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Abstract—The advancement of Internet and Communication
Technologies (ICTs) has led to the era of Industry 4.0. This shift
is followed by healthcare industries creating the term Healthcare
4.0. In Healthcare 4.0, the use of IoT-enabled medical imaging
devices for early disease detection has enabled medical prac-
titioners to increase healthcare institutions’ quality of service.
However, Healthcare 4.0 is still lagging in Artificial Intelligence
and big data compared to other Industry 4.0 due to data
privacy concerns. In addition, institutions’ diverse storage and
computing capabilities restrict institutions from incorporating
the same training model structure. This paper presents a secure
multi-party computation-based ensemble federated learning with
blockchain that enables heterogeneous models to collaboratively
learn from healthcare institutions’ data without violating users’
privacy. Blockchain properties also allow the party to enjoy data
integrity without trust in a centralized server while also providing
each healthcare institution with auditability and version control
capability.

Index Terms—Blockchain, Ensemble Learning, Deep Learning,
Artificial Intelligent, Federated Learning, Privacy Preservation,
Secure Multi-party Computation

I. INTRODUCTION

Ubiquitous computing, such as Artificial Intelligence (AI),
the Internet of Things (IoT), and data mining, has transformed
the manufacturing and engineering sectors, introducing the
digitized Industrial era, also known as Industry 4.0 (I4.0). With
the advent of I4.0, organizations have incorporated informa-
tion and communication technologies (ICTs) to provide more
efficient, scalable, and flexible services. I4.0 in the healthcare
sector introduces the term Healthcare 4.0 (H4.0). The adoption
of H4.0 in the healthcare system is argued to enable the shift
from hospital-centered to patient-centered services, in which
the interconnected healthcare ICTs are personalized based on
the patients’ needs and integrated to produce the best patient
health outcome [1].

Despite the benefit, H4.0 is still lagging in Artificial In-
telligence (AI) and big data compared with other sectors
in I4.0. One constraint is that H4.0 usually incorporates
clients’ sensitive information. Hence, data sharing for AI
model training may be constrained, resulting in insufficient
data representation [2]. Thus, trained AI models may perform
poorly.

The Federated Learning (FL) method was proposed to
overcome data privacy concerns. FL allows multiple parties
to train a single global model on a centralized server using
their own local data without sharing the data. This is done
by sharing server model parameters with each participant. Al-
though adherence to regulations and data privacy are enhanced

using the proposed method, FL still suffers several aspects. In
defining the problem, we focus on privacy preservation on the
machine learning model for image classification task using FL
in H4.0.

Fig. 1: Centralized FL without privacy-preservation method

As shown in Figure 1, hospitals participating in the FL
process first collect medical data from their patients and store it
locally in their local database. These data are kept secret from
other hospitals and external parties to ensure patients’ privacy.
Then, the data are fed to the corresponding hospitals’ local
model to enhance its performance. Next, local models from
each hospital are sent to the cloud server to be aggregated to
create a global model. Eventually, the global model parameters
are sent back to the hospitals for the subsequent FL process.

Intuitively, FL is safer than centralized training because data
collected by each hospital are kept secret by the corresponding
party. However, current FL methods are still faced some
practical challenges. Privacy has been an ongoing concern in
FL. [3] argued that a trained local model contains rich semantic
information that can be traced back, resulting in the recon-
struction of raw data distribution used for training. [4] and [5]
show a successful model inversion and membership inference
attack that can determine whether a record was used as part of
the machine learning model’s training. Hence, if exposed to
adversaries, a trained local model may be vulnerable to model
inversion and membership inference attacks. Data integrity
is another complexity in FL. The FL model parameters sent
over the network are prone to tampering, resulting in incorrect
model parameter training.

To tackle these issues, several existing studies have inte-
grated blockchain with some privacy preservation methods,
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such as Differential Privacy (DP) [6], [7], Homomorphic
Encryption (HE) [7], and Secure-Multiparty Computation
(SMPC) [8] in the FL scheme. Blockchain fool-proof resis-
tance property enables the party to prevent data tampering,
while the privacy-preserving method used in FL can prevent
parties from disclosing clients’ private information.

Nevertheless, the existing proposed methods consider FL
schemes such as FedAVG [9] and FedSGD [10], which
assumes that all participants’ devices have similar models.
This may not be the case in practice since different ma-
chine learning model structures may be employed because
of differences in edge devices’ computing resources, power
consumption, and storage capacity. Each institution may also
have its policy, which states the machine learning model
structure used in their system. Hence, when resources with
heterogenous computing power are involved, efficiency is an
additional practical constraint that adds to the complication of
FL.

