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A Discrepancy Aware Framework for Robust
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Abstract— Defect detection is a critical research area in
artificial intelligence. Recently, synthetic data-based self-
supervised learning has shown great potential on this
task. Although many sophisticated synthesizing strategies
exist, little research has been done to investigate the ro-
bustness of models when faced with different strategies.
In this paper, we focus on this issue and find that ex-
isting methods are highly sensitive to them. To alleviate
this issue, we present a Discrepancy Aware Framework
(DAF), which demonstrates robust performance consis-
tently with simple and cheap strategies across different
anomaly detection benchmarks. We hypothesize that the
high sensitivity to synthetic data of existing self-supervised
methods arises from their heavy reliance on the visual
appearance of synthetic data during decoding. In contrast,
our method leverages an appearance-agnostic cue to guide
the decoder in identifying defects, thereby alleviating its
reliance on synthetic appearance. To this end, inspired
by existing knowledge distillation methods, we employ a
teacher-student network, which is trained based on syn-
thesized outliers, to compute the discrepancy map as the
cue. Extensive experiments on two challenging datasets
prove the robustness of our method. Under the simple
synthesis strategies, it outperforms existing methods by
a large margin. Furthermore, it also achieves the state-
of-the-art localization performance. Code is available at:
https://github.com/caiyuxuan1120/DAF.

Index Terms— Artificial intelligence, self-supervised
learning, robustness

I. INTRODUCTION

IMAGE anomaly detection plays an important role in
many safety-critical areas, e.g., industrial manufacturing

systems [1], [2], surveillance systems [3], and medical image
analysis [4]. However, in these areas, acquiring sufficient
high-quality anomaly images is generally difficult or even
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Fig. 1. (a) Detection performance comparison. (b) Real vs. Synthetic
images. (c) Localization performance under diverse synthetic strategies.

impossible. This limitation hinders the effectiveness of training
deep-learning models through supervised methods. As a result,
it has induced growing research interest [5]–[7] in exploring
approaches that focus on training anomaly detection models
solely on normal images. Nevertheless, the lack of anomaly
data during training poses significant challenges in extracting
discriminative features for unseen anomaly data during infer-
ence.

Recently, some researchers have assumed that models
trained on normal data may fail to reconstruct anomaly pat-
terns, and have proposed identifying anomaly regions based on
reconstruction failures. However, these reconstruction-based
methods may be easily misled in practice because of the
identical shortcut issue [8]. Another promising research di-
rection is based on self-supervision [9]–[11]. Generally, the
typical framework follows an encoder-decoder architecture
(Fig. 2(a)). Normal data is first distorted to generate real-
istic and diverse outlier data. Subsequently, the framework
is trained to differentiate normal and synthesized abnormal
images. Such a strategy of exposing models to the synthesized
outliers has demonstrated better empirical results, dominating
current research in anomaly detection. The success of these
models heavily relies on generating diverse and close-to-real
anomaly images, and much effort has been endeavored to im-
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Fig. 2. Overview of existing self-supervised methods and ours.

prove anomaly synthesis strategies. For instance, DRÆM [10]
uses Perlin noise to generate irregular shapes, simulating the
shape of real anomalies. NSA [11] integrates Poisson image
editing [12] to eliminate discontinuous borders of anomalous
patterns, making the anomalies more natural.

Despite great success, few attempts have been made to
study the robustness of current methods to different synthesis
strategies. However, it has been noted [11] in the community
that the decoder tends to overfit to the synthetic anomaly
appearance during the training phase. As a result, the deci-
sion boundary tends to generalize poorly to real anomalies
during inference. Moreover, the anomaly patterns generally
show large variances across datasets. Therefore, the synthe-
sis strategy customized for one dataset may not be well-
suited to another. As shown in Fig. 1(b), a carefully-tuned
synthesis strategy for MVTecAD [13] generates unnatural
synthetic data for DAGM [14], which may help explain the
dramatic performance degradation of NSA [11] on DAGM
(Fig. 1(a)). Besides, our preliminary experiments on two rep-
resentative self-supervision-based methods, i.e., NSA [11] and
DRÆM [10], also indicate their high sensitivity to different
synthesis strategies (Fig. 1(c)).

To tackle the above issues, in this paper, we present a
Discrepancy Aware framework (DAF) (Fig. 2(b)), which can
maintain strong performance consistently across various ex-
isting anomaly synthesis techniques. The core idea behind
our method is releasing the decoder from the constraint of
the synthetic anomaly appearance. To accomplish this, we
leverage the appearance-agnostic discrepancy map derived
from a teacher-student network as guidance for the decoder.
Since the discrepancy map is computed based on extracted
high-level features, it is less affected by the synthetic appear-
ance. Moreover, by processing the discrepancy directly, the
decoder will focus on discriminating the normal and non-
normal regions. During inference, given an anomaly image,
the teacher and the student will demonstrate discrepancy in
every non-normal region, while the segmentation probability
map generated by the decoder will display a clear decision
boundary for identifying anomalies.

