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Resolution in Model-Based Measurement
Adriaan van den Bos, Fellow, IEEE

Abstract—In measurement practice, the concept resolution is
usually associated with the ability to distinguish two overlapping
components of the same kind in observations. The original concept,
Rayleigh’s well-known two-point resolution, stems from optics. It
is based on the presumed limits of the human visual system to dis-
tinguish the images of two closely located point sources in obser-
vations of the sum of the images. Modern definitions of resolution,
on the other hand, are based on parametric statistical models of
the observations. They implicitly assume the use of parameter esti-
mation methods and show that the ultimate limits to resolution are
nonsystematic (statistical) and systematic (modeling) errors.

Index Terms—Model-based measurement, parameter estima-
tion, resolution.

I. INTRODUCTION

T HE AIM of this paper is to introduce and explain modern
model-based definitions of the concept resolution. A fur-

ther purpose is to review earlier definitions and to discuss their
differences with the modern approach.

The earlier approaches are the subject of the Sections II and
III of this paper. In Section II, so-calledclassicaldefinitions of
resolution are reviewed. The best known of these is the Rayleigh
resolution criterion or limit. It defines the presumed minimum
distance at which the overlapping component images of two
identical, closely located point sources can still be distinguished
by the human visual system. Since this definition supposes this
minimum distance proportional to the width of the point images,
imaging instruments have better resolving capabilities as their
point image, the so-calledpoint spread function, is narrower.
Thus, Rayleigh’s and related limits to resolution are purely de-
terministic and instrumental. They are defined by the width of
the point-spread function or, equivalently, by its reciprocal, the
bandwidth of its Fourier transform calledoptical system transfer
function.

More recent approaches are based on the idea that resolution
is limited by noise in the observations. This limitation is incor-
porated in resolution definitions discussed in Section III, which
are based on information theory, decision theory, signal-to-noise
ratio (SNR), and asymptotic parameter estimation theory, re-
spectively. Successively, these definitions require an increasing
amount ofa priori knowledge. In particular, the last definition
assumes the parametric model of the point image and the distri-
bution of the observations to be known, and the number of obser-
vations to be very large. These conditions are very demanding
and seriously limit the applicability.

In Sections IV–X, an attractive modern definition of resolu-
tion is explained. It is also based on a parameter estimation ap-
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Fig. 1. Rayleigh sinc square model.

proach but does not require asymptoticity. For any estimation
method and two-component model, it divides all possible sets
of two-component observations into two types: sets from which
the components can be resolved or sets from which they cannot.
Nonsystematic (statistical) errors and systematic (modeling) er-
rors then determine the probability that a set of observations
belongs to the former type, that is, they determine theproba-
bility of resolution. The required parameter estimation notions
are introduced in Section IV. Sections V and VI are mainly de-
voted to a numerical example illustrating the actual occurrence
of both types of observations. Section VII introduces a singu-
larity theory based criterion specifying to which type a partic-
ular set of observations belongs. The numerical computation of
the criterion value is the subject of Section VIII. Probability of
resolution, discussed in Section IX, is defined using the same
criterion. Section X describes generalizations and extensions.
Conclusions are drawn in Section XI.

II. CLASSICAL TWO-COMPONENTRESOLUTION

Of all resolution criteria, that of Rayleigh is probably oldest
and best known [1]. Rayleigh considered two overlapping, in-
coherent, sinc square images as just resolvable from their sum
if the central maximum of the one image coincides with the first
zero of the other such as shown in Fig. 1. At the relative min-
imum in between the peaks, the sum is approximately equal to
81% of the peak value, and this intensity ratio was thought to be
the limit to what the human visual system can perceive. Later,
the same ratio was used to define limits to resolvability of im-
ages other than sinc square. For all these images, the distance of
the images of the peaks corresponding to the 81% ratio is called
theRayleigh limit. Its main characteristic is that it is smaller as
the central peak of the image is narrower.

In optics literature, a number of alternatives to Rayleigh’s
definition have been proposed. Schuster and Nicholson
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[2, p. 158] require the locations of the peaks to be such that
the central peaks do not overlap at all. This implies that for
the sinc square image the Schuster Nicholson limit is twice
the Rayleigh limit. Sparrow [3] proposes a resolution limit so
that both maxima and the relative minimum in between just
coincide and a sum image results that has one single peak. This
means that the component images are more closely located
than at the Rayleigh limit. Simple calculations show that for the
sinc square image, the Sparrow limit is 0.83 times the Rayleigh
limit.

