Abstract:
In the field of recommender systems, self-supervised learning has become an effective framework. In response to the noisy interaction behaviors in realworld scenarios, as...Show MoreMetadata
Abstract:
In the field of recommender systems, self-supervised learning has become an effective framework. In response to the noisy interaction behaviors in realworld scenarios, as well as the skewed distribution influenced by data sparsity and popularity bias, graph contrastive learning has been introduced as a powerful self-supervised method in collaborative filtering (CF) to learn enhanced user and item representations. Despite their success, neither heuristic manual enhancement methods nor the use of final node representations to construct contrastive pairs are sufficient to provide effective and rich self-supervised signals to regulate the training process. Therefore, the learned representations of users and items are either fragile or lack heuristic guidance. In light of this, we propose the Hierarchical multiview graph contrastive learning framework HMCF, which leverages the message passing mechanism at the layer level to introduce different granularity levels of view augmentation using supervised signals, thus better enhancing the CF paradigm. HMCF leverages rich, high-quality self-supervised signals from different granularity views for accurate contrastive optimization, helping to alleviate data sparsity and noise issues. It also explains the hierarchical topology and relative distances between nodes in the original graph. Comprehensive experiments on three public datasets shows that our model significantly outperforms the state-of-the-art baselines.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 21, Issue: 3, March 2025)