To the best of our knowledge, we are the first to investigate
the robustness of current frameworks to different anomaly

synthesis techniques. Compared with existing self-supervised
methods, our method has the following desired properties.
First, our framework incorporates the teacher-student network
into the self-supervised paradigm, enhancing its capacity to
produce discrepant features for anomaly regions. Second,
our method encodes non-normal regions derived from the
discrepancy map rather than the non-normal appearance. This
approach reduces overfitting problems for the decoder during
training, thus eliminating the heavy reliance on carefully-tuned
anomaly synthesis techniques. As shown in Fig. 1(c), our
method reaches strong performance even with a simple syn-
thesis strategy. Besides, our method also achieves significant
performance improvements over existing methods, surpassing
them by a large margin in terms of localization capability on
MVTecAD [13]. It also achieves the state-of-the-art detection
performance on DAGM [14].

In summary, the main contributions of this paper are as
follows: 1) We introduce a simple and robust self-supervised
framework named DAF for image anomaly detection and
localization, which eliminates the practical need for the com-
plicated tuning steps for synthesis. 2) We propose to combine
the teacher-student network with the self-supervised paradigm,
which utilizes abundant synthesized anomaly images to learn
the discrepancy features, alleviating the overfitting problem to
the non-normal appearance.

II. RELATED WORK

Early approaches [15], [16] to image anomaly detection
typically work by first extracting the feature descriptors or
statistical information and then calculating the anomaly scores.

Recently, with remarkable progress in deep learning, image
anomaly detection based on deep learning has become a dom-
inant direction. Below we mainly review the deep learning-
based approaches, which can be roughly grouped into three
categories: reconstruction-based, self-supervision-based, and
knowledge distillation-based approaches.

A. Reconstruction-based approaches

These approaches [17], [18] assume that anomalies are
difficult to be reconstructed by models trained only on normal
images. Thus, the anomaly regions can be spotted by examin-
ing regions with larger reconstruction errors. In these methods,
autoencoders are frequently adopted as reconstruction models.
For instance, Baur et al. [19] introduce deep spatial autoencod-
ing architectures, which are trained by a pixel-wise reconstruc-
tion loss and an adversarial loss to improve the construction
quality. Besides, generative adversarial networks [20], [21]
are also attractive models for reconstructing the input image.
However, the assumption behind the reconstruction methods
might not always be valid, as neural networks sometimes
generalize to anomalies well and yield good reconstruction
results.

B. Self-supervision-based approaches

Driven by the success of self-supervised learning in vi-
sual representation learning [22], [23], approaches under this



CAI et al.: A DISCREPANCY AWARE FRAMEWORK FOR ROBUST ANOMALY DETECTION 3

paradigm have emerged rapidly and advanced the state-of-the-
art. For instance, [24] trains an autoencoder to reconstruct
the masked image to the original one first, and then uses the
reconstruction error as the anomaly score. Different from [24],
which constructs masks on images, SSPCAB [25] applies the
idea of masking in convolution blocks. In this way, it can be
integrated into any CNN architecture.

Recent works [10], [11] prove that anomaly detection ben-
efits from synthesized defects that are close to real ones.
These works carefully design synthetic data strategies, then
train segmentation models such as U-Net [26] for pixel-level
prediction, ensuring that the segmentation model can learn
a suitable decision boundary between normal and abnormal
regions. However, the segmentation model is likely to be
ineffective when there is a significant difference between the
distribution of synthetic defects and actual ones. Even though
DRÆM [10] tries to prevent the model from overfitting to
the synthetic data by introducing anomaly-free reconstruction,
as mentioned above, the reconstruction model will also fail
to restore the anomalous region to normal one during in-
ference if the anomaly manifold is unseen during training.
Moreover, SPD [27] shifts its focus to self-supervised pre-
training. Specifically, it proposes a novel augmentation strat-
egy to encourage models to be locally sensitive, making the
representations more suitable for the defect detection task.

C. Knowledge distillation-based approaches
This group of approaches detects anomalies by reflecting

images to different representation spaces, assuming that the
representations of normal regions in different spaces are iden-
tical while those of abnormal regions will differ. The teacher-
student framework is adopted to achieve the different-space
reflection. For instance, prior works [5], [6], [28] train the
student network to mimic the pre-trained teacher on normal
images. As a result, the student and the teacher tend to hold
consistency on normal regions and display discrepancies on
anomalies. In the STAD [5] framework, multiple students with
the same structure are trained to regress the teacher network.
The discrepancies between the teacher and students, along
with the variance of students, are adopted to represent the
anomaly score. MKDAD [28] and STPM [6] propose distilling
features from various layers of the teacher to the corresponding
layers of the student. RDAD [7] utilizes reverse distillation
to prohibit comparable anomaly representations in different
feature spaces. SSMRKD [29] further incorporates reverse
distillation with the masking strategy and constructs a two-
stage framework. In the first stage, it uses reverse distillation
to construct a reconstruction network, enabling the student
model to accurately reconstruct normal patterns. In the second
stage, the masking strategy is applied to enhance the sensitivity
of the reconstruction model to anomalies, enabling effective
identification and classification of abnormal patterns.

However, all the aforementioned knowledge distillation-
based methods assume training models using clean data.
Recently, SoftPatch [30] has addressed the scenario where the
training data is contaminated with real defect data. They pro-
pose a patch-level denoising strategy to improve the robustness
of the model.