To tackle privacy issues caused by shared model parameters
and to ensure shared model integrity, this paper proposes a
privacy-preserving blockchain-based ensemble-integrated FL
scheme for image classification tasks in the context of H4.0.
In the proposed method, we assume that each hospital has a
similar model structure. Hence, healthcare devices within the
institution may perform FL using the existing FL algorithm.
However, the learning model structure between different hospi-
tals may differ. For this, we propose a weighted ensemble Deep
Learning (DL) to enable the aggregation of heterogeneous
model structures to produce a final global model. We use
model accuracy evaluation to determine the ensemble model
weights. This allows misbehaving or lower-performing models
to contribute less to the final outcome. In this manuscript, we
consider each entity to be honest but curious. Hence, we utilize
an SMPC-based method for ensemble model evaluation across
hospitals to ensure privacy guarantees of the models produced
by hospitals. Finally, to ensure data integrity and auditability,
we leverage the use of blockchain.

II. RELATED WORK

In H4.0, the incorporation of ICT devices and AI poses
great challenges to privacy protection and data integrity in
real-world applications. FL was proposed in [11] to jointly
train a global model without sharing the local datasets with
the global server. Intuitively, a basic privacy guarantee can
be achieved by this method because the private datasets are
not transmitted to the global server. However, FL alone is
not sufficient to provide a privacy guarantee. This has been
proven in [5], and [12], where the authors have demonstrated
successful membership inference and model inversion attacks,
respectively, on the exchanged FL model.

Previous studies have incorporated a DP method in the
learning process in tackling these issues. For example, authors
in [13], [14], [15], [16] proposed a DP-based mechanism
to obfuscate the trained local model parameters. Although
DP integration can provide a better privacy guarantee to a
certain extent, there is a trade-off between privacy and model
accuracy. For this reason, SMPC schemes tailored to FL have
been proposed.

In [17], the authors developed SMPC-based collabora-
tive learning by combining ElGamal encryption and Diffie-
Hellman key exchange protocol to preserve data privacy and
parameter privacy without sacrificing the resulting model’s
accuracy. [18] further enhances the privacy preservation in
collaborative learning by proposing SMPC-based collaborative
learning that is resistant to generative adversarial networks.
This is ensured by isolating participants from model pa-
rameters. Although both SMPC-based methods are able to
produce a high-performing model, it requires a high cost
in calculating complex functions. Therefore, implementing
the SMPC scheme while each party uses the same machine
learning model structure may not benefit the party with less
computing power.

Additionally, FL does not provide tamper-proof attributes to
ensure data integrity. The blockchain is a shared, immutable
ledger where transactions are recorded in the blocks that are
connected in chronological order. It has benefits in terms of
data integrity, open autonomy, nontempering, and anonymous
traceability [19].

The work in [20] proposed an incentive-based mechanism
in blockchain for robust FL model updates. Specifically, the
blockchain is used to store each participant’s ’reputation’ score
based on their performance history. The downside of the work
is that for any updates that are not classified as malicious,
clients will be positively rewarded. This is also true for clients
whose updates are regarded as malicious. Similarly, authors in
[21] presented an incentive-driven mechanism in blockchain
for FL called DeepChain. DeepChain aims to encourage par-
ties to participate actively and behave correctly in FL training
by giving rewards for their contributions. Nevertheless, the
cost given for updates of each participant has yet to be
considered. Hence, further investigation of the system costs
and rewards profit needs to be done to ensure that clients and
model owners benefit from the system.

While considering the privacy-preservation on the local
parameter updates, the work [22], [23] presented a joint
framework of blockchain, DP, and FL to protect data privacy in
Industrial Internet-of-Things (IIoTs). A DP approach is applied
by employing a randomized mechanism during the local model
training, producing a differentially private model update to
minimize individual record identification. Smart contracts are
used for parameter exchange between the participants and the
central authority to provide transparency. Thus, it enhances
the reliability and safety of the FL process against external
adversaries. Nonetheless, a privacy-preservation method such
as DP provides a high privacy guarantee at the cost of model
accuracy.

Author in [24] proposed a secure aggregation method
using Intel Software Guard Extension (SGX)-based Trusted
Execution Environment (TEE) to securely aggregate local
models in IIoTs. The proposed method is able to preserve the
privacy of local model parameters. However, unlike the work
proposed in [20] the proposed method does not consider local
model evaluation before the aggregation. Therefore, malicious
updates are considered to have the same contribution to the
global model.

