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A Multi-layer Deep Learning Approach for
Malware Classification in 5G-Enabled IIoT

Imran Ahmed, Marco Anisetti, Gwanggil Jeon*

Abstract— 5G is becoming the foundation for the Indus-
trial Internet of Things (IIoT) enabling more effective low-
latency integration of artificial intelligence and cloud com-
puting in a framework of a smart and intelligent IIoT ecosys-
tems enhancing the entire industrial procedure. However, it
also increases the functional complexities of the underlying
control system, and introduce new powerful attacks vectors
leading to severe security and data privacy risks. Malware
attacks are starting targeting weak but highly connected
IoT devices showing the importance of security and privacy
in this scenario. This paper designs a 5G-enabled system,
consisted in a deep learning-based architecture aimed to
classify malware attacks on the IIoT. Our methodology is
based on an image representation of the malware and a
Convolutional Neural Networks (CNNs) that is designed to
differentiate various malware attacks. The proposed archi-
tecture extracts complementary discriminative features by
combining multiple layers achieving 97% of accuracy.

Index Terms— 5G, Cybersecurity, Deep learning, Indus-
trial IoT, Malware detection

I. INTRODUCTION

INTERNET of Things (IoT) allows both conventional elec-
tronics and daily ’things’ embedded with sensors, com-

puting, communication, and networking abilities to connect
to the Internet in order to transmit and receive data. It has
been used in many emerging applications, like smart cities
and big data [1], and [2]. There is no doubt that the ability
of typical IoT applications originates from their capabilities
to gather, interpret, and communicate with a user’s life in a
pervasive and devoted fashion. IoT applications connect sen-
sors and devices over multiple verticals, including healthcare,
agriculture, manufacturing enterprise, business consumer and
services, and other intelligent cities applications [3]. IoT-based
systems include smart devices and sensors for such applica-
tions as home automation, monitoring, wearable sensors, TV,
and mobile applications that usually do not produce emergency
conditions if something goes wrong, as shown in Figure.1.

On the other hand, IIoT applications connect devices, sen-
sors, actuators, and machines at the industrial level to en-
hance manufacturing and industrial processes such as robotics,
automation, processing of heavy machinery, automobile and
transportation, health care, utilities, and manufacturing. In
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Fig. 1: General illustration of Industrial IoT and IoT with
advanced technologies. Both have different applications in
terms of services, requirements, and constraints.

IIoT deployments, operation failures and downtime can occur
in high-risk situations or indeed cause life-threatening ones.
Moreover, the applications are concerned with increasing effi-
ciency and enhancing health or safety versus IoT applications
for user-centric nature. The difference between IoT and IIoT
can be depicted in Figure.1. Although IoT and IIoT have vari-
ous technologies in general, including cloud platforms, internet
connections, cellular networks, sensors, connectivity, machine-
to-machine interactions, and data analytics techniques, utilized
for different purposes.

Industry 4.0 and the IIoT are being implemented across
various industries, vertical businesses converging automotive,
customer assets, services, pharmaceuticals, food and beverage,
manufacturing, and several others in the modern era [4].
Wireless connectivity remains a vital component of this de-
velopment, giving pervasive and powerful connections across
devices, machines, systems, people, and objects. 5G is also
poised to influence automated manufacturing transformation,
especially individual on-premise, and public 5G solutions. This
signifies one of the most important opportunities to expand
next-generation wireless communications [5]. It has been
mainly devised to achieve high-speed data throughput with
low latency. The development of 5G changes the application
of IIoT systems in two main ways. First, the IIoT is the
convergence of intelligent technology that allows machines
to solve critical industry problems and increase operational
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performance [6]. Second, IIoT is similar to an industrial
machine. Like IoT, it concentrates on the interconnection of
IoT sensors, devices, machinery/equipment, and the software
that powers the particular industrial application process. By
integrating hardware, software, data collection, and advanced
data analytics techniques, such as predictive and prescriptive
analysis, advanced systems can develop by leveraging tools
and real-time insights on industry performance.

