions. (3) The proposed model
WGCN-GRU is applied in real-world scenarios to predict the
temperature of local heating surfaces of thermal boilers based
on history temperature, attempering water, flue gases and so
on. Experiments show that, compared with traditional models,
the proposed model has great advantages.

II. RELATED WORK

Temperature control of heating surfaces is critical in the
operation of boiler-turbine units. In past decades, various
physics-based modelling methods, especially the computa-
tional fluid dynamics modelling methodology, are used to
reveal the properties of superheated steam temperature [5].
A predictive controller is proposed in [2] to control the
superheater steam temperature. For improving the superheater
steam temperature control performance, a multi-objective op-
timization method is introduced in [6]. A generalized pre-
dictive control method based on a neuro-fuzzy network is
developed for an ultra-supercritical power plant to improve
control performance [7]. Physics-based methods can be used
to explain the fundamental reasons for some phenomena.
However, in practice, owing to sophisticated calculations with
massive parameters adjustment and the non-linearity, high-
order dynamics and disturbance variety of the control systems,
physics-based methods have certain limitations in real-time
predictions. So, in this paper, based on real-world scenarios,
we focus on the data-driven temperature prediction of heating
surfaces, which can help the control systems perform better.

Data-driven models can establish the nonlinear dynamic
relationship between input and output variables directly by
maximizing the conditional probability distribution, without
the need for detailed mechanism knowledge [8]. As to the
prediction of heating surface temperature, it is important to
mimic the relationship between heating surface temperature
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and its working conditions, such as attempering water, flue gas
and so on. Usually, parameters about such working conditions
of a boiler are recorded as multivariate time series. In many
domains, multivariate time series have been applied to predict
and infer real-world events based on machine learning models,
including Support Vector Regression [9], Random Forest [10].
As a result, heating surface temperature prediction based on
multivariate time series seems to be a feasible way. In [11], an
Multi-Layer Perceptron (MLP) like ANN-based temperature
prediction model for the steam temperature of the attemperator
is explored. Although these approaches are verified to be
effective, they have not given enough considerations to the
temporal dependency of features which usually reflect the
variation laws covered in the time series.

Recurrent neural networks (RNNs) are widely used for
processing sequential data [12]. Its derived models, LSTM
and GRU, can all avoid gradient vanishing and exploding
in model training, which have good performance in learning
long-term patterns [12], [13]. As the development in deep
learning, LSTM and GRU are widely applied in time series
prediction [14]. In [15], a model named T-LSTM is pro-
posed to exploit the local information in weather time series
prediction. Combining Empirical Model Decomposition with
LSTM, a financial time series forecasting model is proposed in
[16]. [17] proposed a novel hybrid model based on GRU and
variational model decomposition for wind speed interval pre-
diction. A recurrent neural network for water quality prediction
called FM-GRU is presented in [18] based on a sequence-
to-sequence (seq2seq) framework. In recent research, [19]
proposed a data-driven ensemble model for the temperature
prediction of superheated steam. A bidirectional GRU based
approach with temporal self-attention mechanism is proposed
to predict remaining useful life in the prognostics health
management tasks [20]. In [21], a temperature forecasting
approach for stored grain based on attention mechanism and
LSTM is proposed. Its spatiotemporal feature extraction shows
great advantages in improving forecasting accuracy. In [22],
Residual Convolutional Neural Network (CNN) is used for
the prediction of the material removal rate during the chemical
mechanical polishing process. These studies can give us a solid
foundation to explore the temperature prediction of heating
surfaces based on multivariate time series.

Above all, current work mainly focuses on steam tempera-
ture prediction based on the inlet and outlet temperature of
superheaters. To our best knowledge, there is little studies
yet for data-driven heating surface temperature prediction
depending on tube temperature, attempering water and flue
gases. In addition, the paper intends to partition a heating
surface into dozens of local ones based on tube clustering,
and predict each one’s temperature, which is very important in
production management. Moreover, the potential laws in the
temperature varying of various local heating surfaces under
different work conditions can give knowledge for temperature
prediction of local heating surfaces.

III. APPROACH TO TEMPERATURE PREDICTION OF
LOCAL HEATING SURFACES

A. Architecture
With the view from overlook, tubes of a boiler superheater

will be projected on a 2-dimensional plane. They are arranged
into platens, each of which contains dozens of tubes. Thus,
the real-time temperature distribution of a heating surface can
be represented with a contour graph, whose horizontal and
vertical axis refers to platen and tube numbers respectively.
Fig. 3a illustrates the heating surface temperature distribution
of High Temperature Superheater at the current time. In the
figure, areas with different degrees of temperature are marked
in different colors. The area with lighter color has a higher
temperature. Fig. 3b shows the temperature distribution of the
heating surface after 10 seconds. From Fig. 3, it is found
that the temperature distribution on the heating surface shows
some regular patterns. For example, the temperature on the
top and bottom sides is lower than those of other areas. At the
same time, the temperature distributions of nonadjacent areas
may also have similarities. In fact, according to our studies,
temperature variations of different areas often show some
spatial dependencies. To describe the spatial dependencies of
temperature variations in various areas, we partition a heating
surface into local ones and summarise their relations in a
graph.

(a) Temperature at the current time. (b) Temperature after 10 seconds.

Fig. 3: The real-time temperature contour of the superheater
heating surface.

Therefore, we propose an approach to predict the tempera-
ture of local heating surfaces based on multivariate time series,
whose architecture is shown in Fig. 4.