Unlike the previous studies, our work does not utilize an
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incentive-based mechanism. Our proposed method focuses on
a general model evaluation for a fair model contribution. Each
participant can evaluate other participants’ machine learning
models to determine how well they perform towards unfore-
seen data. Then, based on the evaluation, each participant’s
machine learning models are weighted to determine their
contribution to the final predictions. The evaluation process
is handled by the blockchain nodes and recorded on tamper-
proof storage. Furthermore, we utilized the SMPC privacy
preservation method to preserve the machine learning model
privacy while considering that each participant has different
computing power. Therefore, we proposed a hierarchical en-
semble federated learning, which allows participants to define
their own model structure.

III. METHODOLOGY

This section first presents the architecture overview of the
proposed method. Then, we discuss each process: federated
learning, encrypted inference for ensemble model evaluation,
and blockchain for data integrity and trustworthiness. The
summary of notations used in the methodology can be seen in
Table I.

A. Architecture Overview
Our proposed architecture comprises edge servers, central

servers, hospitals, private blockchain, private blockchain for
multi-institutions, and a Trusted Third Party (TTP). In tackling
the constraints in existing studies of FL, we proposed the
architecture shown in Figure 2. We consider that there are
multiple hospitals Hi ∈ H that have their policy on the DL
model structure to be used in their system.H are considered as
honest-but-curious entities. Each H has edge servers Ei ∈ E
which are connected to a cluster of IoT-enabled or smart med-
ical imaging devices Ci. Edge servers from the same hospital
are considered to have the same computing power. Hence, a
hospital must apply the same learning model structure to all
of the edge servers based on its policy. However, edge servers
from different hospitals may use different model structures
based on the affiliated hospital’s policy.

The learning process of a hospital in our architecture starts
with Ei ∈ E training their local model Mi using the image
data collected from Ci. The trained local model is then verified
and stored in a private blockchain Bi owned by Hi. Then, Hi
collects all local models from Bi to be aggregated in their
central server Si to create a global model GMi. For each
transaction, Hi creates a smart contract maintained within
their private blockchain Bi. The private blockchain enables
the hospital to provide local data integrity.

For hospitals to collaborate, an SMPC protocol is followed
to perform encrypted inference, in which output is intended
solely to infer the data or to be used further for model evalu-
ation using other Hi data. The SMPC protocol is assisted by
a Trusted Third Party (TTP) in providing necessary variables
to keep the computation secret. Since SMPC is used during
this process, only shares of data and models are exchanged
between hospitals for their model evaluation. Therefore, pri-
vacy is preserved since the actual value of the hospital’s
model parameters and their data are kept secret. From the

SMPC process, GMi produces classification probabilities of
data provided by all H for evaluation. These probabilities are
then sent to the multi-institution private blockchain network
BM . Each node of the blockchain BM will then perform the
ensemble weight tuning calculation and verify the value of the
outcome. When verified, the fine-tuned weights are recorded
in the tamper-proof storage of BM .

TABLE I: Notations

H Set of hospitals
Hi Hi ∈ H
E Set of edge servers
Ei Ei ∈ E
Ci Cluster of smart medical imaging de-

vices
Mi Local model generated by Ei
B Set of private blockchains owned by

H
Bi Bi ∈ B
Si Central server owned by Hi

GMi Global model produced by Hi

BM Multi-institution private blockchain
T Total number of communication

rounds
e Epochs
k Number of participants in federated

learning
t Communication round
J Set of randomly chosen federated

learning participants from E

j j ∈ J
wt Weights of GMi in the current t
wje Weights of Mi in the current e
η Learning rate
gj Gradient calculated during Mi train-

ing
Nj Current total number of samples used

by j for training
θj Current state of the model parameters
∇ Derivatives with respect to θj
xi Input data
yi xi true label
f(xi) Prediction of xi
l(·, ·) Loss function
N Total number of samples used by J
[·] Arithmetic secret share value
< · > Binary secret share value
PHi

Output probabilities of GMi

hi Hash value to the corresponding
GMi or Mi

P̃ () Prediction of ensemble learning
model

α Sets of ensemble weights
α α ⊂ α
αi An ensemble weight value
αb Best set of ensemble weights combi-

nation
W A list of random value, 0 ≤W ≤ 1
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Fig. 2: Overview of the proposed architecture

B. Federated Learning
For model aggregation in the proposed architecture, Fe-

dAVG [9] is used. Algorithm 1 shows the steps of FedAVG
in detail.