Furthermore, advanced artificial intelligence solutions en-
able deeper insights and more intelligent, more agile systems
that make an operational performance at an industrial scale [7].
Going forward, IIoT plays a significant part in digital trans-
formations, particularly to digitize production lines, manufac-
turing processes, and supply chains. IIoT holds great potential
in manufacturing [8], especially for quality checks, green and
sustainable applications, traceability of the supply chain, and
overall efficiency. It is the key to processes for predictive
maintenance [9], where it improves field service, energy
control, and asset tracking. It also advanced the automotive
and transportation industry, which widely applies industrial
robots and smart IIoT devices in manufacturing processes and
systems. The IIoT helps to proactively manage these systems
and point out possible difficulties before they can interrupt
production. Industrial sensors are also used in agriculture
[10] to collect soil nutrients, moisture, and other related data,
enabling farmers and yielders to produce an optimal yield.
The oil and gas enterprise.also applies industrial IoT devices
and systems to support a line of independent aircraft that
can perform thermal and visual imaging to identify possible
pipeline difficulties. This information is coupled with data
from different kinds of sensors to assure secure operations.
Another important area that uses IIoT is the health sector
to collect data on patients and diseases and provide essential
medical facilities.

With a lot of advantages, the biggest risk associated with
IIoT application is a concern to security [11]. Even after
being placed into operation, it is normal for IIoT devices,
systems, and machines to continue applying default passwords.
Furthermore, several IIoT devices and sensors transfer data as
plain text; these situations can make it comparatively easy
for an intruder and attacker to intercept the data coming or
generating from an IIoT device or systems [12]. Likewise,
an intruder can take over an insecure and vulnerable IIoT
machine or system and apply it as a platform for originating
attacks or threats against other network systems and resources.
Thus, security is a big hurdle for those who are liable for
the coordination of IIoT systems, but so, moreover, is system
control. As an industry adopts more and more IIoT based
systems, it will become increasingly necessary to use an
efficient system control strategy. Assurance has been identified
as a suitable way to control a target system against security
concerns [13], computing, for instance, a risk indicator [14].
More particularly, the industry must be capable of confidently
identifying IIoT systems to prevent the use of miscreant or un-
reliable devices and systems. Building a means of recognizing
each particular sensor, device, and system is also essential to
replace a lost sensor or device or make a device or sensor
update system.

In this work, we used artificial intelligence and developed
a deep learning-based malware detection system for a 5G
enabled IIoT system. The developed system is based on multi-
layer CNN architecture for the classification of various types
of malware attacks. The proposed architecture integrates an
adequate number of layers, trained and tested on benchmark
data set. Further, the system is 5G enabled, thus, providing
high throughput and low latency and can make it feasible for
sensors and devices to share data in real-time when deployed
on a 5G data-intensive solution such as the one in [15].
This makes the system more efficient than previous ones, in
which real-time connectivity is only possible when the devices
are located on private networks with high-speed connectivity.
Therefore, the developed system can support real-time con-
nectivity applications such as autonomous vehicles and other
innovative city applications. The primary contribution of the
paper is provided as follows:

• To apply artificial intelligence and develop a multi-layer
CNN-based architecture for malware attacks classification
in IIoT.

• To apply data pre-processing techniques and transfer
learning to enhance the performance of CNN architec-
tures.

• To explore training and testing observations of the CNN
model using benchmark data set.

• To investigate and compare the results of the developed
system with different CNN based architecture for mal-
ware classification in terms of accuracy.

The rest of the work performed in the paper is categorized in
the following sections: In Section II, a summary of related
works is presented that is used for malware classification
in various IIoT applications. In Section III, we present a
5G-enabled system for IIoT, which is based on artificial
intelligence. We also explained a deep learning-based real-
time system and CNN architecture used for multiple malware
attack classification. In Section IV, the summary of the data
set used for the experiments is briefly explained. Furthermore,
this section discussed the testing and performance results
using different evaluation matrices. Lastly, in Section V, we
concluded the presented work with possible future directions.