TABLE I
SYMBOL DESCRIPTION

No. Symbol Description

1 T The Teacher Network
2 S The Student Network
3 Seg The Segmentation Head
4 Auxi The i-th Auxiliary Head
5 f i

t Representations extracted by the teacher
6 f i

s Representations extracted by the student
7 M The Discrepancy Map
8 MS The Segmentation Probability Map
9 MScore The Anomaly Score Map

10 CutP The synthesis strategy in CutPaste [9]
11 DRA The synthesis strategy in DRÆM [10]
12 NSAB The synthesis strategy in NSA [11]

Different from previous knowledge distillation-based meth-
ods, our method incorporates the teacher-student model into a
synthetic data-based self-supervised framework. It is designed
to distinguish between normal patterns and abnormal ones.
This objective enables our method to establish a discriminative
decision boundary. Furthermore, unlike previous arts that
focus on using the discrepancy for defect localization, our
method leverages the teacher-student model to incorporate an
appearance-agnostic cue into the self-supervised framework,
thereby improving its robustness to synthetic anomaly images.

III. OUR METHOD

A. Overview
The framework consists of a teacher-student network, a seg-

mentation decoder, and a series of auxiliary heads, as shown in
Fig. 3. For clarity and ease of reference, Table I summarizes
essential symbols and their corresponding descriptions utilized
in the following text. Given an input image, the teacher-student
network (T -S) is expected to demonstrate discrepancies on
non-normal regions. To accomplish this, the student is trained
to maintain consistency with the teacher on normal regions
during training. The discrepancy maps yielded by the T -S
are subsequently fed into the segmentation head, along with
representations of synthesized data, to localize anomalies.
Finally, auxiliary heads are employed to further supervise the
student model to derive more discriminative representations
for anomalous regions.

B. Teacher-Student Network
In practice, anomalies occur in various, sometimes uncon-

strained formats. Some can be easily discerned by their distinct
textures or colors from normal patterns, while others may
require contextual information to be localized. Therefore, both
low-level and high-level representations are vital for accurately
localizing anomalies in such challenging scenarios. In our
design, the teacher-student framework follows a multi-scale
knowledge distillation paradigm to represent anomalies at
different levels of granularity.

Following existing knowledge distillation methods [5], [6],
we adopt a powerful convolutional neural network, pre-trained
on a large-scale dataset ImageNet [31], to initialize the teacher.
As for the student, we choose the same architecture but
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Fig. 3. (a) Overview of our method. (b) The fusion process.

initialize it randomly. Note that any off-the-shelf pre-trained
networks could be adopted. Here we use ResNet18 [32], fol-
lowing STPM [6]. For the multi-scale knowledge distillation,
we transfer the knowledge of three-stage features from the
teacher to the student. The distillation process is elaborated as
follows.

1) Training strategy: Given an anomaly-free training set
D = {Im}Nm=1, we first distort each Im ∈ D to obtain
the synthetic anomaly image Pm using predefined anomaly
strategies. The teacher network takes the anomaly-free image
Im as input, while the student network takes the corresponding
synthetic anomaly image Pm as input. During training, we
keep the teacher frozen and train the student to mimic the
responses of the teacher on normal regions.

Following previous works [6], [28], cosine similarity is
applied to measure the consistency between the representations
of the teacher and the student. The cosine similarity loss is
defined as:

Lcos =

3∑
i=1

(1− 1

Nneg

∑
Ωneg

V i
t · V i

s

||V i
t || · ||V i

s ||
) , (1)

where i denotes the i-th stage. Ωneg represents the normal
regions and Nneg indicates the total number of pixels in
normal regions. V i

t and V i
s represent the feature vectors

yielded by the teacher and the student, respectively.
However, the cosine similarity only constrains each feature

vector in isolation, disregarding local contextual information.
Thus we further introduce structural similarity (SSIM ) loss
for compensation by considering neighboring vectors. The
structural similarity is formulated as:

SSIM(p, q) =
(2µpµq + λ1)(2σpq + λ2)

(µ2
p + µ2

q + λ1)(σ2
p + σ2

q + λ2)
, (2)

where µ and σ represent the mean and variance, and λ1 and λ2

are adopted for numerical stability1. The SSIM is in the range
of [-1,1]. In particular, when p is the same as q, SSIM(p, q)
is equal to 1. Based on SSIM , the structural similarity loss
is formulated as follows:

LSSIM =

3∑
i=1

(1− SSIM(f i
t , f

i
s)) , (3)

1λ1, λ2 are empirically set to 1e-1, 9e-4 to avoid division by zero,
respectively.

where f i
t and f i

s represent the i-th stage feature maps of
the teacher and the student, respectively. Note that we only
constrain f i

t and f i
s on normal regions. Finally, we combine the

above two losses to form the training objective of the teacher-
student framework:

Lkd = Lcos + LSSIM , (4)

2) The discrepancy map: Compared with existing knowl-
edge distillation methods [6], [7], rather than directly taking
the discrepancy map as the anomaly localization result, we
serve it as an additional robust cue for the segmentation task.
Taken a test image Im ∈ RH×W×3 as input, where H and W
denote the height and width, respectively. The teacher and the
student output corresponding feature representations f i

t and
f i
s. Then the discrepancy between f i

t and f i
s is measured by

cosine and structural similarities. Specifically, the discrepancy
map at location (x, y) is defined as:

M i
(x,y) = 2− V i

t · V i
s

||V i
t || · ||V i

s ||
− SSIM(f i

t , f
i
s)(x,y) , (5)

where SSIM(·)(x,y) represents the structural similarity of the
feature patches centered at (x, y), and the patch size is set to
11× 11 in practice. The discrepancy map of each layer M i is
then upsampled to H ×W and summed together as the final
discrepancy map M ∈ RH×W .