• Various sensors is used to monitor the real-time working
and operation parameters of superheaters. The parameters
include the temperature of each tube in a platen, the
flow speed of first and second level attempering water
on both sides of the heating surface, the flow speed of
accidental attempering water and the flue gas. Because
the heating surface locates in enclosed space with very
high temperature, the extrinsic factors like weather have
little influence to the work state of a thermal boiler.

• Data Acquisition System (DAS) gathers the parameters
mentioned above every 10 seconds from sensors. The data
gathered are preprocessed as multivariate time series. It
is necessary to note that we will pay little attention to the
data sensing and transferring in this paper.

• The heating surface is partitioned into local ones accord-
ing to the temperature distribution of tubes.

• Heating Surface Graph is introduced to represent the
features of each local heating surface and the relations
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among all local heating surfaces. Thus, in any time
window, there will be a series of Heating Surface Graphs.

• A GCN and GRU based model is constructed to predict
the local heating surface temperature. It receives Heating
Surface Graphs to achieve its training.

• The predicted temperature of each local heating surface
is outputted to the boiler control system finally.

Fig. 4: Approach proposed to predict the temperature of local
heating surfaces.

Partitioning local heating surfaces can be considered as the
clustering of tubes in the heating surface. The objective is that
the tubes in one cluster, also called the local heating surfaces,
will show similarity in the temperature. It is well known that
DBI is widely used to evaluate the clustering results and to
obtain the optimal number of clusters. The smaller the DBI
value, the better the clustering effect. Therefore, the number of
local surfaces is determined based on the criterion of smallest
DBI considering tubes in each local surface as a cluster.

As a result, the interactions among local heating surfaces
in temperature varying can be represented as a graph named
Heating Surface Graph (HSG). As time going, the working
parameters of a local heating surface, such as attemperting
water, accidental water and flue gas, may be very different.
So, the weights on the edges of a HSG can help to reveal the
impacts of its factors on local heating surface temperature.
Compared with feature extraction techniques, it is easier to
interpret the potential laws. At the same time, GRU aims to
make each recurrent unit adaptively capture dependencies of
different timescales, which is as powerful as LSTM even with
small datasets. Although GRU and LSTM are ideal choices
to achieve time series predictions, the former has much fewer
parameters and simpler structure since each of its recurrent
unit has only two gates and it does not need to separate
memory cells. In fact, GRU is an improvement of LSTM
as it also taking long-term dependencies into consideration
with less computing power and training time. Therefore, we
will explore the model for the temperature prediction of local
heating surface based on GCN and GRU in this paper.

B. Heating Surface Graph Construction
Considering one heating surface as a 2-dimensional plane, it

can be partitioned into multiple local heating surfaces, each of
which refers to an area containing several tubes. The relations
among all local heating surfaces can be represented in a graph.
A Heating Surface Graph (HSG) at time t is defined as

G
(t)
HS = (S,R,W,X),

where S is a set of nodes, R is that of edges, W and X
represent the weight and feature matrix respectively. In fact,
each Si ∈ S refers to a local heating surface in an HSG. If
there is < Si, Sj >∈ R, it means that the ith local heating
surface shows similarities in temperature variation with the jth

one, and Wi,j ∈ W will specify such a similarity. Each row
vector of X specifies the features of a local heating surface Si,
including its temperature, attempering water, accidental water
and flue gas. Thus, the primary features of a heating surface in
time window T can be represented as a series of HSGs. It is
necessary to note that each feature of a local heating surface
is aggregated from all tubes it contains.

For two local heating surfaces, the more the similarly of
their temperature variation, the larger the weight of their
relation. Given Si, Sj ∈ S,< Si, Sj >∈ R, and their
temperature variation vector Vi, Vj in current time window,
the weight wi,j ∈W is determined as following equation.

wi,j = e
−dist(Vi,Vj)

2

σ2
i (1)

In Eq. 1, dist(Vi, Vj) gives the Euclidean distance of two
vectors Vi and Vj . Each element of Vi is the difference
between the current element in temperature time series of
the ith local hearing surface and its directed predecessor. In
the equation, σi means the standard deviation of all distances
{dist(Vi, Vk)|k = 1, 2, ...,m}, where each Sk is a neighbor
of Si in the HSG. So, there will be wi,j 6= wj,i usually
when i 6= j. That is to say that HSG is directed. Either
attempering water or flue gas can be considered flowing in a
specific direction to some extent in the steam-water circulation
system of a boiler. Thus, the temperature variations of two
local heating surfaces may have different impacts on each
other. Therefore, it is reasonable and necessary to define HSG
as a directed graph. It is necessary to note that the local heating
surface partition is a great challenge. In the paper, the local
heating surface is partitioned into 2-dimensional grids, and
there exist relations among all adjacent local heating surfaces.

Thus, given a local heating surface, its temperature can
be predicted based on the temporal features extracted from
related nodes in HSGs in a time window, as well as the
spatial dependency features extracted from related nodes,
which reflect the potential temperature variation dependencies
among various heating surfaces.