Algorithm 1: FedAVG
Input:

wt - weights of GMi owned by Hi

Output:
AggMj - Aggregated local models

1 Initialization:
2 communication rounds, T
3 epochs, e
4 number of participants, k
5 begin
6 for t← 0 to T do
7 J ← random participant(E, k)
8 for j ∈ J do
9 recieve wt from Si

10 wj
e ← wt

11 for e← 0 to e do
12 wj

e+1 ← wj
e − ηgj

13 endfor
14 endfor
15 AggMj ←

∑J
j=1

Nj

N
wj

e+1

16 endfor
17 return AggMj

18 end

The process starts with central server defining the total
number of communication round T , epochs e, and number
of participants k. Then, for each communication round t the
server randomly chooses k participants from E. The pool of
randomly chosen participants is denoted as J . Next, server
sends wt, which represents the GMi weights, to each partici-
pant j ∈ J . Each j then copy wt to their local model variable

wje. Next, they train the model and obtain the updated weight
wje+1 by calculating weights update function wje − ηgj . Here,
wje represents the current weight, η represents the learning
rate, and gj is the gradient calculated during the training. The
gradient can be calculated as shown in Equation 1

gj =
1

Nj

N∑
i=1

∇θj l(f(xi), yi), (1)

where, gj is the gradient of the current step, Nj is the number
of samples used in the current training step by participant j,
θj is the current state of the model parameter, ∇ is used to
refer to the derivative with respect to every parameter, f(xi)
is the model prediction with respect to input sample xi, yi is
the true label of input sample xi, and l() is the loss function.

When model training by each participant is done, they send
wje+1 to the server. The server then aggregates the received
local model producing an aggregated local model AggMj

using the equation as follows:

J∑
j=1

Nj
N
wje+1 (2)

Here, j is a specific participant within the training phase,
Nj is the number of j participant’s training samples, and N
is the total samples used for training across all participants.
The resulting aggregated model will then replace the current
GMi.

C. Encrypted Inference for Ensemble Model Evaluation
Each hospital can enjoy the ensemble model by combining

the output probabilities from multiple GMi. However, since
the hospitals are assumed as honest-but-curious entities, shar-
ing GMi to other H without privacy is not possible. Hence,
an SMPC protocol is used in securing the GMi. We consider
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using arithmetic and binary secret sharing to implement secure
computations for data inference.

In arithmetic secret sharing an input value x ∈ Z/QZ is
shared amongst H. Here Z/QZ is a ring with Q elements.
To share the value x, H generate a pseudorandom zero-share
[25]. The secret shares from a value x is denoted as [x] =
{[x]Hi

}Hi∈H, where [x]Hi
∈ Z/QZ is x share of party Hi.

The shares must fulfill a condition such that the sum of all
shares reconstructs the value of x as shown in Equation 3.

x =
∑
Hi∈H

[x]Hi (3)

In binary secret sharing, x operates in Z/2Z. Shares of value
x can be denoted as 〈x〉. All H shares must hold a condition
such that x = ⊕Hi∈H 〈x〉Hi

.
Since both binary and arithmetic secret sharing have homo-

morphic properties, they can be used for secure computation.
Operations required in our model include addition, multiplica-
tion, and comparison. Private addition and multiplication can
be done under arithmetic secret sharing, while comparison falls
under binary secret sharing. Hence, secret shares conversions
from [x] to 〈x〉 and vice versa are needed. The conversion of
[x] to 〈x〉 is done by creating binary secret share of every bits
in [x]Hi such that it satisfy 〈x〉 =

∑
Hi∈H 〈[x]〉. To convert

〈x〉 to [x], the equation [x] =
∑B
b=1 2

b
[
〈x〉(b)

]
is used. Here,

B is the total number of bits in 〈x〉 and b represents the b-th
bits of binary share 〈x〉. To calculate

[
〈x〉(b)

]
, a TTP generates([

r(b)
]
,
〈
r(b)
〉)

. Next,
[
〈x〉(b)

]
=
[
r(b)
]
+ z(b) − 2

[
r(b)
]
z(b)

is calculated. Here, z(b) is obtained by masking 〈x〉(b) with〈
r(b)
〉
.

