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Abstract—The correct functioning of photovoltaic (PV) cells is critical to
ensuring the optimal performance of a solar plant. Anomaly detection
techniques for PV cells can result in significant cost savings in oper-
ation and maintenance (O&M). Recent research has focused on deep
learning techniques for automatically detecting anomalies in Electrolu-
minescence (EL) images. Automated anomaly annotations can improve
current O&M methodologies and help develop decision-making systems
to extend the life-cycle of the PV cells and predict failures. This paper ad-
dresses the lack of anomaly segmentation annotations in the literature
by proposing a combination of state-of-the-art data-driven techniques to
create a Golden Standard benchmark. The proposed method stands out
for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning,
and (3) leverage public datasets to generate advanced annotations. The
methodology has been validated in the annotation of a widely used
dataset, obtaining a reduction of the annotation cost by 60%.

Index Terms—photovoltaic cells, deep learning, anomaly segmenta-
tion, Golden Standard, electroluminescence, benchmark dataset, defect
annotation

1 INTRODUCTION

In recent years, the solar energy industry has emerged as
one of the essential methods for renewable energy genera-
tion. The International Energy Agency (IEA) forecasts that
solar PV installations will reach over 160 GW by 2022 [1].
According to several studies [2], growth in solar energy
generation has accelerated in recent years, with an increased
capacity of more than 50% during the last two years. Such
expansion has brought up the financial and environmental
benefits of implementing advanced operation & mainte-
nance (O&M) processes [3], and the research community
has begun to develop artificial intelligence techniques to
improve operational efficiency and predictive maintenance
[4].

The proper operation of photovoltaic cells (PV) is critical
to ensuring the optimal performance of a solar plant. Dam-
age to PV cells frequently occurs during manufacturing, and
operators conduct extensive inspections to detect damaged
cells. These failures may occur during plant installation or
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operation. Addressing this issue efficiently and preventing
worst-case scenarios should lead to lower O&M costs.

There are various techniques for monitoring solar panels,
both during installation and operation. For instance, Elec-
troluminescence (EL) imaging techniques detect defects in
a non-intrusive and effective manner. This imaging method
has emerged as a powerful tool for detecting subtle defects
such as micro-cracks or cell degradation [5]. Detecting de-
fects in the EL images of a solar plant is a time-consuming
and laborious task that requires domain experts. Auto-
mated anomaly detection can be a breakthrough change
in plant O&M, reducing operational costs and increasing
Overall Equipment Effectiveness (OEE). Therefore, the re-
search community has proposed artificial intelligence-based
approaches such as deep learning models [6], [7].

However, the information provided by anomaly detec-
tion approaches is insufficient to extract detailed informa-
tion about the anomaly causing the improper behavior. In
this sense, segmentation offers detailed information about
anomalies, such as shape or location. Therefore the research
community has started to focus on applying deep learning-
based anomaly segmentation methodologies. Nevertheless,
training these models requires segmentation annotations
that are very expensive to obtain. Thus, efforts have fo-
cused on exploiting classification annotations using semi-
supervised and weakly-supervised techniques [8], [9]. De-
spite promising results, mentioned approaches are not as
reliable as supervised segmentation models [10].

Recent contributions have conducted experiments using
supervised learning to train segmentation models. Nonethe-
less, these works are based on private datasets and do not
publish segmentation annotations. The lack of a standard
collection results in the impossibility of unifying the state-
of-the-art and obtaining an accurate evaluation and mea-
surement of the model performance, thereby reducing the
field’s evolution.