IV. LOCAL HEATING SURFACE TEMPERATURE
PREDICTION MODEL BASED ON GCN AND GRU

A. GCN and GRU based Prediction Model
According to the analytics above, for maintaining a higher

temperature of the heating surface but avoiding overheating,
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it is necessary to predict the temperature in advance. The pro-
posed temperature prediction model of local heating surfaces
is illustrated in Fig. 5. When a GCN receives a HSG at time t,
the features of each local heating surface at time t, containing
the spatial dependencies with its neighbours, can be obtained.
So, GCNs are piled up to receive series of HSGs in each
time windows, which are derived from the input multivariate
time series. The output features of GCNs are then delivered
to GRUs piled up to learn the temporal features of each local
heating surface and finish its prediction its eventually.

Fig. 5: The proposed temperature prediction model of heating
surface.

As shown in Fig. 5, the model receives a feature matrix
of all local heating surfaces as its input (Eq. 2), where X(j)

i

represents the features of the ith heating subsurface Si at
time j. The output of the proposed model is formulated
as (Y

(t+1)
1 , Y

(t+1)
2 , · · · , Y (t+1)

i , · · · , Y (t+1)
n−1 , Y

(t+1)
n ), where

Y
(t+1)
i = (hi,mi, li), hi, mi and li is the highest, mean and

lowest temperature of the ith local heating surface at time
t+1 respectively. Since the temperature of each local heating
surface at time t+1 is predicted depending on its features from
time t −m to t, it means that the parameter lookback = m
in the prediction model.

X =


X

(t−m)
1 X

(t−m)
2 · · ·X(t−m)

n−1 X
(t−m)
n

...
...

. . .
...

X
(t−1)
1 X

(t−1)
2 · · ·X(t−1)

n−1 X
(t−1)
n

X
(t)
1 X

(t)
2 · · ·X(t)

n−1 X
(t)
n

 (2)

It is necessary to note that X(j)
i =(HT, MT, LT, DSA, DSB,

AWA, AWB, SFL) in this paper, where HT, MT, LT are the
highest, mean, and lowest temperature of the tubes in the ith

heating subsurface Si at time j; DSA and DAB give the flow
speed of attempering water on side A and B of the heating
surface respectively; AWA and AWB give the flow speed of
accidental water on side A and B respectively; SFL is the flow
speed of flue gas.

To learn the spatial dependencies among local heating
surfaces, GCN is introduced to the proposed prediction model.
After extracting spatial features using GCN, GRU is utilized
for predicting the highest, mean and lowest temperature of
each local heating surface at a specific time.

As shown in Fig. 5, m GCNs denoted as GCN (j) are
piled up, where j = (t − m, t − m + 1, · · · , t − 1, t). It
accepts heating surface temperature graph HST (j), which is
generated from features of n local heating surfaces at time j,
as its input. Spatial features of local heating surfaces at time
j, (H

(j)
1 , H

(j)
2 , · · · , H(j)

n−1, H
(j)
n ) will be then extracted by

GCN (j). For improving the spatial feature extraction, several
GCNs can be concatenated at each tile. Each GRU then accepts
extracted features at one specific time for temporal prediction.
Similarly, several GRUs can be concatenated to improve the
effect. At last, the full connection layer will output the highest,
mean and lowest temperature of local heating surfaces.

B. Spatial Feature Learning based on GCN for the
Prediction

GCN is a kind of novel neural network, which can be used
to learn graph-style data [23]. Traditional GCNs are usually
built on undirected graphs, and can not assign various weights
to the neighbors of a graph node. In a boiler, the temperature
variation of two local heating surfaces may have different
impacts on each other. So, the GCN model is extended to
be directed and assigns weights to all graph edges based on
HSGs. The GCN model proposed is defined as follows.

Given an HSG, GHS = (S,R,W,X, t), the GCN for time
t used in the proposed model is defined as f(X,A) logically,
where X = {xi,j} ∈ RN×F (1 ≤ i ≤ N) and (1 ≤ j ≤ F ) is
a matrix of features of all graph nodes. Obviously, it satisfies
N = |S| and each graph node has F features. The adjacency
matrix A ∈ RN×N represents the relations among graph
nodes. Given ai,j ∈ A, if ai,j = 1, there will exist a relation
between local heating surface Si and Sj in S, and an edge
will also exist between two nodes in the HSG correspondingly.
In the paper, because the heating surface are partitioned into
grids, if there are n = r × c local heating surfaces that are
arranged as r rows and c columns, the ith local heating surface
will have relations with the jth one, where, j = i−1, i+1, i−
c, i + c, and (i − 1) mod c > 0, (i + 1) mod c > 0,
(i − c) mod r > 0, and (i + c) mod r > 0. In such
situation, there is ai,j = 1, where ai,j ∈ A.

To considerate the self-connection of each graph node,
we define an adjacency matrix of the heating surface graph
as Ã = A + IN , where IN is an identity matrix [23].
Correspondingly, given a matrix D that represents the degree
of each node of the graph, D̃ can be defined to involve self-
connection of each node, where D̃ii =

∑
j Aij and D̃ij = 0

when i 6= j. Obviously, D and D̃ are all diagonal matrices,
whose elements are all 0 except diagonal ones. We use the
Hadamard product Ã · W to reflect the interactions among
nodes on temperature varying, where W is a weight matrix
computed with the help of HSGs according to Eq. 1. It is
necessary to note that Hadamard product means each element
in one matrix is multiplied by the element in another matrix at
the same position. To avoid exploding gradients when there are
too many nodes, the Laplacian transformation for symmetric
normalization, D̃− 1

2 Ã ·WD̃− 1
2 , is conducted.