In private addition, Hi ∈ H adds their shares such that
[z]Hi

= [x]Hi
+ [y]Hi

. For multiplication, random Beaver
triples proposed by [26] is implemented. In the process a
TTP provides triples ([a], [b], [c]), such that c = ab. Each
Hi ∈ H then compute [ε] = [x] − [a] and [δ] = [y] − [b].
Value [ε] and [δ] are then decrypted producing ε and δ. Finally,
[x][y] = [c] + ε[b] + [a]δ + εδ is calculated. For comparison,
an evaluation function [z < 0] is used. To securely compute
comparison of an arithmetic share, first, [z] is converted into
〈z〉. Then, a sign bit is computed using 〈b〉 = 〈z〉 � (L− 1),
where L is the length of bits. Finally, the resulting bit is
converted back into arithmetic sharing [b]. When checking if a
value is greater than 0, for example ReLU activation function,
the function can be written as ReLU([x]) = [x][x < 0]. On
the other hand, when comparing two values, the two shares are
subtracted [z] = [x]− [y], then it is evaluated using [z < 0].

The process of encrypted model evaluation is shown in
Algorithm 2 and 3. Algorithm 2 shows the steps done on the
Model Owner (MO) site. Assume that Hi is an MO. Suppose
that wt is the parameter of GMi and there exists h number
of hospitals in the system. The MO first creates h shares of
wt. The shares {[w]Hi

}Hi∈H is then send to the respective
hospital. Next,Hi receives shares of input data and their labels
([x], y) from other hospitals to evaluate the model. In this
case, we assume that Hi ∈ H other than MO acts as DO.
Next, MO starts secure computation across all participants to
produce shares of output probabilities [PHi ]. Finally, [PHi ]

is decrypted using Equation 3. The decrypted probabilities
PHi

and corresponding labels y are then sent to the cloud
for ensemble model weights fine-tuning.

Algorithm 2: Encrypted Inference (MO)
Input:

wt - weights of GMi owned by Hi

h - number of participating H
Output:

PHi - output probabilities
1 Initialization:
2 Number of H, h
3 begin
4 {[wt]Hi}Hi∈H = create share(wt, h)
5 foreach Hi ∈ H do
6 send([wt]Hi ,Hi)
7 end
8 Recieve ([x], y) from DOs
9 [PHi ] = start secure computation([wt]Hi , [x])

10 PHi = decrypt([PHi ])
11 return PHi , y

Algorithm 3 shows the steps required at Data Owner (DO)
site. First, the DO prepares pre-processed data for evaluation
(x, y). Here x denotes image data, and y is the true label of
the data. DO then creates h shares of x, which is denoted
as {[x]Hi

}Hi∈H. The shares are then sent to each Hi ∈ H.
Finally, it starts the secure computation process using the
weight received from MO to produce [PHi ], which is then
sent back to the MO to be decrypted.

Algorithm 3: Encrypted Inference (DO)
Input:

[w]Hi - shares of model parameters
Output:

[PHi ] - output probabilities shares
1 Initialization:
2 Input data and labels for model evaluation, (x, y)
3 begin
4 {[x]Hi}Hi∈H = create share(x, h)
5 foreach Hi ∈ H do
6 send([x]Hi ,Hi)
7 end
8 [PHi ] = start secure computation([w]Hi , [x])
9 return [PHi ]

D. Blockchain for Data Integrity and Trustworthiness
Blockchain in the proposed architecture is divided into two

categories. The private blockchain Bi that is owned byHi ∈ H
and a multi-institutional private blockchain BM which can be
accessed by all of the H.
Bi ensures that each local and global model update is

verifiable and trustworthy. Meaning that the internal party
will not be able to tamper parameters of the model being
exchanged. In the process, as shown in Figure 3, a private
blockchain network Bi receives local model updatesMi from
edge server Ei or a global model GMi. Then, Bi generates
the hash hi of the respective model and the model ID Mid.
Next, the miner within Bi join together to run a consensus
mechanism to verify the respective model.
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Edge Server (𝑬𝒊𝟏) Edge Server (𝑬𝒊𝒋) 

Sends local model (𝑀𝒋) 

Central Server (𝑺𝒊) 

Sends global 
model (𝑮𝑴𝒊) 

Blockchain Network (𝑩𝒊)

Fig. 3: Blockchain for model verification

When the majority of blockchain nodes in Bi produce the
same hash of the corresponding model and Mid, a block is
appended to the blockchain block containing the model and
its hash. The consensus mechanism for model verification can
be seen in Algorithm 4, while the blockchain data structure
can be seen in Figure 4.

Algorithm 4: Private Blockchain Model Verification
Input:

Mi - local model to be verified
GMi - global model to be verified

Output:
hi - hash of the model and model id

1 Initialization:
2 Model hashes, HM = ∅
3 Model id = Mid

4 begin
5 foreach Bi ∈ B do
6 hi = generate hash(Mi||GMi,Mid)
7 HM.add(hi)
8 end
9 add Mi||GMi and Mid to blockchain if hi ∈ HM are the

same

Fig. 4: Private blockchain data structure

BM in our scenario is responsible for ensemble model
weights tuning and verification. The process is similar to Bi.
However, instead of a model to be verified, each node in BM
is responsible for performing ensemble model weight tuning
and verifying the best weight to be used for data inference.