The three resolution limits described, and similar ones found
in the literature, are calledclassicalresolution limits. They have
in common that they are in fact measures of the widths of the
component images. Since in these classical resolution criteria
the component image is the point spread function, resolution is
better in the sense of these criteria as this function is narrower.
The shape of the point-spread function depends on the shape
of the aperture and its spatial transmittance function, thepupil
function. Many attempts are described in the literature to make
the central peak of the point-spread function narrower by proper
choice of the pupil function. Unfortunately, this process, some-
times calledapodization[4], always reduces the total amount
of light transmitted. Specifically, it reduces the value of the
point-spread function at its central maximum and creates side
lobes, which make the image more difficult to interpret.

In conclusion, classical resolution limits concern the exact
sum of two overlapping known point spread functions. How-
ever, if this known two-component model would be fitted with
respect to its amplitude and location parameters to the exact ob-
servations, a perfect fit and unlimited resolution would result.
Therefore, if there are limits to resolution, these must be a conse-
quence of nonsystematic (statistical) and systematic (modeling)
errors. The notion that errors anda priori knowledge determine
resolution is seen in a number of developments after the clas-
sical approach described in the sections to follow.

III. STATISTICAL DEFINITIONS OFRESOLUTION

In the preceding section, it was concluded that errors ought
to be included in the quantification of resolution. This section
reports a number of attempts in the literature to do so.

The first approach to be discussed is the use of the information
theoretical conceptchannel capacity, which is the number of
degrees of freedom a system can transmit. Cox and Sheppard
[5] derived a general expression for the channel capacity of an
imaging system as a function of spatial bandwidth and SNR. If
the channel capacity of an imaging system is assumed invariant,
this expression shows that increase of spatial bandwidth, that is,
resolution can only be achieved at the expense of the SNR, that
is, precision of the result. This result in the spatial domain is
comparable to the classical frequency-domain result in spectral
analysis where the product of the variance and the resolution of
a spectral estimate is invariant for a particular set of observations
[6].

A related straightforward approach is to directly associate
resolution with the SNR of the image observations. The liter-
ature concerned is vast. A typical example of this approach is

[7] where the SNR in the frequency domain is used. If the band-
width of the imaged object is assumed to be smaller than that
of the noise, the frequency is determined where the smallest
SNR considered acceptable is attained. The reciprocal of this
frequency is used as the resolution in the spatial domain. Other
SNR-based methods employ a so-calledresolution scale. This
is a constant of the order of the Rayleigh limit. The precision of
location is then equal to the ratio of the resolution scale to the
SNR. Unfortunately, tools like the resolution scale are merely
rules of thumb neither intended nor suitable to provide insight
in what the fundamental limits to resolution are.

Various authors report application ofdecision theoryto reso-
lution of overlapping component functions in observations. An
example is [8]. Resolution is then seen as correctly deciding that
there are two components present in noisy two-component ob-
servations instead of only one. The probability of a correct deci-
sion is proposed as a measure of resolution. The decision theo-
retical approach is operational in the sense that it can be applied
to actual two-component observations. However, it requires a
correct component model and correct statistical properties of the
observations. This may make application problematic. On the
other hand, the decision theoretical approach is highly illustra-
tive of a number of aspects of resolution. First, it illustrates the
dependence of resolution on the statistical properties of the ob-
servations since the probability of a wrong decision will increase
as the observations are noisier. Second, in this approach, it is as-
sumed that noisy two-component observations may be divided
in one-component-likeor two-component-likeobservations. The
usefulness of this idea will be demonstrated in Sections V–X.

As a final example of statistical definitions of resolution
found in the literature,asymptotic parameter estimation
methodsare briefly mentioned. Examples are [9] and [10].
These methods express resolution in terms of the statistical
precision with which the locations and the amplitudes of the
components can be estimated. For the computation of the
precision, the standard deviation is used that is attained asymp-
totically by maximum likelihood estimators. This implies that
the probability density function of the observations must be
known and the number of observations must be very large. In
addition, these computations require the component function
to be exactly known. These conditions seriously limit the
applicability. The importance of this approach is that it relates
resolution to parametric models and parameter estimation.
These subjects will briefly be reviewed in the next section, and
the resolution of parameter estimation methods without the
restrictive conditions of the asymptotic methods will be the
subject of the Sections V–X.