In this sense, a Gold Standard Corpora (GSC) is a term used
in natural language processing to denominate a standard
collection. The creation of GSC is a time-consuming process
usually performed by domain experts. In the event of the
impossibility of manually annotating [Rebholz-Schuhmann
et al., 2010] Silver Standard approach is used. Standard silver
annotations, usually generated automatically, will not be
of the same standard quality as manual annotations but
are very reliable. These annotations’ quality distinguishes
between the gold standard and uncontrolled automatic an-
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Fig. 1. An overview of the proposed methodology for detecting and segmenting anomalies in electroluminescence images of PV cells. First, a
weakly-supervised deep autoencoder generates an anomaly-free image from the original PV cell; Then, the SSIM [11] metric is used to calculate
the disparity map between the original and generated images. Finally, the PV cell anomalies are detected and segmented using a pipeline of
unsupervised techniques (thresholding & cleaning + DBSCAN clustering [12] + alpha-shape algorithm).

notation. This article proposes a data-driven methodology
to establish a Silver Standard in the domain of Photovoltaic
cells. The proposed method extracts in a cost-efficient man-
ner anomaly segments from EL images, and it is adaptable
to detect annotations across different PV cell types. This
contribution is intended to provide a standard annotation
of a large variety of cell types to constitute a benchmark for
the state-of-the-art.

The proposed methodology combines state-of-the-art
data-driven techniques to create the processing pipeline.
This pipeline relies on a weakly-supervised deep-learning
model and unsupervised clustering techniques. The deep-
learning model is trained using non-defective images of
one type of PV cells, allowing it to learn the structural
distribution of non-defective cells and detect differences
with the defective cells. The rest of the pipeline extracts the
segments that differ from a structural distribution of a non-
defective cell.

The data-driven methods learn from a large amount of
data. The low variability of cell types facilitates the training
of the models, yielding cost-effective training and obtaining
high performance with a low number of samples. Thus, this
characteristic results in high adaptability to new PV cell
types.

In this sense, the presented method contributes to the
PV plant O&M process and the research community. On the
one hand, due to the low diversity of cell types in a single
solar power plant this approach can be used enhance the
capacity of the solar plant to detect and analyze anomalies
cost-efficiently. On the other hand, the segmentation data
can be processed as annotations to provide the research
community with a Silver Standard benchmark. Ultimately, a
domain expert can review the dataset to raise the quality of

the annotations, considerably reducing the cost of creating a
Gold Standard.

In summary, this paper proposes a data-driven method-
ology for extracting anomaly segments from EL images
that is also cost-effectively adaptable to detect anomaly
annotations across different PV cell types. The method
combines state-of-the-art deep learning techniques to create
a processing pipeline. These are the main contributions:
(1) We propose a novel approach that combines a weakly-
supervised deep-learning model with unsupervised cluster-
ing techniques to address the field’s lack of annotations.
(2) We present an algorithm for producing Gold Standard
annotations of large PV cells datasets as a benchmark (3)
This methodology reduces the cost of anomaly segment
annotation by 2.71, from 19.9 seconds to 7.337 seconds. (4)
We apply the proposed contribution in public and private
PV cell datasets with a wide range of cell types as part of
the adaptability validation phase.

2 RELATED WORK

The electroluminescence technique is based on the optical
phenomenon in which the PV cell material emits light in
response to an electric current. Admittedly, this current
stimulates the PV module and reverses its operation [13].
Consequently, PV cells start to emit light at a wavelength
peak of 1150nm, revealing the possible defects in a PV
cell [14]. The light is captured by a special camera, typi-
cally equipped with special optical filters, obtaining an EL
image of the PV cell. This technique can detect various
PV cell anomalies that would otherwise go undetected by
other methods. The EL procedure is preferred for detecting
structural defects, intrinsic defects (i.e., fingerprint marks),
and extrinsic defects (e.g., micro-cracks, cell degradation,
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corrosion, electrically isolated parts), according to [15]. EL
is the only method to detect non-electrical active cracks at
the cell level, thus positioning EL as the preferred method
to perform such anomaly detection tasks. Additionally,
Ruizhen Yang et al. [16] proposed an approach to combine
the electrothermography (ET) and electroluminescence (EL)
detection effects of defects. This work studies electromag-
netic induction (EMI) and image fusion, demonstrating how
EMI can significantly enhance ET and EL’s capacity for
defect detection by combining and complementing the two
wavelength detection data.