Feeding the discrepancy map into the following segmenta-
tion head brings two desirable merits. On the one hand, the
segmentation head can yield more discriminative representa-
tions under this strong guidance, thereby localizing anomalies
more accurately. On the other hand, the discrepancy map
releases the segmentation head from being only constrained by
the synthetic appearance, enhancing its perception of unseen
anomalies. Such a strategy can greatly boost the robustness
of our method under various simple and cheap synthesis
strategies, making our method easy to use in practice.

C. Segmentation head

The segmentation head aims at identifying the anomaly
regions. As illustrated in Fig. 3(a), the segmentation head takes
both the discrepancy map (i.e., M ) and anomaly features (i.e.,
{f i

s}3i=1) as the input, where the discrepancy map indicates the
location of anomalies while the anomaly features carry both
low-level textual and high-level semantic information.
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TABLE II
PERFORMANCE COMPARISON ON MVTECAD

Method Backbone Strategy I-AUC P-AUC P-PRO P-mAP FLOPS FPS #param.

K
D

RDAD∗ ResNet18
/

97.9 97.0 92.6 54.5 4.3G 127.0 15.9M
STPM† ResNet18 95.0 96.1 86.8 47.4 3.7G 159.2 2.8M

MKDAD∗ / 86.1 88.1 75.4 23.8 5.2G 205.2 0.3M
STAD / 87.7 91.4 / / 1948.1G 4.71 26.4M

Se
lf

-S
up

er
vi

si
on

CutPaste / CutP 96.1 96.0 / / / / /
DRÆM∗ / NSAB 84.1 95.1 84.0 45.9 198.4G 47.8 97.4M

NSA∗ ResNet18 NSAB 95.6 96.3 90.5 58.7 2.5G 218.2 11.5M
DAF (Ours) ResNet18 NSAB 97.1 97.5 92.4 66.0 6.8G 93.6 4.4M

DRÆM / DRA 98.0 97.3 / 68.4 198.4G 47.8 97.4M
NSA∗ ResNet18 DRA 92.0 93.6 86.7 58.0 2.5G 218.2 11.5M
TSDD / DRA 92.8 93.9 / 60.7 / / /

DAF (Ours) ResNet18 DRA 97.6 98.1 93.0 68.5 6.8G 93.6 4.4M

The detailed fusion process of the discrepancy map and
anomaly features is shown in Fig. 3(b). The segmentation mod-
ule processes them progressively in a coarse-to-fine manner via
the three blocks, which is formulated as,

MS = Seg3(Seg2(Seg1(M c⃝f3
s ) c⃝f2

s ) c⃝f1
s ) , (6)

where Seg1, Seg2, Seg3 denote the three blocks of the seg-
mentation module, and c⃝ denotes concatenation.

We apply the binary cross-entropy (BCE) loss as the seg-
mentation loss. Note that the anomaly (positive) pixels are
much fewer than normal (negative) pixels. To overcome the
imbalance of positive and negative pixels, a hard negative
mining strategy is adopted. Mathematically, the segmentation
loss Lseg is defined as:

Lseg =
∑

i∈Sub

yilogxi + (1− yi)log(1− xi) , (7)

where Sub is a subset sampled from MS , xi is the predicted
anomaly probability in Sub, and yi is its corresponding label.

D. Auxiliary Supervision
In the teacher-student framework, the student is trained

to regress representations of the teacher on normal regions.
However, there is no constraint for the student on anomalous
regions, which hinders the student from providing discrimina-
tive representations for the segmentation head Seg.

To enhance the discrimination capability of the student
on anomalous regions, we add an auxiliary head after each
student layer, as shown in Fig. 3(b). Each head Auxi takes
its corresponding anomaly feature f i

s as input, and outputs
the probability map of the corresponding size. The training
strategy is the same as that of the segmentation head, meaning
that we adopt the BCE loss and hard mining strategy as
the discriminative loss Ldis. Note that auxiliary heads are
discarded during inference, incurring no extra cost.

E. Anomaly Localization
During inference, we localize the anomalous regions from

two aspects. Firstly, since the segmentation head Seg is trained
to distinguish the normal distribution from that of the abnor-
mal, the segmentation probability map is expected to localize
anomalies accurately. Secondly, the discrepancy map between

the teacher and the student can also localize anomalies, since
the student is likely to demonstrate inconsistency with the
teacher on anomalous patterns. Since the discrepancy map is
irrelevant to the synthetic appearance, combining it and the
segmentation probability map desires both accurate and robust
properties.

In summary, the anomalies are located by incorporating the
discrepancy map M with the segmentation probability map
MS . The final anomaly score map is formulated as:

MScore = G(M + λMS) , (8)

The G means Gaussian smooth. λ is set to 3 in practice.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: MVTecAD [13] contains 5,354 images, in-
cluding ten object categories and five texture categories. The
training set has 3,629 normal images, while the testing set
contains 1,725 images, covering both normal and anomaly
images. Pixel annotations are provided for the anomaly areas.

DAGM [14] includes ten categories of texture images. The
training set contains anomaly images, and weak annotations
are provided for anomalous regions. During training, we only
use normal images. Since the annotations are coarse, we do
not evaluate the localization performance on DAGM.