Ensemble Model Weights Tuning. The weighted ensemble
model enables us to combine multiple heterogeneous mod-
els to predict based on the proportion of their estimated

evaluation. It also helps to reduce the number of prediction
errors resulting in higher performance. In general, weighted
ensemble learning can be denoted using Equation 4.

P̃ (α) =

h∑
i=1

αiPHi
(4)

Here, P̃ () represents the predictions of the ensemble model, α
is a list of weights, h is the number of H participating, αi is
the weight assigned to Hi, and PHi is the resulting prediction
probabilities of input data x on GMi. The best weight αb is
determined by calculating the number of correct predictions
when experimenting with different values of α. To find αb we
use Grid Search (See Algorithm 5).

Algorithm 5: Weight tuning using Grid Search
Input:

{PHi}Hi∈H - output probabilities
{GMid} - a set of global model id
y - list of true label

Output:
αb - best weights combination

1 Initialization:
2 list of possible weights, {W}, 0 ≤W ≤ 1
3 best weight, αb = 0
4 best accuracy, accuracyb = 0
5 number of hospitals, h
6 number of weights, n
7 begin
8 α = product(W,h)
9 foreach α ⊂ {α} do

10 α = l1 norm(α)
11 foreach i← 1 to n do
12 P̃ (α) =

∑h
i=1 αiPHi

13 P̃ = argmax(P̃ )

14 accuracy = score(P̃ , y)
15 if accuracy > accuracyb then
16 accuracyb = accuracy
17 αb = α
18 end
19 end
20 end
21 Broadcast {GMid} and αb to blockchain network

In the process, each node in BM first receives output
probabilities {PHi

}Hi∈H of global models GMi ∈ GM
from all hospitals H. All GM are tested against dataset
in an orderly manner. Hence, the first probability output of
{PHi

}, {PHi+1
}, ..., {PHn

} refers to the output from the same
data. It also receives a set of global model ID {Mid} used to
produce {PHi

}Hi∈H. Then, all BMi ∈ BM creates a list of
possible weights that is defined as {w1, w2, ..., wn} ∈W, 0 ≤
W ≤ 1, a variable to store a set of best weights αb, and a
variable to keep track of the best accuracy accuracyb obtained.
Next, the cloud creates α, which consists of Cartesian product
of all weights combinations. The cartesian product is denoted
as W1×W2× ...×Wn. A sample subset α ∈ {α} can consists
of combination weights w1, w2, ..., w1 with each subset con-
sists of n number of weights. Each weight in α represents the
contribution proportion of PHi

. For each weights combination
α ∈ {α}, an l1normalization technique is used to calculate
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P̃ (α) using equation 4. Then, a prediction P̃ is produced by
taking prediction with the highest probability value. Finally,
an accuracy score is calculated by comparing P̃ with the true
label y. If the current accuracy is higher than the current best
accuracy accuracyb, then the current α is broadcasted to the
blockchain network to be verified using consensus mechanism
in Algorithm 6. Data structure overview of the blockchain
blocks can be seen in Figure 5.

Algorithm 6: Ensemble Model Weights Verification
Input:

α - set of model weights to be verified
{GMid} - sets of global model id

Output:
hi - hash of the weights and model id

1 Initialization:
2 Model hashes, HM = ∅
3 begin
4 foreach Bi ∈ B do
5 hi = generate hash(α,GMid)
6 HM.add(hi)
7 end
8 add α and GMid to blockchain if hi ∈ HM are the same

Fig. 5: Private multi-institutional blockchain data structure

IV. RESULTS AND DISCUSSION

This section discusses the testing environment, datasets, and
the experimental setup used. We then compare the model
accuracy of our proposed approach with the orthodox feder-
ated learning approach. Finally, we empirically measure the
time consumption for ensemble weights tuning, encrypted
inference, and blockchain smart contract execution.

A. Testing Environment
We used AWS Sagemaker for our experiment. We chose

AWS p3.2xlarge machines, which contain 1 Tesla V100 GPU
with 16 GB GPU memory and 61 GB RAM. The experiments
were carried out using Python version 3.7.

B. Experimental Setup
In our experiment, we consider three hospitals participating

in the privacy-preserving distributed learning setup. Each
hospital has two participants participating in the federated
learning process. Each hospital has a different pre-defined
model structure. In our paper, we consider using AlexNet[27],
ResNet18[28], and Net[29].