II. RELATED WORK

In recent years, many efforts have been performed to assure
the security of IoT-based systems, sensors, and devices. The
efforts range from developing secured IoT systems to devising
prevention and detection mechanisms of malicious activities in
IoT-based applications.

Authors in [16] introduced a technique for an IoT-based
cyber-physical system that identified the difference in the
expected behavior of network links in order to identify the
opponent nodes. Pajouh et al. [17] developed an intrusion
detection system using machine learning to identify vari-
ous kinds of attacks in an IoT infrastructure. The proposed
method classified several attacks utilizing the Naive based and
K-Nearest Neighbor methods after decreasing the extracted
features using the principal component algorithm and linear
discriminate analysis. In [18], authors introduced an intrusion
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Fig. 2: The overall Methodology for 5G-enabled malware detection on IIoT.

detection method for IoT based systems that detect denial of
service attacks using packet transmission rate. Li et al. [19]
performed intrusion detection to decrease several malicious
threats in an IoT by using the mechanism of blockchain.
Authors in [20] presented an IoT-based security system to
identify the anomalies directly by using a kernel of the Linux
operating system. In [21], introduced an IoT-based security
system that worked in two stages. In the initial stage, the
system mapped the identities and names with the file produced
during the training process, and in another stage, training
examples were given to separate the rival nodes from the
reliable ones. The most valuable section of the suggested
scheme was the performance of the machine learning method
at the connection levels. Ahmed et al. [22] introduced an
identification scheme that also repeatedly used two stages
process. An artificial neural network design was adopted to
detect anomalies in the first stage. A tag method was added
during the other stage, which was applied to identify the
malicious connections.

Wazid et al. [23] presented an edge IoT system for intrusion
detection to protect from routing attacks. Zhao et al. [24]
introduced several communication applications that added
software-based networking ideas using machine learning meth-
ods. Authors principally concentrated on the importance of
traditional machine learning algorithms in SDN-based net-
works. Zhao and Dong [25] suggested a feature based selection
method using potential entropy evaluation criteria to examine
the number of the data by weighing their importance. Authors
in [26] suggested a security threat identification system using
machine learning techniques to recognize and describe intru-
sions. The generated IoT data transmitted from end devices
to the data server was further processed by machine learning
that helped in the detection of malware attacks. Similarly, a
lot of other efforts are also made by different researchers for
malware detection using different data sets and samples. Like

Aziz et al. [27], applied feature extraction method and feed-
forward neural network for classification of malware threats
utilizing a data set of 1710 samples obtained from eight
malware classes. Authors in, [28] used heterogeneous global
and local characteristics or features of malware images and
then used machine learning to classify threats. Their work used
9339 samples from 25 different classes of malware. Mahmoud
et al. [29] developed CNN architecture to analyze malware
attacks from the binary executable corpus. Furthermore, this
architecture randomly chooses 10% samples to examine the
malware classes in every sequence. Zhihua et al. [30] produced
a malware classification paradigm applying CNN on 9339
samples obtained from 25 distinct malware classes.

From the above brief discussion, it is concluded that re-
searchers to detect, identify, and classify malicious activities
and malware attacks and threats. In addition, researchers used
various data sets with varying no of samples for training and
testing experimentation’s, but mostly utilized a limited number
of data sets and classes of malware attacks. However, in this
work we proposed a deep learning-based 5G enabled malware
classification system for Industrial IoT. Our presented system
comprises of multi-layer CNN architecture that can classify
25 different classes of attacks and achieves good results on
benchmark data sets.