The EL procedure is regarded as one of the least in-
vasive and least expensive methods. The resulting images
are of high quality, which facilitates the detection of subtle
anomalies. However, capturing EL images can be difficult
due to the required capture conditions [14], [17]: the panels
must be cold and in complete darkness to avoid residual
radiation emission. Due to these difficulties, the availability
of correctly annotated public EL datasets is limited.

Anomaly detection research works regarding EL im-
agery have primarily been developed using the dataset
ELPV published by Sergiu Deitsch et al. [6], [18], [19]. The
dataset contains 2624 images with a resolution of 300×300,
captured from 44 PV modules: 26 poly-crystalline and
18 mono-crystalline. Although there are several types of
anomalies (e.g., micro-cracks, electrically insulated, discon-
nected cells, and degradation), only four-class annotations
are provided. The annotations classify the PV cell according
to the defect likelihood (0.0, 0.33, 0.66, 1.0).

In [20] Ahmad Maroof Karimi et al. propose an automated
pipeline for PV module EL image processing. The authors
use a dataset of 5400 PV cell images captured from three dif-
ferent PV modules. The images were classified as cracked,
corroded, or non-defective, but since the authors did not
publish the dataset, no further work was performed.

Recently more attempts have been made to address
anomaly detection via EL imagery [21], [22]. The majority of
these approaches, however, either use the previously men-
tioned dataset (ELPV) or rely on undisclosed private data.
Furthermore, these approaches use non-supervised learning
techniques, such as semi-supervised or weakly-supervised
learning, to segment anomalies: Mayr et al. [8] proposed a
weakly supervised strategy to perform anomaly segmen-
tation in electroluminescence imagery. This method uses a
modified version of ResNet-50 to extract segmentation via
the network’s activation maps. The authors apply an Lp

normalization to aggregate the activation maps into single
scores for classification. Rahman et al. [9] proposed a multi-
attention network to efficiently extract the most important
features or EL imagery. This method can segment complex
anomalies but must be trained on annotated data. Pierdica
et al. [23] proposed an automatic anomaly segmentation
in infrared imagery based on Mask R-CNN architecture.
In this work, the authors compare the approach with the
three state-of-the-art anomaly classification networks: UNet,
FPNet, and LinkNet.

From this review we conclude that there is a lack of
segmentation annotations for PV cell electroluminescence
imagery. This lack of annotations implies an additional
difficulty for domain expert users to develop anomaly seg-
mentation approaches. As a result, most processes tend

to use semi-supervised and weakly-supervised techniques
to create machine learning models, but these approaches
present a lack of generalization concerning variation in cell
or anomaly types.

3 METHODOLOGY

This section describes the proposed method for detect-
ing and segmenting anomalies across PV cell types. The
methodology is based on state-of-the-art weakly supervised
and unsupervised techniques and consists of five processing
steps divided into two parts. The first one employs a deep-
learning model to generate an anomaly-free image from
the original PV cell electroluminescence capture (see fig. 1
upper row). The second part uses unsupervised machine
learning algorithms to process the Structural Similarity Index
Metric (SSIM) [11] disparity map between the original and
generated images (see fig. 1 lower row).

The processing pipeline first receives a defective PV cell
image. The deep autoencoder then infers the non-defective
version of the original image. Following a supervised learn-
ing schema, the autoencoder is trained on non-defective
PV cell imagery. Given the reduced number of parameters
in the deep autoencoder, this training process is computa-
tionally inexpensive, allowing the model to adapt to new
PV cell-type data efficiently. Following that, the original
image and the non-defective generated image proceed to the
unsupervised processing stage, in which a disparity map
is first computed using both images. This disparity map is
subsequently binarized using a thresholding and cleaning
algorithm. Then, the coordinates of the different pixels are
extracted from the resulting image and later clustered using
the Density-based spatial clustering of applications with noise
(DBSCAN) [12] density clustering algorithm. Finally, the
alpha-shape algorithm is used to compute the contour of
the clustered points. These contours are ultimately exported
as an anomaly segment annotation. All the aforementioned
steps use pre-defined parameters that an operator can fine-
tune to suit the methodology’s performance to various PV
cell types.