C. Datasets
The effectiveness of the proposed model is tested against

two medical image datasets. The training datasets and models
are defined as follows:
• 2D Colon Pathology. This dataset consists of 3-channel

RGB 28 × 28 2D colon pathology images from patients
with colorectal cancer, which are classified into nine dif-
ferent categories. We retrieved the pre-processed images
from [30]. The dataset consists of 89.996 training data,
10.004 testing data, and 7,180 validation data.

• Breast Tumor. This dataset is retrieved from [31]. It
comprises 3-channel RGB 700 × 460 images of breast
tumor tissue using different magnifying factors (40X,
100X, 200X, and 400X). The images consist of 9.109,
with 2.480 classified as benign and 5.429 classified as
malignant.

In our experiment, we divided the dataset into three par-
titions, namely, training, testing, and validation. For the 2D
Colon Pathology, we follow the initial partition, while for
the Breast Tumor dataset, we divided it into 7.000 train-
ing data, 1.000 testing data, and 1.109 validation data. The
training dataset is used for federated learning within each of
the hospitals. For this, the data is split evenly amongst all
the participants within the hospitals. Validation data in our
scenario is used only for ensemble weights tuning. Testing
data is used to represent any unforeseen or future data to be
predicted. This partition will be used to test our initial public
model and the final ensemble model.

D. CNN Model Configuration
There are three CNN models that we use in this exper-

iment. Two models are pre-trained models, AlexNet [32]
and ResNet18 [33]. The other one is Net used in [30]. For
simplicity, the input taken by all CNN models is set to be
the same. That is an image with 3 × 100 × 100 in a format
of color channel × height × width. The output of the CNN
model is the probabilities of each class in the classification
task. We also use the same settings for the three CNN models
in terms of the training configuration. We set each model to
have a learning rate which is set to 0.001, 20 epochs with a
batch size of 128.

E. Ensemble-Federated Learning Model Accuracy
We compare our work with three different setups to evaluate

the effectiveness of our proposed method. The first one is
the traditional centralized CNN model, where all data is
collected in one database and used to train a single model.
Here, we combine training and validation datasets for model
training, while the testing data is used for the model evaluation.
The second setup is centralized federated learning, which
steps can be seen in Algorithm 1. In the training process of
federated learning, the training dataset is split evenly amongst
participants, while the global model is tested against the testing
dataset. The third setup is an FL with a TEE-based secure
aggregation scheme. For this experiment, we also used the
same experimental configuration used in the second setup.
Our proposed method, the traditional FL, and TEE-based
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FL scheme, consider the use of three participants during the
training. Table II shows the accuracy results on the four setups.

TABLE II: CNN model accuracy in different setup

Dataset Model Setup Model Name Accuracy

Colon
Pathology

Centralized
AlexNet 88.56%

ResNet18 96.10%

Net 86.5%

FedAvg [9]
AlexNet 84.70%

ResNet18 90.4%

Net 82.4%

TEE-based FL [24]
AlexNet 82.26%

ResNet18 87.5%

Net 80.08%

Ensemble-FedAvg

AlexNet+Net+ResNet18 91.37%

AlexNet∗ 86.14%

ResNet18∗ 92.61%

Net∗ 83.60%

Breast
Cancer

Centralized
AlexNet 85.05%

ResNet18 86.06%

Net 86.78%

FedAvg [9]
AlexNet 83.75%

ResNet18 85.82%

Net 84.71%

TEE-based FL [24]
AlexNet 82.24%

ResNet18 82.91%

Net 83.08%

Ensemble-FedAvg

AlexNet+Net+ResNet18 86.32%

AlexNet∗ 84.67%

ResNet18∗ 87.15%

Net∗ 86.02%

* All participants use the same machine learning model structure

Table II shows that the centralized setup produces slightly
higher accuracy than most of the other setups when tested
against the two datasets on AlexNet, ResNet18, and Net
models. This is because each model receives fewer data with
random distribution in the training process, making each model
less generalizable compared to a centralized setup. Meanwhile,
the model accuracies of our proposed method surpass the cen-
tralized setups when different models are used. This is because
our proposed method utilizes ensemble weight to improve
generalization and allow models with better performance to
contribute more to the final results. Thus, this confirms that our
proposed method does not sacrifice the accuracy of the data
prediction. In fact, it increases the model accuracy compared to
the existing studies. However, when a similar model structure
is utilized, our proposed method produces lower accuracies
compared to a centralized setup since different models can
better capture a particular feature of the data compared to
others. Hence, combining different models in the ensemble
setup result in better accuracy.