IV. ELEMENTS OFPARAMETER ESTIMATION

The Rayleigh two-component model has three parameters
only: both locations of the components and the common am-
plitude. Therefore, these are the only quantities to be estimated
to fully characterize the two-component observations. Gener-
ally, observations made under the same conditions differ from
experiment to experiment as a result of nonsystematic errors.
The statement that observations are “described by the Rayleigh
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model” means that a properly parameterized Rayleigh model
exactly describes theexpectationsof the observations [11]. Re-
placing the expectations present in the joint probability density
function of the observations by the model defines the depen-
dence of the probability density function on the parameters. If,
next, the available observations are substituted for the corre-
sponding independent variables of the probability density func-
tion, the resulting expression as a function of the parameters is
called thelikelihood functionof the parameters. It is a measure
of the probability of observations like the ones substituted given
the parameters. In what follows, the logarithm of the likelihood
function, thelog-likelihood function, will be denoted by
where is the vector of parameters.

The maximum likelihood estimatesof the parameters are
defined as the parameter values maximizing the likelihood
function [12]–[14]. The likelihood function for independent
and identically normally distributed errors is equivalent to the
ordinary least squares criterion. In practice, this criterion is also
used if the observations are distributed otherwise. To include
this, and other practical cases, in what follows, the assumption
will be made that the parameters of the two-component model
are estimated by maximizing a likelihood function that is
not necessarily the likelihood function corresponding to the
probability density of the observations. Also, the parametric
model used may be different from the expectations of the
observations. This modeling error is mentioned since as will be
seen in what follows, this may influence the resolving of the
components from the observations.

V. IRRESOLVABLECOMPONENTLOCATION PARAMETERS

The purpose of the numerical example presented in this sec-
tion is to show that resolution is dependent on the particular re-
alization of the observations.

Example 1: Suppose that in an experiment the expectations
of the observations are a two-component model described by

(1)

where the vector of parametersis defined as

(2)

is the Gaussian component function withas location param-
eter, and is the th measurement point. Specifically, sup-
pose that and

. This choice of
the avoids undesirable symmetries in the location of the
measurement points. Fig. 2 shows the function and the loca-
tions of the measurement points. Furthermore, suppose that the
observations are independent and Poisson distributed and that
the corresponding maximum likelihood estimator is used for
the estimation of . Then, it is not difficult to show [15] that
the maximum likelihood estimator for may be expressed in
closed form in those for and . If this expression is sub-
sequently substituted back into the likelihood function, a func-
tion of and , respectively, corresponding to the parame-
ters and , is obtained. The contours of this function are
shown in Figs. 3 and 4 for two different realizations of the ob-
servations. In both figures, the horizontal and vertical coordi-

Fig. 2. Measurement points on Bigaussian function of Example 1.

Fig. 3. Two maxima, one saddle point structure of the likelihood function of
Example 1.

nates are and , respectively. These coordi-
nates are, therefore, the difference and the average of the loca-
tions of the components of the two-component model, respec-
tively. Both Figs. 3 and 4 are symmetric in the -axis
since and are interchangeable. However, thestructure,
defined as the pattern of stationary points, is essentially dif-
ferent. The likelihood function of Fig. 3 has a maximum on
either side of the -axis and has a saddle point on
this axis. The coordinates of the left-hand maximum correspond
to about which are estimates of
the true values . The saddle point on the

-axis corresponds to .
Since these values for and are exactly equal, the compo-
nents coincide and the corresponding model is aone-component
modelof the same parametric family. More specifically, it is not
difficult to show that this is the one-component model best fit-
ting to the observations [15]. Fig. 4 differs from Fig. 3 in two
respects. First, the maxima on either side of the -axis
have disappeared. Second, the stationary point on this axis has
become a maximum instead of a saddle-point and, therefore,
represents the maximum likelihood solution. The conclusion is
that this maximum likelihood solution is a one-component so-
lution instead of a two-component solution. Irrespective of its
nature, the stationary point on the -axis will from
now on be called theone-component stationary point.

A conclusion from Example 1 is that two-component obser-
vations generated under the same conditions may be one-com-
ponent-like or two-component-like. It is clear that, if the obser-
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Fig. 4. One maximum structure of the likelihood function of Example 1.

vations are one-component-like, the distinct parametersand
are no longer resolved from the observations since the solu-

tions coincide. The question now arises what distinguishes both
types of observations? This question will be addressed in the
next section.