III. 5G-ENABLED MALWARE DETECTION IN IIOT
In this work, we presented a 5G enabled IIoT system; the

developed system can be used for various applications, e.g.,
smart agriculture, manufacturing, healthcare, transportation,
and smart cities. The developed system will also be capable
of operating various machines in different industries. It can
be seen that various intelligent sensors, actuators, cameras,
robots, machines, IC controllers, IoT based chips collect
the necessary information and communicate that information
using the internet and 5G infrastructure. The 5G infrastructure
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provides fast communication links and a low latency rate to the
smart sensors, devices, and systems to efficiently process the
information to the cloud servers. However, like conventional
methods, communication links and IoT devices, sensors, and
systems are also targeted by intruders and attackers. The
activities of intruders intercept the data coming or generating
from an IIoT device or system. An intruder can take over
an insecure and vulnerable IIoT machine/device or system
and apply it as a platform for originating attacks or threats
against other network systems and resources, which affect the
normal operations of the system within industries. Thus, a
smart system is needed here that can identify such attacks and
prevent the systems from unnecessary operations.

In this paper, we adopted the 5G-enabled solution proposed
in [5] to securely collect information about the IIoT system
in operation with the scope of using them to detect malware
activities. In order to classify malware attacks from the col-
lected information, we leverage artificial intelligence and pass
the information through a multi-layer CNN architecture. As
an industry adopts more and more IIoT based systems, it
will become increasingly necessary to use an efficient system
and malware control strategy. More particularly, the industry
must be capable of confidently identifying IIoT systems to
prevent the use of miscreant or unreliable devices and sys-
tems. As from Figure 2, it can be seen that the collected
information is passed through a deep CNN architecture that
can help to classify the malware attacks, and the information
is sent back to the data servers connected to the cloud. The
response unit can perform the necessary action and prevent
IIoT applications from attackers and unusual activities. The
number of samples of data set containing 25 different classes
of malware attacks.Moreover, the details of the developed deep
learning architecture used for the classification of malware
attacks are provided in Figure 3. It can be seen that the
developed system is divided into two main sections, visual-
ization of malware attacks into grayscale images, which is
done using pre-processing, and the proposed multi-layer CNN
architecture. The effectiveness of the CNN architecture in
malware image classification/identification/recognition tasks is
the primary purpose of using the proposed technique. The
detail of the proposed system is provided in the following
subsections:

A. Data Pre-Processing
The CNN architecture developed in this work has experi-

mented on the Malimg data set 1, consisting of 9,339 malware
samples from 25 distinct malware classes [31]. As shown in
Figure 3, malware binaries are converted into an 8-bit unsigned
integer that is composed of a matrix MϵRm×n. The obtained
matrix is further visualized as a grayscale image possessing
values ranging between [0 to 255], where 0 expresses black
and 1 represents white. The converted binary images are shown
in Figure 3. The obtained grayscale images are resized to a
2-dimensional matrix of 64 × 64 and are flattened into an
n × n size array. Every feature array is further labeled with

1https://vision.ece.ucsb.edu/research/
signal-processing-malware-analysis

its identical indexed malware class name (i.e., 0 - 24). Later,
the features are normalized using Equation 1.

z =
X − µ

σ
. (1)

where X is the feature that is normalized, σis its standard
deviation, and µ is its mean value. The data set we used
is unbalanced; to balance the data set, several methods are
available in the literature; however, in this work, we used the
class weight method in which higher weight is assigned to the
minority class, and lower weight is assigned to the majority
class. In this way, weights values of y axis are automatically
adjusted and inversely proportional to the frequencies of the
corresponding class in the input data.

B. CNN Architecture for Malware Classification

After converting malware attacks into grayscale images,
the data set is split into three categories, (i) training data
samples, (ii) testing data samples, and (iii) validation data
samples. For training of CNN architecture, we used 80% of
the data. The multilayer CNN architecture is used to learn the
features as shown in Figure 3. The input and the predicted
outcome are involved in the training process. The proposed
architecture consists of pre-processed input images, multiple
CNN layers, Max-pooling layer, Flatten layer, and a fully
connected layer used for classification. As stated earlier, that
input image is an array of pixels. A two-dimensional grayscale
input image matrix is produced, which is further given to
the multilayer CNN architecture, which will make further
processing on the malware images. The overall architecture
consists of multiple Convolution layers, Maxpooling layers
followed by each Convolution layer, the Dense layer, the
activation layer, and the fully connected layer.