F. Ensemble-Federated Learning Model Performance
In terms of time consumption on our proposed system,

Figure 6 visualizes the time difference in ensemble model
weights fine-tuning in regards to the datasets being used as
well as the number of images used in the evaluation. Figure
6a and 6b both indicate a negligible increase in runtime as
the number of data being evaluated increases. Comparing both
figures, it is clear that the time taken to determine the ensemble

weights on the Colon Pathology dataset is higher than the
Breast Cancer dataset. This is due to the difference in the
number of classes in the classification tasks, with the Colon
Pathology classification task higher than the Breast Cancer
classification task.
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Fig. 6: Runtime taken to evaluate and fine-tune ensemble model
weights based on the number of images.

We then evaluate the time required by different models
to produce the image classification probability for ensemble
model weights tuning using the SMPC protocol. Here, we
also consider using a different number of images for the
experiments.
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Fig. 7: Runtime required to produce classification probability for
Colon Pathology and Breast Cancer on different CNN models using
SMPC

TABLE III: Model floating-point operations (FLOPs)

Model Dataset G-FLOPs

ResNet18
Colon Pathology 113

Breast Cancer 113

Net
Colon Pathology 87

Breast Cancer 87

Alexnet
Colon Pathology 44

Breast Cancer 44

As can be seen from Figure 7 runtime required during
the encrypted inference to produce classification probabilities
of images is more significant compared to ensemble model
weights tuning as the computation cost required is higher.



9

We further investigate the time required for different models
to execute the encrypted inference process. For this, we also
measure each model’s computational cost by calculating the
total number of floating-point operations (FLOPs) required in a
single forward pass using the Keras-flops library [34]. Results
are shown in Table III. Further investigation on the execution
time for different models revealed that models with higher
FLOPs, such as the ResNet18 model, require more time than
the others. While models with smaller FLOPs, such as Alexnet,
require less time to complete the encrypted inference process.
Hence, models with less computational cost are more suitable
for participants with smaller computing power. There is no
significant difference in the execution time when experiments
are run on different datasets, as the number of FLOPs is not
affected by the change in the datasets.

Finally, we provide the execution time required for the
blockchain to perform data deployment to the blockchain
network and data verification using the consensus mechanism.
In this experiment, we used the ResNet18 model in the
verification and deployment process. In Figure 8, we can
see that as the number of blockchain nodes increases, the
execution time required increases.
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Fig. 8: Runtime required to perform model deployment and verifi-
cation

A similar trend is also shown in Figure 9, which depicts the
time required for blockchain to verify and deploy hospitals’
ensemble model weights and model ID. This is because data
needs to be deployed to all of the blockchain nodes to be
verified. Hence, the increase in the number of nodes means
more data to be deployed. Each node also has to communicate
with all of the blockchain nodes to ensure the hash values are
identical before putting the transaction into the blockchain.
Hence, more communication costs are required when the
number of blockchain nodes increases, resulting in a longer
execution time. From both experiments, we can see that the
performance of the proposed model and ensemble model
weights verification and deployment are near real-time.
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Fig. 9: Runtime required to perform ensemble weights and model id
deployment and verification

V. CONCLUSION

We proposed an architecture that enables healthcare insti-
tutions to collaboratively participate in enhancing the per-
formance of the global model while also allowing them to
define their model structure. In the proposed architecture,
the blockchain provides auditability and versioning control
capability for the healthcare institution while also providing
data integrity during local model training and ensemble model
weights tuning. Our proposed model has been tested against
the existing FL approach and TEE-based secure aggrega-
tion FL with blockchain. Results suggest that the proposed
method is able to perform better than the existing study and
able to increase the model performance effectively. We also
provided empirical data on the time consumption in execut-
ing the system, namely the time required for the ensemble
weights tuning, encrypted inference for model evaluation, and
blockchain smart contract deployment and verification. Results
show that a negligible amount of time is consumed during
the ensemble weights tuning and blockchain smart contract
execution. Efficiency tradeoff can be seen during the encrypted
inference for model evaluation. However, higher efficiency
may be achieved by FL participants with less computing power
by utilizing a machine learning model with small demand for
computation. This paper assumes that all hospital participants
perform homogeneous tasks and train learning models with a
similar model structure. The heterogeneity of the structure is
considered at the hospital level. Hence, further investigation
to consider heterogeneous tasks and model heterogeneity at
the hospital participants’ level is encouraged. Future studies
should also explore methods to increase efficiency during the
encrypted inference process.
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