The proposed GCN model has several concatenated hidden
layers. In each hidden layer, the feature of one node is
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aggregated by its neighboring nodes in the previous layer.
Supposing that the current hidden layer is the lth one, the
feature matrix of the (l+1)th layer, H(l+1), can be computed
using the equation 3.

H(l+1) = σ(D̃− 1
2 Ã ·WD̃− 1

2H(l)W (l)) (3)

In Eq. 3, H(l) is the feature matrix of the lth layer, and W (l)

represents the learnable weight matrix for neurons of the GCN.
The input layer of the GCN model can be represented when
l = 0. So, given a GCN (t) for spatial features learning at
time t, there is H(0) = X(t), where X(t) is a row vector in the
feature matrix X (see in Eq. 2), which means the input features
of all local heating surfaces at time t. By the concatenated
GCNs at time t, the features of a node will be transformed
to those of its neighbouring nodes. From Eq. 3, it can be
found that the transformation depends on the degree matrix
of each node, the adjacency relation matrix and the relation
weight matrix denoted as D̃, Ã, and W respectively. Thus,
the spatial features, which reflects the relations among local
heating surfaces, are considered during the feature extractions
of GCN nodes. In Eq. 3, σ is an activation function.

We assume that the proposed GCN model has N nodes and
M edges, and each node is embedded with F features. Thus,
in Eq. 3, there are W ∈ RN×N , Ã ∈ RN×N , H(l) ∈ RN×F

and W (l) ∈ RF×F . In fact, M = ‖A‖0 equals the number of
nonzero values in the adjacency matrix Ã. The computation
of the Hadamard product Â = Ã ·W needs to cost O(N2) for
each layer beforehand. Supposing the model has L layers, it
is verified that the total computation cost of the sparse-dense
matrix multiplication D̃− 1

2 ÂD̃− 1
2H(l) is O(LMF ), and that

of the feature transformation by applying W (l) is O(LNF 2)
[24]. Therefore, the computation complexity of the model in
one gradient descendent will be O(LMF + LNF 2 + LN2).
In addition, the space complexity of the model is determined
mainly by the storage of weights during the model training.
So, the space complexity is O(LNF + LF 2).

C. Temporal Prediction based on Full-Connected GRU
Compared with LSTM, GRU has the advantage of adap-

tively capturing dependencies from different time scales. GRU
is more efficient owing to its gating units that can modulate
the information flowing inside the recurrent unit, without the
separate memory cell and output gate [25], [26]. As a result,
in the proposed model, we concatenate GRUs with GCNs to
predict the temperature of local heating surfaces.

As shown in Fig. 5, the ith layer of GRUs in the model
receives a feature vector (H

(t−m)
i ...H

(t−1)
i H

(t)
i ), which is

extracted by GCNs, to predict the temperature of ith local
heating surface at time t + 1 depending on the spatial and
temporal features from time t − m to t. That is to say, for
the ith layer of GRUs, at time t, the recurrent unit receives
elements of the vector H(t)

i as its input xt. The prediction will
be more effective since H(t)

i not only contains features of the
ith local heating surfaces related to temperature, attempering
water, flue gas and accidental water, but also includes potential
associations of its temperature variation with those of other
local heating surfaces.

The output of the recurrent unit at time t is determined as
following equations, where ht−1 is the previous activation, ht
is the candidate activation, zt is an update gate which decides
the update content, xt is the input vector in the tth time step,
ht−1 holds the information for the previous t−1 units, and rt
is a reset gate which decides the reset content. The learnable
weight matrices include Wz,Wr,Wh, Uz, Ur and Uh.

ht = (1− zt) · ht−1 + zt · h̃t (4)

where,

zt = σ(Wzxt + Uzht−1)

h̃t = tanh(Whxt + Uh(rt · ht−1))

rt = σ(Wrxt + Urht−1)

From the Eq. 4, it is found that the information from the
hidden states at time t − 1 will be forgotten by a rate of
1 − zt and be remembered by a rate of zt at time t. Then,
based on the information from time t−1 along with the input
features at time t, the output features at time t will be got.
More importantly, the input features at time t for GRU were
extracted by GCNs, which includes those related to historical
temperature, attempering water, accidental water, flue gas as
well as the dependencies among local heating surfaces. Thus,
both the spatial and temporal feature of local heating surfaces
will be extracted from the original time series. In addition,
the dense layer concatenated to the GRU will transform the
multidimensional features into one dimension. This improves
the extraction of dependencies among various features.

The output of the GRU is computed finally with the equation
yt = σ(ht), and the training loss is computed with mean
absolute errors. The fully-connected (FC) layer, also is well
known as Dense layer, will transform the output of a GRU into
a value that represents the temperature of one local heating
surface at the next time.

In Eq. 4, supposing that the dimension of the hidden state is
dh and that of the input is di, there are xt ∈ Rdi , ht−1 ∈ Rdh ,
and Wr,Wz,Wh ∈ Rdi×dh and Ur, Uz, Uh ∈ Rdh×dh . It can
be verified that rt, zt ∈ Rdh . So, the total cost of computations
for rt, zt and h̃t will be 3didh + 3d2h, and that for ht will
be 3didh + 3d2h + 2d2h + dh as a result. Therefore, when L
GRUs are concatenated and a time series with the length T
is given, the computation complexity of the GRU model in
one gradient step can be denoted as O(LT (d2h + dhdi + dh)).
The space complexity of the GRU model is determined mainly
by the storage of weights during the model training, which is
O(LT (d2h + dhdi)).