2) Model Training: All the images are resized to 256× 256.
The weights of the teacher are frozen, and the remaining
components are trained using AdamW for 1,200 epochs. The
batch size is set to 8, and the weight decay is set to 1e−5.
The learning rate is gradually increased to 2e−4 in 50 epochs
and multiplied by 0.2 after 700 and 1,000 epochs. We first
follow the synthetic strategies in DRÆM [10] and NSA [11]
and then adopt a series of simple synthetic approaches to
further investigate the effectiveness of our method. Note that
DRÆM [10] introduces an external dataset (i.e. DTD [33]) for
synthesizing.

3) Evaluation Metrics: Following Salehi et al. [28], we eval-
uate the performance of anomaly detection and localization
by image-level AUC (I-AUC) and pixel-level AUC (P-AUC),
respectively. Meanwhile, following [13] and [10], we also
focus on the Per-Region-Overlap (P-PRO) and mean Average
Precision (P-mAP) to further evaluate localization accuracy.
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TABLE III
LOCALIZATION PERFORMANCE COMPARISON UNDER SIMPLE AND CHEAP SYNTHESIS STRATEGIES

Metric Method Carp. Grid Leath. Tile Wood Bottle Cable Caps. Haze. Metal. Pill Screw Tooth. Trans. Zip. Mean

Si
m

pl
e

Te
xt

ur
e P-AUC

DRÆM / / / / / / / / / / / / / / / 92.6
NSA∗ 91.3 80.3 90.6 95.0 83.2 92.9 76.4 83.8 91.4 96.7 80.9 73.5 96.8 68.6 64.5 84.4
DAF 98.8 98.8 99.6 97.7 96.8 98.7 97.2 97.4 99.0 99.1 98.0 99.0 99.1 89.8 98.3 97.8

P-PRO
DRÆM / / / / / / / / / / / / / / / /
NSA∗ 79.9 54.2 88.7 93.9 79.8 78.1 62.9 66.8 89.5 91.1 78.7 38.1 75.3 53.7 36.4 71.1
DAF 94.2 94.2 98.5 92.7 92.9 94.5 89.9 84.3 95.6 93.9 92.4 95.1 90.3 78.7 91.7 91.9

P-mAP
DRÆM / / / / / / / / / / / / / / / 56.5
NSA∗ 47.7 8.2 42.4 89.1 68.0 62.3 16.8 30.1 63.9 91.5 28.3 2.2 55.7 22.9 13.8 42.9
DAF 67.1 43.1 66.8 84.3 73.2 81.6 55.8 41.0 67.2 93.8 54.1 34.2 66.0 55.3 49.7 62.2

Si
m

pl
e

Sh
ap

e

P-AUC
DRÆM∗ 79.8 97.6 91.5 80.2 74.6 74.5 71.3 63.4 81.3 73.0 72.2 81.7 87.5 71.1 82.4 78.8
NSA∗ 76.6 95.4 95.3 77.4 78.0 73.6 61.4 63.4 87.2 59.3 67.6 82.8 79.5 67.4 75.8 76.0
DAF 98.6 99.3 99.7 98.6 96.4 98.5 96.7 95.7 98.8 98.5 97.5 98.8 99.0 88.1 99.1 97.6

P-PRO
DRÆM∗ 70.8 94.9 89.4 59.4 71.0 61.3 30.6 55.6 78.1 56.3 75.8 66.9 78.9 53.1 70.9 67.5
NSA∗ 65.1 88.0 93.2 53.3 78.0 61.1 38.5 60.8 87.9 25.5 53.0 64.5 71.6 49.7 59.9 63.3
DAF 96.1 97.3 99.0 95.0 93.1 95.1 90.3 81.7 96.5 96.0 93.3 94.2 93.4 75.2 96.0 92.8

P-mAP
DRÆM∗ 23.5 49.1 55.5 29.4 32.5 36.8 5.8 6.3 31.2 22.1 18.8 6.9 25.5 11.3 33.3 25.9
NSA∗ 12.8 45.3 34.2 19.1 53.8 43.4 4.7 13.3 42.5 13.7 6.2 9.6 16.9 12.3 30.1 23.9
DAF 70.1 57.4 69.8 88.2 65.9 80.1 45.5 24.1 60.9 86.8 72.1 42.1 54.5 51.7 71.1 62.7

Si
m

pl
e

Te
xt

ur
e-

Sh
ap

e

P-AUC
DRÆM∗ 58.6 95.0 71.6 85.4 69.2 80.2 47.2 58.4 55.1 66.5 46.9 80.8 59.8 57.9 59.9 66.2
NSA∗ 59.7 60.6 67.5 55.7 58.4 51.4 52.2 50.0 59.8 52.7 48.0 58.1 53.5 47.8 60.2 55.7
DAF 99.0 98.9 99.6 98.0 96.2 98.4 96.2 97.6 98.6 98.7 97.5 99.1 98.9 88.2 98.6 97.6

P-PRO
DRÆM∗ 40.0 90.3 69.2 58.2 44.2 57.6 30.6 43.4 38.4 60.1 53.9 64.3 70.7 43.7 38.9 53.6
NSA∗ 35.2 32.4 56.7 36.0 53.6 24.7 18.6 23.9 23.5 22.6 32.5 25.0 20.9 22.5 29.3 30.5
DAF 96.1 95.2 98.8 93.4 93.1 94.5 88.9 87.6 94.1 92.8 94.4 95.5 91.9 75.3 92.9 92.3

P-mAP
DRÆM∗ 6.5 47.1 42.7 46.4 15.6 42.0 4.2 8.3 19.9 31.2 14.3 13.8 25.2 10.8 17.3 23.0
NSA∗ 2.9 3.2 8.2 14.3 16.8 7.2 3.0 1.0 2.7 12.7 3.3 0.4 1.9 5.0 3.9 5.8
DAF 71.6 42.5 67.3 85.1 63.1 81.6 44.7 35.7 60.2 88.4 72.7 29.9 53.3 53.7 53.0 60.2

4) Baselines: We mainly compare DAF with knowledge
distillation-based methods and self-supervision-based meth-
ods. For ease of description, we abbreviate these two methods
in the following tables as KD and Self-Sup, respectively.