The CNN layers obtained a feature map, for which an
operation of convolutional is made on the matrix as an input
image. The extracted features of the CNN layers are reduced
using the max-pooling layer. It reduces filter sensitivity, vari-
ations, and noise. All convolution layers work similarly to
the first; however, the primary layer accumulates low level
characteristics or features from the input image, while other
layers mainly extract the high-level features. After that, in
other max-pooling layers followed by convolutional layers,
the exact function of the first max-pooling layer is offered
for reducing the feature map dimensionality. It produces an
array of feature pools. The flattening layer performs a method
on the matrix, which is received from the last max-pooling
layer. A pooled feature matrix is then transformed into a
feature vector by this layer, and a column or vector that is
obtained. The obtained feature vector from the flatten layer is
utilized for classification. In this work, we applied the softmax
activation functions for classification. Finally, the input images
are examined for malware classification.

As shown in Figure 3, the input image consists of an
array of pixels. A two-dimensional image matrix at the input
is produced by applying a shape parameter given to CNN
architecture for further processing. The primary layer in a
CNN architecture performs the feature extraction. The matrix

https://vision.ece.ucsb.edu/research/signal-processing-malware-analysis
https://vision.ece.ucsb.edu/research/signal-processing-malware-analysis
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Fig. 3: A brief technical overview of the proposed system, (a) Visualizing malware as a gray scale image. (b) Proposed CNN
architecture, (c) Detailed of the proposed CNN architecture.

of features is generated by convolving the input image matrix
with training filters, as shown in Figure 3. A filter matrix K
is employed for convolution on image matrix I , producing a
function map F . Equation 2, is utilized to estimate the matrix
F , as follows:

Fr,c = R
(
Kw,b ⊛ Ir+w−1,c+h−1 + b

)
. (2)

In Equation 2, the matrix row is indicted with r, the matrix
column is represented with c, the width and height of the filter
are described with w and h, and I represents the limit of the
filter. The value of r is ranging between 1 ≤ w ≥ l; the
variable c varies from 1 ≤ h ≥ l. The activation function
(ReLU) is represented with R. ⊛ indicating a convolutional
function, and b holds the bias value. The primary goal of
the ReLU is to represent the non-linearity in the architecture,
applying f(x) = max(x, 0) . To calculate the matrix F , we
apply the below equation:

F = [f1,1, f1,2, · · · f1,n]. (3)

After each convolution layer, the sub-sampling layer, also
recognized as the max-pooling layer, reduces extracted input
function maps, also called down-sampling. In this work, we
perform the operation of max-pooling on the feature map in
order to reduce its size and dimensions. The given equation is
applied to estimate the max-pooling function.

Mr,c = max(Fr+w−1,c+h−1). (4)

While the feature map at pooling layer is estimated as
follows:

M = [m1,1,m1,2, · · · ,mn,m]. (5)

The other convolution layers are applied to obtain high-
level characteristics/features from the max-pooling layer input.
The computation time of each convolution layer is the same
as the initial convolution layer (Equation 2, and Equation 3).
The purpose of the other max-pooling layers is to overcome
the dimension of the feature matrix. Other layers are also
computed similarly (Equation 4, and Equation 5). This layer
is at the end of the max-pooling layer, which takes input from
the final max-pool layer. The principal objective of a max-
pooling layer is to transform a feature vector or column from
a feature matrix obtained from the pooling layer. The feature
map M components are re-shaped into the vector of features
by re-structuring the function, defined as:

Fv = pooled.reshape(f − w + 11(v − h+ 1)). (6)

At the end, for classification, the probabilities for the different
malware classes are determined by shaping a dense layer
with a fully connected layer with multiple neurons applying
softmax functions. Therefore, the net input is obtained as
follows:

uj =

f∑
i

wixi + b. (7)