V. EXPERIMENTS AND ANALYSES

A. Dataset Preparing

The dataset used in the experiments, which reflects the
working conditions of a thermal boiler in 3 months, is provided
by a power plant. Observations about the heating surface
temperature, the flow speed of attempering water and flue
gas are gathered every 10 seconds by various sensors. It is
necessary to mentioned that the data is gathered by attaching
sensors on all tubes in currently. It is supposing that, based
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TABLE I: Illustration of observations contained in the dataset

Time DSA-1 DSA-2 DSA-3 DSA-4 DSB-1 DSB-2 DSB-3 DSB-4
2/6/20 12:00:10 AM 39.35848 37.60057 9.740612 9.031951 18.50167 17.1874 15.187737 14.203365
2/6/20 12:00:20 AM 34.84987 32.70871 9.974368 10.01582 18.50167 17.34481 15.18774 14.06688

Time SFL-1 SFL-2 SFL-3 SFL-4 AWA-1 AWA-2 AWB-1 AWB-2
2/6/20 12:00:10 AM 27.74641 27.9524 100.061 100.0229 5.16126 5.716673 0 0
2/6/20 12:00:20 AM 27.74641 27.9524 100.061 100.0229 7.317911 5.811957 3.815116 5.619773

TABLE II: The Pearson correlation coefficient between each independent variable Xi and each dependent variable Yj

Yj

ρXi,Yj Xi
DSA-1 DSA-2 DSA-3 DSA-4 DSB-1 DSB-2 DSB-3 DSB-4 SFL-1 SFL-2 SFL-3 SFL-4 AWA-1 AWA-2 AWA-3 AWA-4

Lowest -0.35 -0.42 -0.51 -0.38 -0.28 -0.37 -0.65 -0.53 0.41 0.32 0.29 0.51 -0.35 -0.39 -0.21 -0.29
Mean -0.39 -0.46 -0.49 -0.36 -0.52 -0.45 -0.61 -0.49 0.43 0.33 0.42 0.61 -0.42 -0.34 -0.38 -0.25

Highest -0.52 -0.48 -0.29 -0.41 -0.57 -0.62 -0.34 -0.38 0.36 0.31 0.34 0.56 -0.52 -0.41 -0.54 -0.39

on the predicted temperature of local heating surfaces as well
as the development of sensing technologies, there may exist
a choice to attach sensors on each local heating surfaces.
Thus, the data sensing in the boiler will be more efficient and
economical. Table I represents some example observations
contained in the dataset. In the table, DSA-X represents
the speed of attempering water on side A of a superheater,
and DSB-X represents those on side B. The column SFL-
X represents the flow speed of flue gas, and AWA-X and
AWB-X represent the flow speed of accident water on side
A and B respectively. The dataset also contains the real-
time temperature of each tube on the heating surface. The
highest, mean and lowest temperature of each local heating
surface is computed as important features for prediction model
training. The 75% observations in the dataset are used for
model training, and the remaining are used for model testing.
The metrics for model evaluations include Mean Absolute
Error (MAE), Mean Squared Error (MSE), Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error (RMSE)
and the coefficient of determination (R2).

If the input features of the model, including DSA-X, DSB-
X, SFL-X, AWA-X and AWB-X, are considered as indepen-
dent variables, the Highest, Mean and Lowest temperature
to be predicted will be dependent variables. Table II repre-
sents the Pearson correlation coefficient ρXi,Yj between each
independent variable Xi and dependent variable Yj , where
1 ≤ i ≤ 16 and 1 ≤ j ≤ 3. It is found that, for each Xi,
there is Yj satisfying |ρXi,Yi | > 0.3. It means that each Xi

moderately or strongly correlates with a dependent variable Yj .
We can also find that it satisfies |ρXi,Yj | < 0.6 for the majority
of independent and dependent variables. This means that the
relationships among independent and dependent variables are
complex. So, the features used in the model are valuable for
the highest, mean and lowest temperature prediction. Table
II also shows that both attempering water and accidental
water have negative correlation, but flue gases have positive
correlation with the temperature of local heating surfaces.

The heating surface in the experiments has 700 tubes
arranged as 20 platens. Thus, each platen has 35 tubes. Just
mentioned in section III, the heating surface will be partitioned
into grids. When the heating surface is partitioned into 28 local
ones, each of which contains 5 tubes from 5 different platens.
The minimum DBI equaling 0.186 will be got.

In experiments, the model parameter lookback is set to
10 according to the prediction effects, which means that the
temperature prediction of each local heating surface at time
t + 1 is depending on the time series from time t − 9 to
t. The original dataset used in the experiments is provided
by sampling the working parameters of a supercritical boiler
in every 10 seconds. In order to simulate a more practical
evaluation, the original data is resampled with a step equals to
3 and 6 respectively. Thus, when a model is used to manage the
production, the highest, mean and lowest temperature of each
local heating surface after 30 or 60 seconds can be predicted
based on its previous working parameters. It is usually feasible
for the boiler control systems to give reasonable actions in 30
to 60 seconds according to the predicted temperature.

B. Evaluations of Prediction Based on Temporal
Features

In this section, we first implement the FC-GRU based
prediction model, then compare it with representative temporal
prediction models, including MLP, RNN, FC-LSTM and Bi-
LSTM. Table III and IV shows the evaluation results for
the highest, mean and lowest temperature prediction of local
heating surfaces 30 and 60 seconds later respectively.