3.1 Deep Learning model

The deep learning model must learn the distribution of
non-defective PV cell images to detect defective areas as
outliers from such non-defective distribution. Based on the
segmentation method proposed by Otamendi et al. [24], a
deep learning technique was considered to infer higher-
level (segmentation) annotations from the classification of
the images. Their paper discusses the shortcomings of the
proposed method, especially those related to the lack of
data. Some observations suggest that the performance is
decreased due to the variation of PV cells. Nonetheless,
the variation data in this paper is not a concern since our
method stands out for its adaptability to new PV cell types.

In this case, the objective is to fine-tune the base model
for significant variations of PV cell types. Therefore, when-
ever a new dataset needs to be analyzed and segmented,
the model is adjusted to learn the distribution of the new
PV cell types. The low variability training set facilitates
cost-effective training that can be performed using small
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datasets. In this sense, when processing a defective cell im-
age (I), the auto-encoder will generate a non-defective rep-
resentation (Î) to highlight the defective areas appropriately.
As a result, this process addresses anomaly segmentation as
an outlier detection task, where a defective point is a data
point that differs from the observed data distribution.

According to recent studies [14], [25], EL imagery cam-
eras usually have a resolution of 640 × 480 pixels. Thus,
the input layer of the model is set to the same size. The
most promising topology is chosen for the convolutional
layers after a phase of experimentation and analysis in
which different autoencoder topologies were trained using
a variety of PV cell types.

A relatively small number of convolutional layers has
proven to be the most promising approach for propagating
key features of PV cells. The distinguishing features of
the PV cell technologies are slight, so a large number of
convolutions would cause the vanishing of these features.
On the other hand, a short number would reduce the
ability to target and extract these key features. Therefore, the
selected topology sits in the middle ground, composed of
14 convolutional and deconvolutional layers. The last layer
of the model uses sigmoidal activation, while the rest uses
Leaky RelU activation.

Each layer is configured by different filters, kernel size,
and stride, as seen in Table 1. The stride controls the way the
filter convolves around the input. Large stride values reduce
the spatial dimension of the input and help receptive fields
to overlap less. In this case, we want to avoid a significant
loss of information. Thus we will use small stride values.

The latent space layer, which connects the encoder and
decoder, is used to adjust the model performance. Consid-
ering this work’s objective and use case, a relatively small
latent space dimension (200) is recommended, which sig-
nificantly reduces the size of the neural network, making it
more lightweight. Consequently, training costs are reduced,
facilitating the adaptability to new PV cell types.

According to Otamendi et al. [24], the Structural Similarity
Index Metric (SSIM) [11] was selected as loss function of
the deep learning model. The SSIM is a perceptual metric
that has demonstrated excellent performance in measur-

TABLE 1
Autoencoder topology for the segmentation phase. In total, the

proposed model has 15, 417, 913 trainable neurons.

Layer Output Shape Filters Kernel Stride

Input 640× 480× 1
Conv2D 320× 240× 32 32 2× 2 2× 2
Conv2D 160× 120× 16 16 2× 2 2× 2
Conv2D 160× 120× 8 8 4× 4 1× 1
Conv2D 80× 60× 16 16 2× 2 2× 2
Conv2D 80× 60× 8 8 4× 4 1× 1
Conv2D 80× 60× 16 16 4× 4 1× 1
Conv2D 80× 60× 8 8 4× 4 1× 1
Flatten 38400
Dense 200
Dense 38400

Deconv2D 80× 60× 8 8 4× 4 1× 1
Deconv2D 80× 60× 16 16 4× 4 1× 1
Deconv2D 80× 60× 8 8 4× 4 1× 1
Deconv2D 160× 120× 16 16 2× 2 2× 2
Deconv2D 160× 120× 8 8 4× 4 1× 1
Deconv2D 320× 480× 16 16 2× 2 2× 2
Deconv2D 640× 480× 1 1 2× 2 2× 2

Output 640× 480× 1

ing the similarity of two images. In contrast to pixel-wise
independent loss functions like L2, SSIM computes the
similarity using image illumination, contrast, and structure.
SSIM measures the similarity of two images with a value
of [−1, 1], where −1 represents completely different im-
ages, and 1 represents completely similar images. Therefore,
given that the objective of training a model is to minimize
the loss function and our objective is to maximize SSIM, our
loss function will be the minimization of the negative SSIM.