In Equation 7, weight vector is represented with w, input
vector with x, and bias term is represented with b. The
above discussed classification architecture classifies 25 differ-
ent classes of malware attacks for industrial IoT environments.
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IV. EXPERIMENTAL RESULTS

This section provides a detailed discussion of the various
experiments performed to assess the performance of the above-
discussed system. A publicly available data set, namely, the
Malimg data set, was used for the experimentation of the
proposed malware detection method. As stated previously,
the Malimg data set comprised 9339 samples of 25 malware
classes. The experiments were performed on an Intel Core M3,
7th Generation, 64-bit operating system with 8GB RAM; the
proposed CNN model was introduced using python program-
ming language, Keras, and TensorFlow libraries. A flexible
environment is designed for deep learning models adopt-
ing hyperparameters. It does operations by applying multi-
dimensional arrays to achieve parallel execution and speed up
the classification process. The training data set is comprised
of 70% of the data, while for testing, 20% of the original
data is used to assess the CNN architecture. In addition, data
validation is used to overcome underfitting and overfitting,
which happens when training performance is significant, and
it decreases when the architecture is tested on the new data.
The training and testing observations are shown in Figure 4
and 5. The training and testing loss shows that it can be seen
that both loss curves are descending values; the training and
testing values range between 0.8 and 0.5. Similarly, as seen
in Figure 5, the training and testing accuracies are increasing
with a number of epochs and improving the performance of
the model. The training and testing accuracies range between
0.8 and 0.85.
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In Figure 6, we have shown the classification results of
the above-discussed architecture. The above models effectively
classify 25 different attacks of malware families. It can be seen
that all malware attacks in the gray-scale images are more alike
each other. However, still, the proposed deep learning model
effectively classifies the images with excellent results. The
efficiency of the model is evaluated using different evaluation
parameters. The evaluation parameters are calculated using
a confusion matrix where we note good performances for
most of the malware apart from Autorun.K that is constantly
mistaken for Yuner.A. and Swizzor.gen!E that in many cases
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Fig. 5: Training and Testing Accuracy.

was mistaken as Swizzor.gen!l.
We determined Accuracy, Precision, and Recall for all

different kinds of malware attacks as depicted in Table I.
It can be seen that the architecture achieves maximum re-
sults for Agent.FYI, Adialer.C, Allaple.L, Autorun.K, Don-
tovo.A, Dialplatform.B, Fakerean, Lolyda.AA3, Instantaccess,
Malex.gen!J, Rbot!gen, Obfuscator.AD, VB.AT, Skintrim.N,
and Yuner.A, that is 96%. The minimum accuracy is obtained
for Swizzor.gen!I that is 65%.

TABLE I: Results of the model for different malware attacks.

S.No Malware Class Acc(%) Prec(%) Rec (%)
1 Adialer.C 96 94 98
2 Agent.FYI 96 94 97
3 Allaple.A 94 90 94
4 Allaple.L 96 93 97
5 Alueron.gen!J 92 93 95
6 Autorun.K 96 94 97
7 C2LOP.P 86 80 86
8 C2LOP.gen!g 80 79 82
9 Dialplatform.B 96 93 98

10 Dontovo.A 96 93 98
11 Fakerean 96 93 98
12 Instantaccess 96 93 98
13 Lolyda.AA1 93 92 92
14 Lolyda.AA2 92 90 92
15 Lolyda.AA3 96 92 98
16 Lolyda.AT 92 90 94
17 Malex.gen!J 96 90 97
18 Obfuscator.AD 96 92 97
19 Rbot!gen 96 92 97
20 Skintrim.N 96 92 97
21 Swizzor.gen!E 72 69 76
22 Swizzor.gen!I 65 62 69
23 VB.AT 96 93 97
24 Wintrim.BX 92 92 95
25 Yuner.A 96 94 97