Based on table III and IV, for the highest temperature
prediction of local heating surfaces after 30 and 60 seconds, it
is found that both MAEs of FC-GRU based model are much
lower than 1°C, which equals 0.617 and 0.577 respectively.
However, for the model of MLP, RNN and FC-LSTM, all
their evaluation results are beyond or very close to 1°C. It is
also found that Bi-LSTM has advantages in MAE compared
with others except FC-GRU. Compared with MLP, RNN, FC-
LSTM and Bi-LSTM, FC-GRU based model can reduce the
MAE by 38%, 35%, 43% and 19% respectively when it is used
to predict the highest temperature of local heating surfaces
after 30 seconds. When to predict the highest temperature after
60 seconds, FC-GRU based model can also reduce the MAE
by 32%, 34%, 29% and 24% respectively. Compared with
MLP and RNN, the MAE of FC-LSTM decreases to 0.8661
when predicting the highest temperature after 60 seconds.
However, for temperature after 30 seconds, the same factors
can not generate rather well predictions. The reason may be
that LSTM is general and effective when capturing long-term
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TABLE III: Evaluation for the highest, mean and lowest temperature predictions of local heating surfaces after 30 seconds

Models Highest Temperature Mean Temperature Lowest Temperature
MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2

MLP 1.001 2.078 1.388 0.0016 0.9248 0.969 2.541 1.449 0.0016 0.9059 0.991 2.407 1.437 0.0016 0.9200
RNN 0.949 1.526 1.202 0.0015 0.9417 0.865 1.242 1.100 0.0014 0.9574 0.924 1.507 1.176 0.0015 0.9523

FC-LSTM 1.076 2.242 1.433 0.0018 0.9119 0.929 1.604 1.211 0.0015 0.9508 1.052 2.157 1.391 0.0018 0.9259
Bi-LSTM 0.736 0.971 0.963 0.0012 0.9669 0.638 0.737 0.817 0.0010 0.9778 0.701 0.871 0.911 0.0012 0.9709
FC-GRU 0.617 0.642 0.786 0.0010 0.9753 0.646 0.695 0.816 0.0010 0.9765 0.620 0.646 0.787 0.0010 0.9781

TABLE IV: Evaluation for the highest, mean and lowest temperature predictions of all 28 local heating surfaces after 60 seconds

Models Highest Temperature Mean Temperature Lowest Temperature
MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2

MLP 0.897 2.004 1.313 0.0014 0.9211 0.825 1.629 1.212 0.0013 0.9314 0.883 2.013 1.342 0.0015 0.9243
RNN 0.913 1.605 1.225 0.0015 0.9267 0.861 1.467 1.169 0.0014 0.9399 0.855 1.565 1.171 0.0014 0.9398

FC-LSTM 0.866 1.873 1.245 0.0014 0.9156 0.702 1.185 1.039 0.0011 0.9503 0.814 2.010 1.270 0.0013 0.9182
Bi-LSTM 0.713 1.054 0.993 0.0011 0.9578 0.622 0.841 0.872 0.001 0.9698 0.707 1.090 0.997 0.0012 0.96
FC-GRU 0.577 0.597 0.753 0.0010 0.9719 0.551 0.576 0.737 0.0009 0.9775 0.595 0.600 0.764 0.0010 0.9763

temporal dependencies [27]. Besides, FC-GRU based model
also shows great advantages in MSE and RMSE compared
with others. The MSE of FC-GRU based model is only 0.642,
when all MSEs of the other models are larger than 1.5 except
Bi-LSTM, whose MSE is also up to 0.971.
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Fig. 6: MAEs comparison of various models for temperature
prediction in local heating surfaces the 30s and 60s later.
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Fig. 7: RMSEs comparison of various models for temperature
prediction in local heating surfaces the 30s and 60s later.

As to the mean and lowest temperature prediction of local
heating surfaces, we can also find from table III and IV that
FC-GRU has great advantages compared with other modes
in both MAE and MSE. Fig. 6 and 7 illustrate the MAE
and RMSE of each model respectively, which means FC-
GRU based model achieves better accuracy and stability in
temperature prediction. Moreover, Fig. 8 shows that the FC-
GRU based model also has great advantages in R2 index
compared with others.
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Fig. 8: R2 indices comparison of various models for tempera-
ture prediction in local heating surfaces the 30s and 60s later.

The experiments above show that using FC-GRU to predict
the temperature of the local heating surface depending on
historical information of temperature, attempering water and
flue gas is a good choice.

C. Evaluations to Prediction Based on Spatial-temporal
Features

Based on the evaluation above, the proposed FC-GRU
model only exploits temporal features of time series about
temperature, attempering water and flue gas, which has shown
good performances in temperature prediction of local heating
surfaces. In order to improve the prediction performance, GCN
is introduced to the spatial feature extraction among the local
heating surfaces. We propose the model named GCN-GRU
at first. GCN-GRU only considers whether there are relations
among local heating surfaces, but it does not distinguish the
intensities of these relations. We also evaluate WGCN-GRU
in this section, which is an optimized model of GCN-GRU.
WGCN-GRU determines the relation weights among local
heating surfaces depending on their similarities of temperature
variations (Eq. 1).