(1) Knowledge distillation-based methods: STAD [5],
STPM [6], MKDAD [28], RDAD [7]. These methods compare
activations of the teacher and student, where features of
anomaly regions are distinct.

(2) Self-supervision-based methods: CutPaste [9], DRÆM
[10], NSA [11]. These methods introduce extra supervision
through synthetic anomalies to help proxy tasks such as
segmentation.

B. Evaluation on MVTecAD using complicated strategies
1) Quantitative analysis: Table II reports the detection and

localization performance on the MVTecAD [13] dataset2. In
our method, the image-level score is acquired by the mean of
the top 50 values of the anomaly score map MScore. Compared
with knowledge distillation methods, our method achieves a
comparable result of 97.6% I-AUC with RDAD [7] on the
detection task. In terms of the localization task, benefiting
from the discriminative capacity of the segmentation head
Seg, our approach surpasses RDAD by 1.1% P-AUC and
14.0% P-mAP. Compared with self-supervised methods, while
using the synthesis strategy of NSAB , we exceed NSA [11]
by 1.5% I-AUC and 7.3% P-mAP, respectively. Furthermore,
compared with DRÆM [10], our method achieves significant
improvements of 13.0% I-AUC and 20.1% P-mAP. Notably,
when using the synthesis strategy of DRA, our detection

2∗ represents the reproduced result using the official code. † denotes the
reproduced results using the unofficial code.
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Fig. 4. Visualization of localization results.

performance is slightly lower than DRÆM [10] by 0.4%.
However, our localization performance exceeds it by 0.8% P-
AUC. Please note that the computation complexity (FLOPS),
the model size (#param), and the FPS of DRÆM are much
higher than ours. When training with synthetic data, the super-
vised method TSDD [34] obtains relatively poor performance,
indicating that the distribution gap with real anomalies may
hurt its generalization.

2) Qualitative analysis: Fig. 4 shows localization results
of the existing state-of-the-art knowledge distillation method
RDAD [7], the self-supervised method DRÆM [10] and our
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TABLE IV
DETECTION PERFORMANCE ON DAGM [14] UNDER DIFFERENT SYNTHESIS STRATEGIES

Method Strategy Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Mean

K
D RDAD∗ / 95.3 99.2 80.6 100.0 78.1 91.6 99.5 63.1 95.3 99.1 90.2

STPM† / 86.1 98.7 88.7 100.0 82.3 94.4 99.8 65.6 91.7 99.7 90.7

Se
lf

-S
up

er
vi

si
on

DRÆM
DRA

/ / / / / / / / / / 99.0
NSA∗ 90.6 99.2 99.8 100.0 98.1 99.9 100.0 99.5 51.4 99.7 93.8
DAF 99.5 99.8 100.0 100.0 96.7 100.0 100.0 97.1 98.9 99.9 99.2

DRÆM∗

NSAB

45.1 100.0 88.5 80.0 84.1 100.0 100.0 83.9 91.2 87.9 86.1
NSA∗ 52.6 99.3 85.1 97.8 86.7 100.0 57.4 83.2 62.1 93.8 81.8
DAF 85.7 100.0 99.6 99.8 93.8 100.0 100.0 100.0 99.7 99.9 97.9

DRÆM∗

Simple Texture
54.9 45.6 98.8 68.8 99.3 57.0 93.4 87.4 53.4 72.6 73.1

NSA∗ 50.6 50.8 80.5 51.4 72.7 64.6 100.0 97.1 53.3 76.1 69.7
DAF 97.6 97.1 99.7 100.0 76.1 96.7 100.0 88 91.8 99.7 94.7

DRÆM∗

Simple Shape
99.4 90.2 89.1 96.7 100.0 86.9 100.0 92.3 48.2 77.7 88.1

NSA∗ 52.2 44.2 36.6 29.6 28.5 58.8 20.5 46.5 52.8 25.1 39.5
DAF 93.6 100.0 100.0 100.0 97.8 100.0 100.0 97.0 94.8 99.9 98.3

TABLE V
ABLATION STUDY ON THE EFFECTIVENESS OF EACH COMPONENT

Components I-AUC P-AUC P-PRO P-mAP

only T -S 93.6 96.3 86.1 48.6
only Seg 95.1 95.2 75.1 62.5
W/O Aux 97.7 98.0 92.6 66.6

DAF 97.6 98.1 93.0 68.5

TABLE VI
ABLATION STUDY ON THE DISCREPANCY MAP

Strategy M MS I-AUC P-AUC P-PRO P-mAP

DRA
✓ 95.4 97.4 90.7 52.8

✓ 96.8 95.5 78.4 67.1
✓ ✓ 97.6 98.1 93.0 68.5

Simple Texture
✓ 97.4 97.4 90.8 52.1

✓ 95.3 89.9 55.6 52.9
✓ ✓ 97.5 97.8 91.9 62.2

Simple Shape
✓ 92.9 97.0 89.9 48.7

✓ 94.0 80.8 72.2 40.0
✓ ✓ 97.0 97.6 92.8 62.7

method. Both DRÆM and our method are trained using the
DRA strategy. It can be observed that RDAD can roughly
localize anomalies, but the localization areas tend to be larger
than the ground truth (Row 3, Columns 2,4,5,6). DRÆM can
sometimes deliver clear decisions for normal and abnormal
areas (Row 4, Column 5), but it also fails in some cases
(Row 4, Columns 1-4). The last row suggests that our method
achieves the most accurate localization, performing well across
various anomalies and closely matching the ground truth.