Average 91.92 89.16 93.44

The average precision and recall value of the above dis-
cussed model for each malware class is presented in Figure 7.
In the figure, the precision and recall percentage are plotted
from 0 to 100. It can be seen that the architecture achieves
excellent results, as the precision rate mostly classes, e.g.,
for Adialer.C, Agent.FYI, Allaple.L, Autorun.K, Dialplat-
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Fig. 6: Classification results of 25 different classes of malware attacks.

form.B, Dontovo.A, Fakerean, Instantaccess, Lolyda.AA3,
Malex.gen!J, Obfuscator.AD, Rbot!gen, Skintrim.N, VB.AT,
and Yuner.A, is more than 95%. The minimum result is
obtained for Swizzor.gen!I that is 60%.

Fig. 7: Precision and Recall rate of the CNN architecture for
different malware attacks.

The average accuracy rate with standard error is depicted
in Figure 8; for all classes, the CNN architecture achieves
good results for 25 different classes of malware attacks. The
accuracy of Agent.FYI, Allaple.A, Allaple.L, Alueron.gen!J
and Autorun.K, Dialplatform.B, Dontovo.A, Instantaccess,

Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT,
Malex.gen!J, Obfuscator.AD, Rbot!gen, Skintrim.N, VB.AT,
Wintrim.BX, and Yuner.A is more than 90%, while C2LOP.P,
and C2LOP.gen!g is 86%. The minimum accuracy is recorded
for Swizzor.gen!E, and Swizzor.gen!I.
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Fig. 8: Accuracy of the CNN architecture for different mal-
ware classes.

The comparison of the proposed method with traditional
models is shown in Table II. The overall average accuracy
of machine learning based models, including Support Vector
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Machine (SVM) is 90%, Multilevel Perceptron is 92%, and
Random Forest is 93%. In comparison, the deep learning based
model like, VGG achieves 95% accuracy. It can be seen that
among all the proposed CNN architecture gives good results,
with an accuracy of 97%.

TABLE II: Comparison with traditional models.

S.No Classification Algorithm Acc (%)
1 SVM 90
2 Multilevel Perceptron 92
3 Random Forest 93
4 CNN VGG 95
5 Proposed CNN 97

V. CONCLUSIONS

This paper presented a 5G enabled system consisted deep
learning-based architecture to classify malware attacks on the
IIoT. A methodology is proposed for malware analysis is
based on grays scale image visualization and a deep learning
network. An integrated method is applied to propose a CNNs
architecture that is designed to differentiate various malware
attacks. The proposed architecture extracts complementary
discriminative features by combining multiple layers. The
system results are compared to previous methods; the exper-
imental results reveal that the presented system’s accuracy is
improved. The presented system achieves 97% accuracy on
the benchmark data set. In the future, we might continue
this work for other types of cybercrime activities in other
applications. We can also apply and utilize other deep learning-
based models and architectures for the analysis, detection, and
classification of different malicious activities.
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Ramallo-González, A. Skarmeta, C. Trochoutsos, D. Calvo, T. Pari-
ente et al., “An artificial intelligence-based collaboration approach in
industrial iot manufacturing: Key concepts, architectural extensions and
potential applications,” Sensors, vol. 20, no. 19, p. 5480, 2020.

[8] P. Deflorin, M. Scherrer, and K. Schillo, “The influence of iiot on man-
ufacturing network coordination,” Journal of Manufacturing Technology
Management, 2021.

[9] M. Compare, P. Baraldi, and E. Zio, “Challenges to iot-enabled pre-
dictive maintenance for industry 4.0,” IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4585–4597, 2019.

[10] B. Almadani and S. M. Mostafa, “Iiot based multimodal communication
model for agriculture and agro-industries,” IEEE Access, vol. 9, pp.
10 070–10 088, 2021.

[11] C. A. Ardagna, R. Asal, E. Damiani, N. El Ioini, and C. Pahl, “Trust-
worthy iot: An evidence collection approach based on smart contracts,”
in Proc. of IEEE SCC. IEEE, 2019, pp. 46–50.