Fig. 9 and 10 illustrate the highest temperature prediction
of a given local heating surface. The red curves represent the
actual temperature and the blue ones represent the predicted
value calculated from a specific model. The figure shows that,
either predicting the temperature after 30 and 60 seconds,
the model WGCN-GRU has the best performance. It is also
found that GCN-GRU, Attention-LSTM and Attention-GRU
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Fig. 9: The error comparison of the prediction of the highest
temperature in a local heating surface the 30s later.

Fig. 10: The error comparison of the prediction of the highest
temperature in a local heating surface the 60s later.

also show better performances compared with FC-GRU, Bi-
LSTM, CNN-LSTM and CNN-GRU. This finding can verify
our previous assumption that spatial features combined with
temporal features of multiple time series can improve the
prediction performance. The comparison between the WGCN-
GRU and GCN-GRU based model turns out that the weighted
relations are necessary and effective for the model prediction
based on GCN and GRU.

Fig. 11 shows the test loss of WGCN-GRU and GCN-GRU.
In the top sub-figure, the two models are trained to predict
local heating surface temperature 30 seconds later, and the
bottom one for that of 60 seconds later. It shows that WGCN-
GRU has lower test loss. An interesting phenomenon is that
LSTM does not show good performance as it is expected in
time series prediction. It is valuable to be explored further in
our future work.

We compare FC-GRU, CNN-LSTM, CNN-GRU, Attention-
LSTM, Attention-GRU, GCN-GRU and WGCN-GRU in detail
as follows. They are all used to predict the highest, mean
and lowest temperature of local heating surfaces 30 and 60
seconds later respectively. The performances are shown in
Table V and VI. As figure shown in Fig. 12 and 13, whatever
to predict the highest, mean or lowest temperature of local
heating surfaces after 30 or 60 seconds, WGCN-GRU achieves
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Fig. 11: Test loss of the model GCN-GRU and WGCN-GRU.

both the smallest MAEs and RSMEs compared with all other
models. We also find that Attention-LSTM and Attention-GRU
show advantages in MAE and RSME compared with other
models except WGCN-GRU, and Attention-GRU surpasses
Attention-LSTM. This means the proposed prediction model
WGCN-GRU has higher accuracy and stability. In addition,
Fig. 14 also shows that WGCN-GRU gets advantages in R2

index compared to the other models.
The average MAEs of all models in predicting the highest,

mean and lowest temperature of local heating surfaces are
compared and shown in Fig. 15. The bars represent the average
MAEs of various models while the curves reflect their average
MAEs’ increase for the model WGCN-GRU. It shows that,
compared with the other models, WGCN-GRU can reduce the
MAE by a rate of 9% to 56% when to predict the temperature
30 seconds later, and by a rate of 2% to 39% when to predict
the temperature 60 seconds later. Averagely, WGCN-GRU can
reduce the MAE by a rate of 5.6% to 46.8% compared with
others. Particularly, compared with GCN-GRU, WGCN-GRU
can reduce the prediction error by 11.4% averagely owing to
its weighted node-to-node relations.
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Fig. 12: MAEs comparison of various models for temperature
prediction of local heating surfaces the 30s and 60s later.

Above all, depending on multivariate time series of history
temperature, attempering water, flue gas and accidental water,
the proposed model base on GCN and GRU is effective to
predict the future temperature of local heating surfaces. The
dependencies among local heating surfaces in temperature
variations can be used to further improve temperature pre-
diction. As a result, the proposed approach is valuable for the
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TABLE V: Comparison of the prediction performances (30 seconds later)

Models Highet Temperature Mean Temperature Lowest Temperature
MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2

FC-GRU 0.617 0.642 0.786 0.0010 0.9753 0.646 0.695 0.816 0.0010 0.9765 0.620 0.646 0.787 0.0010 0.9781
CNN-LSTM 0.990 1.850 1.321 0.0016 0.9405 0.983 1.909 1.338 0.0015 0.9517 0.936 1.661 1.246 0.0016 0.9466

CNN-GRU 0.894 1.528 1.205 0.0014 0.9508 0.836 1.514 1.145 0.0014 0.9575 0.931 1.688 1.242 0.0015 0.9484
Attention-LSTM 0.587 0.630 0.770 0.0009 0.9789 0.510 0.451 0.656 0.0008 0.9848 0.552 0.577 0.730 0.0009 0.9813

Attention-GRU 0.536 0.513 0.688 0.0008 0.9832 0.446 0.349 0.573 0.0008 0.9857 0.492 0.447 0.627 0.0008 0.9850
GCN-GRU 0.587 0.594 0.753 0.0009 0.9801 0.542 0.481 0.683 0.0009 0.9836 0.525 0.464 0.669 0.0008 0.9842

WGCN-GRU 0.527 0.472 0.674 0.0008 0.9842 0.353 0.217 0.453 0.0008 0.9867 0.457 0.364 0.589 0.0007 0.9875

TABLE VI: Comparison of the prediction performances (60 seconds later)

Models Highest Temperature Mean Temperature Lowest Temperature
MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE R2

FC-GRU 0.577 0.597 0.753 0.0010 0.9719 0.551 0.576 0.737 0.0009 0.9775 0.595 0.600 0.764 0.0010 0.9763
CNN-LSTM 0.878 1.762 1.282 0.0014 0.9303 0.813 1.667 1.227 0.0013 0.9405 0.891 1.813 1.301 0.0015 0.9334