SSIM(x, y) =
(2µxµy + (k1L)

2) + (2σxy + (k2L)
2)

(µ2
x + µ2

y + (k1L)2)(σ2
x + σ2

y + (k2L)2)
(1)

In this work, the size of the Gaussian filter for SSIM is set
to 7. As a result, the SSIM metric will receive two sliding-
window inputs, x from the original image (I) and y from
generated image (Î), both with a size of 7x7. In addition,
as in the original paper, the rest of constants will be set as
follows: k1 = 0.001, k2 = 0.03 and L (dynamic range of the
pixel values) in this case will be L = 255.

3.2 Disparity Map

The next step is to compute the disparity map, i.e., the
difference between the original and generated images. The
disparity map reveals even the slightest variations and
provides enough information to detect the areas outside the
distribution of a non-defective PV cell. This map is obtained
using the previously mentioned SSIM metric, where a pixel
disparity is measured between -1 and 1 (see fig. 2 a).

3.3 Thresholding

Anomalies tend to have a continuous disparity distribution
throughout the segment, e.g., partial breakage or micro
breakage. However, noise in the original image can cause
structural differences propagated through SSIM into this
stage. Therefore, a thresholding process must be applied to
focus on the areas where the disparity is more accentuated
and prominent. For this purpose, different thresholding
techniques were tested to obtain the most accurate results.

Thresholding is a segmentation technique that separates
the foreground from the background, resulting in a binary
image. The most basic method compares the intensity of
each pixel to a fixed constant T to discriminate the segments
in the image. There are several methods for determining the
value of the T constant automatically, such as Otsu’s thresh-
olding [26], a popular clustering-based technique. When
the image has a bi-modal distribution, this model performs
well. However, the algorithm has difficulty determining the
foreground and background in noisy images. This method
employs a global thresholding technique, so the segmenta-
tion is performed using the same T. On the other hand, the
adaptive thresholding approach can provide more detailed
segment extraction by computing different T values for local
regions.

To exemplify the operation and performance of the
thresholding process, we will use a representative image
of a damaged photovoltaic cell (see fig. 2a). First, we used
a method based on the arithmetic mean as the adaptive
thresholding (see fig. 2c). This method calculates the average
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Fig. 2. Thresholding method comparison in a representative PV cell
electroluminescence image.

intensity of the neighboring pixels within the local region,
which in this case is defined as 41 pixels. This value must be
large enough to cover both the foreground and background
areas. On the other hand, we compared the performance to
Otsu’s advanced thresholding method [27] (see fig. 2b).

Otsu’s method detects areas with significant disparity,
as shown in figure 2, but it performs poorly in detecting
variations in low disparity areas. On the other hand, the
adaptive method detects disparity gradients since it uses
local regions. As a result, it detects anomalies with a low
disparity value and large disparity gradient compared to its
neighbors. However, it is less accurate in slightly varying
areas with a high disparity for the overall image. There-
fore, we propose combining both methods to leverage each
other’s strengths while compensating for their weaknesses.
As shown in Fig. 2d, the image represents areas with high
local gradient variation and global disparity.

3.4 Noise Cleaning
The creation of the disparity map may produce noise,
particularly in the image’s corners and near the busbars,
primarily due to the imprecise framing of PV cells during
the image capture process. The image’s border and busbars
do not emit light during the electroluminescence process,
so the structural difference near these areas is significant.
As a result, we included an additional step to detect the
edges and busbars and clean up any potential noise in the
surrounding area.