C. Evaluation on MVTecAD using simple strategies
Simple Texture means that the textures of the synthetic

anomalies are random colors, rather than natural textures sam-
pled from the DTD dataset [33]. Simple Shape indicates that
the shapes of synthetic anomalies are rectangles, in contrast
to irregular shapes. Simple Texture-Shape replaces shapes and
textures with rectangles and randomly sampled colors.

1) Quantitative analysis: Table III reports the results. Under
the Simple Texture strategy, it can be observed that our method
achieves competitive results of 97.8% P-AUC, 91.9% P-PRO

TABLE VII
IMPACT OF THE DISCREPANCY MAP M ON SEGMENTATION

Strategy M I-AUC P-AUC P-PRO P-mAP

DRA
97.6 98.0 92.9 67.3

✓ 97.6 98.1 93.0 68.5

Simple Texture 96.5 97.7 91.3 60.1
✓ 97.5 97.8 91.9 62.2

Simple Shape 96.5 97.5 92.6 62.2
✓ 97.0 97.6 92.8 62.7

and 62.2% P-mAP, while DRÆM [10] and NSA [11] perform
relatively lower. Specifically, compared with DRÆM, we bring
5.2% (97.8% vs. 92.6%) P-AUC and 5.7% (62.2% vs. 56.5%)
P-mAP gains, and outperform NSA by 13.4% P-AUC and
19.3% P-mAP. Similarly, compared with these two prior arts,
we also achieve significant improvements under the Simple
Texture and Simple Texture-Shape strategies. These results
demonstrate the superior robustness of our framework.

2) Discussions: NSA [11] carefully designs a synthesis
strategy to simulate natural images. Since the optimization
process is only influenced by the anomalous appearance,
the model is likely to overfit to the synthetic anomalies.
Hence, it can perform well if the real anomalies are similar
to the synthetic ones. However, it is challenging to localize
anomalies when there is a distribution discrepancy between
them. DRÆM [10] attempts to solve the overfitting issue by
jointly using the synthetic anomaly data and anomaly-free
reconstruction. However, the reconstruction model also suffers
from the overfitting problem, failing to restore anomalies when
unseen anomalies occur. Our method benefits from the discrep-
ancy map, which inherently indicates the location of anomaly
regions, providing strong evidence for the segmentation head.
This alleviates its dependence on the synthetic appearance.
Moreover, the supplement of the discrepancy map can further
promote robustness.

D. Evaluation on DAGM

Table IV shows the detection performance on DAGM [14].
The two knowledge distillation methods RDAD [7] and
STPM [6] achieve comparable performance (90.2% vs.
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TABLE VIII
ABLATION STUDY ON THE HYPERPARAMETER UNDER DRA STRATEGY

Method DTD Perlin β I-AUC P-AUC P-PRO P-mAP

DRÆM ✓ ✓ ✓ 98.0 97.3 / 68.4
✓ ✓ 97.4 95.0 / 64.5

DAF ✓ ✓ ✓ 97.6 98.1 93.0 68.5
✓ ✓ 97.6 97.8 92.4 64.5

TABLE IX
COMPARISON WITH THE MODEL ENSEMBLE

Strategy Method I-AUC P-AUC P-PRO P-mAP

DRA
Ensem. 96.8 97.7 91.7 65.1
DAF 97.6 98.1 93.0 68.5

Simple Texture Ensem. 95.8 97.4 90.1 58.4
DAF 97.5 97.8 91.9 62.2

Simple Shape Ensem. 93.5 97.5 91.7 61.2
DAF 97.0 97.6 92.8 62.7

90.7%). When training with DRA, the self-supervised meth-
ods DRÆM [10] and NSA [11] outperform knowledge dis-
tillation methods by a large margin. Our method obtains the
state-of-the-art performance of 99.2%. We assume that DRA
can synthesize anomalies that match real ones during training,
helping the self-supervised methods to yield clear decision
boundaries to classify the normal and abnormal regions. How-
ever, these methods demonstrate unsatisfactory results when
the synthetic strategies are simpler, e.g., Simple Texture and
Simple Shape. In contrast, our method demonstrates strong
robustness to these synthesis strategies. The improvement is
thanks to the discrepancy map, which reveals the location of
anomalies, releasing the segmentation task from the constraint
of the anomaly appearance. Additionally, the supplement of
the discrepancy map during inference has further enhanced
robustness.