CNN-GRU 0.899 1.914 1.337 0.0014 0.9226 0.816 1.774 1.234 0.0013 0.9403 0.862 1.644 1.241 0.0014 0.9390
Attention-LSTM 0.535 0.538 0.725 0.0008 0.9761 0.548 0.652 0.762 0.0009 0.9764 0.601 0.787 0.850 0.0010 0.9701

Attention-GRU 0.547 0.569 0.739 0.0008 0.9761 0.513 0.531 0.699 0.0008 0.9802 0.563 0.630 0.760 0.0009 0.9756
GCN-GRU 0.579 0.587 0.751 0.0009 0.9801 0.514 0.458 0.661 0.0008 0.9817 0.559 0.563 0.724 0.0009 0.9799

WGCN-GRU 0.532 0.509 0.701 0.0008 0.9842 0.513 0.457 0.660 0.0008 0.9825 0.548 0.542 0.709 0.0009 0.9800
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Fig. 13: RMSEs comparison of various models for tempera-
ture prediction of local heating surfaces the 30s and 60s later.

0.8

0.85

0.9

0.95

1

Highest Mean Lowest Highest Mean Lowest

30s 60s

R2

FC-GRU CNN-LSTM CNN_GRU
Attention-LSTM Attention-GRU GCN-GRU
WGCN-GRU

Fig. 14: R2 indices comparison of various models for tem-
perature prediction of local heating surfaces the 30s and 60s
later.

control systems to improve operational management.
As shown in Fig. 16, the proposed model can be used in the

management of thermal power production. It keeps receiving
the current working parameters from DAS, and predicting
the future temperature of local heating surfaces. Depending
on feedback from the prediction model, the DCS determines
whether there are anomalies happening in the boiler. Moreover,
the DCS can also adjust the working conditions, such as
attempering water spay, flue gas flow and so on, according
to the prediction results of the proposed model. This is very
meaningful for safe and efficient production of thermal boilers.
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Fig. 15: Comprehensive comparison of various models’ MAEs
in predicting local heating surface temperatures the 30s and
60s later.

Fig. 16: The illustration to the applications of the proposed
model in thermal power production.

D. Discussions to the Model Complexity, Sensitivity and
Interpretability

The proposed prediction model WGCN-GRU, has a layer
for weight computation, 2 convolution layers for GCN, 2 GRU
layers with 1 dropout and dense layer respectively. Because
there are 28 local heating surfaces in the experiments, the total
number of convolution layers are 2 × 28, and that for GRU
layers are 2× 28.

In order to interpret the effectivity of WGCN-GRU, its pre-
diction MAEs are measured as the training Batch-size and the
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Fig. 17: The impacts of the Batch-size and Hidden-size on
the model performances.

size of GRU Hidden Layers (Hidden-size) change. Moreover,
its prediction MAEs in various conditions are also compared
with those of GCN-GRU. It has been mentioned above that
the proposed raw model GCN-GRU is similar to WGCN-
GRU, but has no weights on node-to-node relations. Fig.
17a shows that WGCN-GRU performs better and more stable
when the Batch-size equals 64, and gets the best performance
when the Hidden-size equals 64 either. So does GCN-GRU
as it is shown in Fig. 17b. Therefore, the Batch-size and the
Hidden-size are both chosen as 64 finally. We can also find
that, though the impacts of the Batch-size and Hidden-size
on the prediction MAEs of the two models keep consistent,
WGCN-GRU outperforms GCN-GRU in all conditions (Fig.
17). This verifies that WGCN-GRU is effective owing to the
combination of weighted and directed GCN with GRU.
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Fig. 18: Impacts of features on the performance of the
proposed model.

In addition, to reflect the model sensitivity and interpretabil-
ity, we use the Temporal, Spatiotemporal and Weighted spa-
tiotemporal features respectively to predict the temperature
of local heating surfaces. Fig. 18 shows that, no matter to
predict the Highest, Mean or Lowest temperature, the spatial

features contribute to the decline of prediction MAEs, and
weighted spatiotemporal features can further reduce the pre-
diction MAEs outstandingly. It means that the proposed model
WGCN-GRU is reasonable and effective to extract spatial
features with weighted GCNs to enhance the prediction.

Fig. 19 shows the data distributions of various kinds of
features. To be convenient, features about attempering water,
accidental water and flue gases are denoted as DT, AW and
SFL respectively. HT, MT and LT represent the Highest, Mean
and Lowest temperature of local heating surfaces respectively.
It can be found that the data distributions of the features seem
to be symmetric. At the same time, though there are lots of
outliers in input features, WGCN-GRU still maintains a very
small MAE, just as the evaluations in section V-C. So, WGCN-
GRU is considered to be reliable and effective.
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Fig. 19: The data distributions of the features used in the
proposed model.

VI. CONCLUSION AND FUTURE WORK

The paper proposed a GRU-based model for predicting the
temperature of local heating surfaces in thermal boilers com-
bined with GCNs. It is verified that depending on multivariate
time series of tube temperature, the flow speed of attempering
water and flue gas, the highest, mean and lowest temperature
of a local heating surface can be predicted effectively. The
proposed approach also provides an ideal choice for the
prediction of multivariate time series based on both spatial
and temporal features. Experiments with real-world datasets
show that the proposed model has advantages over traditional
models.

In this paper, the heating surface is partitioned into grids
for constructing GCN models. In future work, we will explore
irregular local heating surface partition approaches, based
on clustering of multivariate time series, for optimising the
representation of temperature interaction laws among local
heating surfaces. Then, our temperature prediction model will
be further improved based on such laws.
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