3.5 Clustering
Following the detection and cleaning of disparity points,
the next step is to cluster these points. Due to the lack
of segmentation annotations, the method uses an unsu-
pervised clustering algorithm based on point density for
this task. Based on state-of-the-art clustering techniques,
the Density-based spatial clustering of applications with noise
(DBSCAN) [12] algorithm was found as the most suitable
for the intended application.

DBSCAN can extract structured patterns in data. It uses
two parameters, ε and minimum points of a cluster (minPts),
to classify points as core, border, and outlier points. Core
points have at least minPts within distance < ε. Border
points are reachable from a core point (< ε), but it has
less than minPts in the surrounding area. The outlier point
is not reachable from any core point. Low ε values will
result in many points being classified as outliers, while a
large value will cause the noise to be classified within a
cluster. Moreover, large minPts values are useful for data

Fig. 3. DBSCAN clustering method performance comparison using
different values of ε and minPts.

sets with noise. Based on a series of experiments (see fig. 3),
the optimal value for ε was determined to be near 30 and
for minPts near 100.

3.6 Alpha-shape
Geometrical structures are then extracted from the result-
ing clusters by computing the hull of each cluster’s point
cloud. We addressed this task as a convex hull problem:
the intersection of all convex sets containing a given subset
of points. However, this technique struggles to generate
representative hulls due to the complexity of the PV cell
anomalies, which have many concave shapes. Therefore, a
generalization concept of a convex hull called alpha-shape
[28] was preferred. This technique is related to the Delaunay
triangulation sub-graph of the point set: two points are
connected whenever there is no other point within a gen-
eralized disk of radius 1/α. If α is 0, the radius is replaced
by a closed half-plane, and the resulting alpha-shape is an
ordinary convex hull.

The performance of the alpha-shape algorithm can be
fine-tuned using the appropriate α value. The radius of
the generalized disk is defined as 1/α. Considering that a
point within a cluster represents a pixel of the image, the
distance between two neighbor points can only be 1 or√
2. Therefore, when the diameter exceeds the maximum

distance (
√
2), the algorithm will not find a generalized disk

connecting two points. This means that the maximum radius
for the algorithm to work is r =

√
2/2 = 1/α, leading to a

maximum value of
√
2 for α (see fig. 4).

Finally, the resulting alpha-shape coordinates are con-
verted to a high-label segmentation annotation format. The
annotation generation process follows the standard used
on principal segmentation challenges such as COCO and
PascalVOC.
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Fig. 4. Alpha-shape algorithm comparison for different values of α.

4 RESULTS

This section discusses the performed experiments and re-
sults, which validate this paper’s contribution. It will ex-
plain the experimentation performed on a public dataset,
detailing the training and pipeline tuning process and the
time cost. Afterward, we will compare the annotation cost
of the proposed pipeline with the manual process. Finally,
the methodology has been tested on other types of cells to
validate the adaptability of the approach. Experiments were
performed using a GPU Tesla T4 with 16Gb of memory.

4.1 Dataset
The model was trained using the public ELPV dataset [6],
[18], [19], a widely used dataset in the literature on PV cell
anomaly detection. This dataset was also selected to validate
the methodology as it is the nearest dataset to a standard
state-of-the-art benchmark.

The dataset is annotated using a four-class classifica-
tion according to the defect likelihood of each PV cell:
(0.0/0.33/0.66/1.0). The training of the deep autoencoder
only needs non-defective images, so only the subset clas-
sified with a likelihood of 0 was selected. The distribution
of the non-defective images is as follows: 1508 images in
total, of which 588 are mono-crystalline PV cells, and the
remaining 920 are poly-crystalline. The images have a reso-
lution of 300×300 pixels and are in 8-bit grayscale, and they
were resized to fit the shape of the autoencoder input layer
(640 × 480 × 1). Additionally, images were normalized to
obtain a clearer contrast and improve the model’s training.