E. Ablation Study
For simplicity and fairness, we conduct all the ablation

studies on MVTecAD [13].
1) Effectiveness of different components: Table V displays

the impacts of different components. Only T -S indicates that
only the teacher-student framework remains, and only the dis-
crepancy map is employed for evaluation. We also only keep
the student and the segmentation head to build a segmentation
network (Only Seg). To demonstrate the effectiveness of the
auxiliary heads, we remove them from the pipeline (W/O
Aux). Compared with only Seg, only T -S shows its advantage
in P-AUC and P-PRO. In contrast, only Seg brings higher P-
mAP. W/O Aux brings gains in both detection and localization.
By incorporating the auxiliary heads during training (Ours),
we achieve the best localization performance. This observation
indicates that the auxiliary heads promote the student to yield
more discriminative representations for anomalies.

2) Effectiveness of the discrepancy map: We further conduct
several settings to prove that the discrepancy map M is a
useful supplement to the segmentation probability map MS .
Table VI shows that with M , we have observed 2.6% P-
AUC, 14.6% P-PRO and 1.4% P-mAP improvements under

TABLE X
IMPACT OF INITIALIZATION FOR THE STUDENT

Strategy Initial Param. I-AUC P-AUC P-PRO P-mAP

DRA
Pretrained 97.6 97.9 91.9 64.3
Random 97.6 98.1 93.0 68.5

Simple Texture Pretrained 96.5 97.2 89.5 54.2
Random 97.5 97.8 91.9 62.2

Simple Shape Pretrained 96.9 97.3 92.0 58.8
Random 97.0 97.6 92.8 62.7

TABLE XI
ABLATION STUDY ON THE LOSSES IN THE T-S FRAMEWORK

Loss I-AUC P-AUC P-PRO P-mAP

LCos 97.3 97.5 91.1 63.4
LSSIM 97.4 98.0 91.5 67.0

DAF 97.6 98.1 93.0 68.5

the DRA strategy. It can also be observed that the combination
of the discrepancy map M and the segmentation probability
map MS brings significant increases in both detection and
localization performance under the simple strategies.

3) Influence of the discrepancy map on segmentation: To
investigate the influence of the discrepancy map on the seg-
mentation task, we remove it from the input of the segmen-
tation head Seg. As shown in Table VII, the performance
suffers from degradation when the discrepancy map is not
incorporated. For instance, under the Simple Texture strategy,
the detection performance drops from 97.5% to 96.5%, while
the localization P-mAP reduces by 2.1%. We hypothesize that
our improvements lie in the discrepancy map, which provides
an effective cue for the segmentation task. This alleviates the
segmentation head from the limitation of the synthetic ap-
pearance, thereby enhancing its capacity to identify previously
unseen anomalies.

4) Influence of the hyperparameter in the synthesis strategy:
Following DRÆM [10], we evaluate how the hyperparameter
β impacts the performance of our method. The result is
reported in Table VIII, where DTD and Perlin noise are
utilized to simulate the appearance and shape of anomalies
in the DRA strategy. β controls the opacity in blending.
Compared with DRÆM, our method is more robust on β.
We keep the same P-mAP as DRÆM, but show advantages
in I-AUC (97.6% vs. 97.4%) and P-AUC (97.8% vs. 95.0%)
when training via strategy DRA without β.

5) Model Ensemble vs. End-to-End: Table IX reports the
performance of the model ensemble (Ensem.). Here we train
the teacher-student (T -S), and a segmentation model with
auxiliary heads alone, then add the discrepancy and the
segmentation probability map for evaluation. Compared with
Ensem., we achieve improvements in both anomaly detection
and localization. The result suggests that with the guidance
of the discrepancy map, our end-to-end framework could
distinguish normal and abnormal regions more accurately.

6) Influence of initialization for the student: Table X studies
the impact of parameter initialization on the student S. As
shown, the student initialized randomly performs better, in-
dicating that pre-trained parameters hinder S from yielding
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disparate representations from the teacher on anomalies. We
assume that the discrepancy map derived from T -S provides
only limited cue for the segmentation head Seg in this case,
resulting in reduced robustness of Seg.

7) Influence of the distillation loss: Table XI shows the
effectiveness of the structural similarity (SSIM ) loss. Since
the cosine similarity loss solely distills knowledge at each
position in isolation, we introduce SSIM loss to consider
neighboring vectors. The study reveals the effectiveness of the
SSIM loss. DAF achieves the best results when the cosine
similarity and SSIM are adopted simultaneously.

8) Limitations: While synthesized anomalies boost perfor-
mance, the training time increases due to the computationally
expensive synthesizing steps. Although adopting simple and
cheap ones accelerates the process, it is still slower than un-
supervised methods that are solely trained on normal images.

9) Future work: In future work, investigating lightweight
architectures and developing real-time approaches will be
important for industrial applications. Moreover, integrating the
rich knowledge derived from large models such as CLIP [35]
into our method will be helpful for further enhancing the
generalization capacity.

V. CONCLUSION

In this paper, we have observed that the existing self-
supervised methods are susceptible to the quality of synthetic
data. To improve the robustness of the prior arts, we have
proposed a simple yet effective framework, named Discrep-
ancy Aware Framework (DAF). DAF introduces the teacher-
student model to yield the discrepancy map and serves it as
an additional cue that reveals the location of anomalies to the
segmentation decoder, alleviating the decoder’s reliance on the
appearance of synthetic data. Meanwhile, the complement of
the discrepancy map for segmentation contributes significantly
to robustness as well. Extensive experiments have shown that
DAF surpasses previous self-supervised methods significantly
when faced with simple synthetic strategies in anomaly detec-
tion and localization, demonstrating its excellent robustness.
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