[12] J. Sengupta, S. Ruj, and S. D. Bit, “A comprehensive survey on attacks,
security issues and blockchain solutions for iot and iiot,” Journal of
Network and Computer Applications, vol. 149, p. 102481, 2020.

[13] M. Anisetti, C. A. Ardagna, N. Bena, and E. Damiani, “An assurance
framework and process for hybrid systems,” in International Conference
on E-Business and Telecommunications. Springer, 2020, pp. 79–101.

[14] M. Anisetti, C. A. Ardagna, N. Bena, and A. Foppiani, “An assurance-
based risk management framework for distributed systems,” in Proc. of
IEEE ICWS. IEEE, 2021, pp. 482–492.

[15] M. Anisetti, F. Berto, and M. Banzi, “Orchestration of data-intensive
pipeline in 5g-enabled edge continuum,” in Proc. of IEEE Edge, 2022
(to appear).

[16] V. Sharma, I. You, K. Yim, R. Chen, and J.-H. Cho, “Briot: Behavior
rule specification-based misbehavior detection for iot-embedded cyber-
physical systems,” IEEE Access, vol. 7, pp. 118 556–118 580, 2019.

[17] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K.-
K. R. Choo, “A two-layer dimension reduction and two-tier classification
model for anomaly-based intrusion detection in iot backbone networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp.
314–323, 2016.

[18] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a lightweight
intrusion detection system for the internet of things,” IEEE Access,
vol. 7, pp. 42 450–42 471, 2019.

[19] W. Li, S. Tug, W. Meng, and Y. Wang, “Designing collaborative
blockchained signature-based intrusion detection in iot environments,”
Future Generation Computer Systems, vol. 96, pp. 481–489, 2019.

[20] D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and
Y. Elovici, “Hades-iot: A practical host-based anomaly detection system
for iot devices,” in Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, 2019, pp. 479–484.

[21] A. Mudgerikar, P. Sharma, and E. Bertino, “E-spion: A system-level
intrusion detection system for iot devices,” in Proc. of the ACM Asia
conference on computer and communications security, 2019, pp. 493–
500.

[22] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, “Intelligent intrusion
detection in low-power iots,” ACM Trans. Internet Technol., vol. 16,
no. 4, dec 2016.

[23] M. Wazid, P. Reshma Dsouza, A. K. Das, V. Bhat K, N. Kumar, and J. J.
Rodrigues, “Rad-ei: a routing attack detection scheme for edge-based
internet of things environment,” International Journal of Communication
Systems, vol. 32, no. 15, p. e4024, 2019.

[24] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A survey
of networking applications applying the software defined networking
concept based on machine learning,” IEEE Access, vol. 7, pp. 95 397–
95 417, 2019.

[25] L. Zhao and X. Dong, “An industrial internet of things feature selection
method based on potential entropy evaluation criteria,” IEEE Access,
vol. 6, pp. 4608–4617, 2018.

[26] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for iot security based on learning tech-
niques,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.
2671–2701, 2019.

[27] A. Makandar and A. Patrot, “Malware class recognition using image
processing techniques,” in Proc. of ICDMAI. IEEE, 2017, pp. 76–80.

[28] H. Naeem, B. Guo, F. Ullah, and M. R. Naeem, “A cross-platform
malware variant classification based on image representation,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 13, no. 7,
pp. 3756–3777, 2019.

[29] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and
F. Iqbal, “Malware classification with deep convolutional neural net-
works,” in Proc. of 9th IFIP NTMS. IEEE, 2018, pp. 1–5.

[30] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen, “Detection of
malicious code variants based on deep learning,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.

[31] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of the
8th international symposium on visualization for cyber security, 2011,
pp. 1–7.


	Introduction
	Related Work
	5G-Enabled Malware Detection in IIoT
	Data Pre-Processing
	CNN Architecture for Malware Classification 

	Experimental Results
	Conclusions
	References