The proposed methodology learns from the structural
distribution of non-defective PV cell images. Unfortunately,
in the case of poly-crystalline cells, the structural distribu-
tion is not correctly preserved since the type of material
generates non-uniform patches in the images [6]. Therefore,
the autoencoder model cannot learn the distribution of non-
defective cells, as there is no uniform distribution. Therefore,
for the experimentation, only mono-crystalline PV cells were
chosen. These cells have structural differences, primarily
due to the variation in the number of busbars, so the
flexibility of the model can be verified (see Fig. 5).

The initially selected subset of 588 images was aug-
mented to 2352 images employing simple transformations,
such as flip and rotation. These transformations enlarge the
size and diversity of the dataset while avoiding excessive
modifications in the original non-defective images. Con-
sidering that a balanced dataset usually helps to perform
unbiased training, the augmentation task was done so that
it balances and enriches the distribution of the data. In
addition, due to the sigmoidal activation, the model output
is an image with values in the [0, 1]. Therefore, to perform

Fig. 5. Example of similar PV Cells types selected for the deep learning
model training.

the training adequately, images were re-scaled from values
ranging from [0, 255] to [0, 1]. Finally, the dataset was split
into 80% training set and 20% validation set.

4.2 Pipeline tuning
This section presents the adjusted model parameters for
the experiments performed with the ELPV dataset. These
initial values can be used as a reference and be modified
to adapt the performance to new data. For the training
task, we used Adam optimization with a learning rate of
0.003, a α value of 0.025 for the Leaky RelU, and a batch
size of 16. The training was performed during 200 epochs,
with a validation phase every 5 epochs. Additionally, we
included early stoppage with the patience of 10 epochs to
avoid unnecessary training. This process took 20.5 minutes
to complete.

The autoencoder model uses the negative SSIM as the
loss function, which returns a value in the range of [−1, 1]
where −1 equals SSIM = 1. As shown in Fig. 6, the
training and validation loss were very close during the
entire process, and the training loss converged at −0.965.
Finally, the model was validated using a small sample of
100 images and the SSIM metric to compute the accuracy
of the autoencoder. The model obtained a mean accuracy of
0.943218, a median value of 0.9535, and the accuracy range
was [0.9235, 0.9752].

Afterward, performing a few tests that took 12 minutes,
the unsupervised models’ parameters were tuned to adjust
the performance to the PV cell type. An SSIM window size
of 11, K1 = 0.001, and K2 = 0.05 was used to compute the
disparity map. An adaptive block size of 61 and C = 10 was
selected in the thresholding process. Finally the clustering

Fig. 6. The training process of the autoencoder on the ELPV subset:
training and validation loss at each epoch (EST: 20.5 min).
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(a) Original (b) Autoencoded (c) Disparity map (d) Thresholded (e) Cleaned (f) Clusters (g) Alpha-shape (h) Final

Fig. 7. Illustration of the proposed model’s performance. Each image represents the output of each step: b) deep learning autoencoder, c) Disparity
map via SSIM, d) Thresholding via the proposed method, e) Noise cleaning, f) Point clustering via DBSCAN, g) Convex Hull via Alpha-shape. More
examples can be found in the appendix A

process used ε = 10 and minPts = 100 values. Fig. 7 shows
a step-by-step example of the performance of the proposed
methodology, which can extract the anomaly segment from
the PV cell (see appendix A for more examples).

4.3 Cost Comparison

After performing the adaptation and tuning of the pipeline,
we applied the proposed methodology to generate annota-
tions for the dataset. In this process, 486 mono-crystalline
defective cells have been annotated. Once this process has
ended, we have obtained the Silver Standard annotations
for the ELPV dataset.

The entire generation process has taken 50 minutes to
complete, 32 for the model training and pipeline tuning,
and 17 for the annotation inference, 2.2 seconds of running
time of the proposed algorithm per image. Following this
process, we have performed an extra manual annotation
review step to elevate the annotations’ quality from a Silver
Standard to a Golden. This step has taken 43 minutes, 5.3
seconds of review time per image. In order to compare the
cost of manual and automatic processing, a domain expert
has annotated the same dataset in the same period of time
as the process described above using the annotation tool
by M. Tkachenko et al. [29]. As seen in figure 8, the expert
has managed to annotate 271 images in 90 minutes, 19.9
seconds of annotation time per image.

The results demonstrate that using the proposed
methodology is significantly more efficient for generating

Fig. 8. Comparison of the annotation cost of the proposed approach and
the manual annotation of a domain expert. The proposed performance
is divided into three phases: tuning, inference, and manual revision.

golden standard annotations than manually annotating the
images. Moreover, the adaptation and tuning phase is per-
formed only once, so the more images there are, the lower
the cost per image. Therefore, in this experiment using
the proposed approach, the total cost per image (timage) is
11.7 seconds (see eq. 2), where tinference is 2.237 seconds,
trevision is 5.3 seconds, ttuning is 1950 seconds, and nimages

is 468 images.

timage = tinference + trevision +
ttuning
nimages

(2)

4.4 Adaptability
To validate the adaptability of the methodology, we used
a private dataset composed of different PV cell types. For
this experiment, we selected mono-crystalline cells of 5
busbars since they are the more challenging cells compared
to the training. An initial subset of 1620 images was later
augmented to 6480 using the same simple transformations
mentioned in Section 4.1. The training lasted for 164 epochs
using the previously mentioned parameter configuration.
As shown in Figs. 9 and 10, a satisfactory result was ob-
tained in both experiments, which demonstrates that the
proposed methodology can process different PV cell types.

Fig. 9. Example of the behavior of the pipeline performed on a private
dataset. This dataset contains images of mono-crystalline PV cells of 5
busbars. More examples can be found in the appendix A.

5 CONCLUSIONS

This paper proposes a methodology to address the lack
of PV cell anomaly segmentation annotations in the liter-
ature. The methodology combines data-driven techniques
that efficiently and cost-effectively adapt to extract anomaly
segments annotations from EL images and across various
types of PV cells. Modern deep learning techniques are
combined in the strategy to build a processing pipeline. The
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provided approach generates annotations of large PV cells
datasets to constitute a benchmark in the field.

Additionally, a domain expert can review these annota-
tions to raise the quality and create a Gold Standard. The pro-
posed processing pipelines combine a weakly-supervised
deep-learning model and unsupervised clustering that can
be cost-effectively fine-tuned, even with a small dataset. Due
to its adaptability, this methodology accurately processes PV
cells with different structural features (see sec. 4.4).

In the experimental section, we validated the model’s
performance on ELPV public datasets and compared the
temporal cost of annotating anomalous segments using the
proposed methodology versus manually by an expert. Ac-
cording to the results, the automatic generation and manual
review processes are more efficient than manual annotation.
The inference (2.2) and review (5.3) takes 7.5 seconds per
image, whereas the manual annotation takes 19.9 seconds
(see sec. 4.3). Thus, the proposed methodology reduces 2.71
times the cost of annotation. Although the methodology
requires a tuning process once per dataset, we have shown
that this can be done efficiently (see sec. 4.2). Furthermore,
to verify the adaptability of the proposed approach, we
processed a private PV cell dataset with various cell types
(see sec. 4.4).

This work can be used to establish a benchmark for
the research community to develop and evaluate their seg-
mentation models. Furthermore, high-level annotations will
enhance the ability to train supervised models, thereby sig-
nificantly increasing the accuracy and performance. Regard-
ing future work, the proposed algorithm accuracy could be
improved by novel semi-supervised segmentation methods
[30] that have been successfully applied for other domains,
such as video semantic recognition [31] or human activ-
ity recognition [32]. Any improvement in accuracy would
translate to a reduction in manual revision time.

APPENDIX A
SEGMENTATION RESULTS

The performance of the proposed methodology on mono-
crystalline PV cells from the public ELPV dataset [6], [18],
[19] is shown in this appendix. The segmentation regions
detected by the proposed model are highlighted in red.
Figure 10 contain 36 images in total, which are some of
the most representative images within the dataset. Different
cell types and anomaly classes were selected to validate the
proposed methodology’s performance in a variety of cases.
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