VI. RESOLUTION AS APROPERTY OFOBSERVATIONS

Example 1 showed that the irresolvability of component
location parameters or, equivalently, the components, is caused
by structural change. Structural change is a subject ofsingu-
larity theory which, combined with its applications, is also
calledcatastrophe theory[16], [17]. To illustrate a number of
relevant concepts of those theories, first a numerical example
is presented. In this example, the concept (Euclidean) space
of the observationsis used. This is the Euclidean space with
the observations as coordinates. Its dimension is the number of
observations.

Example 2: Suppose that a convex combination is made of
the two sets of observations of Example 1. This means that the
corresponding observations in both sets are added with weights
1- and with to form a new set of “observations.”
Then, if , the set of observations thus formed corresponds
to Fig. 3, while the one for corresponds to Fig. 4. Each of
both sets is a point in the space of observations, and the straight
line connecting them represents all convex combinations. Then,
if is increased from zero on, eventually on this line there is
a point where the solutions for the locations just coincide. This
is illustrated in Fig. 5 showing the solutions for the locations as
a function of . The figure also shows that once the solutions
coincide, they continue to do so for increasing.

In singularity theory, the set of all points in the space of the
observations where the solutions for the locations just coincide
and the structure changes is called abifurcation set. It will be
shown that the bifurcation set concerned is ahypersurface. This
is a subspace of codimension 1 on the space of observations.
Subspaces of codimension 1 have the property that they are de-
scribed by a single equation and divide the space in which they
are located into two distinct parts. Examples are a point on a line,
or a line in the plane. In the resolution problems considered, the
bifurcation set divides the space of possible observations into
two parts. The observations in the one part correspond to dis-
tinct values for the locations of the components, that is, they

Fig. 5. Solutions for the locations in Example 2.

Fig. 6. Structures of the function in Example 3 for different values of the
parameter�.

are two-component-like. The observations in the complemen-
tary part of the space of observations correspond to coinciding
solutions for the locations, that is, they are one-component-like.
Therefore, the bifurcation set defines from which sets of obser-
vations the components can be resolved and from which they
cannot. It is, therefore, important to be able to compute the bi-
furcation set or to determine in a simple way on which side of
the bifurcation set, a set of observations is located. How this can
be done is the subject of the subsequent sections.

VII. CLASSIFYING OBSERVATIONS

To find the bifurcation set, the following result from singu-
larity theory is used: structural change of a function only oc-
curs if one or more stationary points of the function become
degenerate. If one or more eigenvalues of the Hessian matrix
evaluated at a stationary point are equal to zero (“vanish”), the
stationary point is called degenerate. In what follows, it will be
assumed that only one of the eigenvalues may vanish since this
covers the applications in this study. To illustrate degeneracy of
this kind, first an example is presented.

Example 3: In Fig. 6, the function is shown
for , 0, and 1, respectively. For , and for all
other negative , the function has one relative maximum and
one relative minimum. These stationary points merge to form
one degenerate stationary point at if vanishes. Subse-
quently, for positive, this stationary point disappears. In this
simple case, the bifurcation set consists of since this is
the set of all parameter values for which a degenerate stationary
point occurs.
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Different from the cubic polynomial in one variable in this
example, the log-likelihood functions studied are functions of
the three variables, , or, equivalently, , and

. A further difference is that the log-likelihood functions
are not polynomials. However, in bifurcation theory it is shown
that for the analysis of structural change of a function it is suf-
ficient to study a Taylor polynomial in the coordinates in which
the structural change takes place. In the problem at hand this
is only the coordinate . This is demonstrated in Figs. 3
and 4 where in the coordinate the function remains
maximum but in the coordinate changes from a two
maxima, one minimum structure into a single maximum. Sin-
gularity theory also prescribes the required degree of this Taylor
polynomial.

In [15], the Taylor polynomial in and around the
one-component stationary point is derived for log-likelihood
functions of the parameters of of the two-com-
ponent model . The result is described by

(3)

with . This polynomial has two equivalent maxima
and a minimum, at the origin, in between if . It has a
single maximum at the origin if . This maximum is de-
generate if . Therefore, the structures occurring are those
depicted in Figs. 3 and 4, respectively. Specifically, the single
maximum occurring if is located at the origin, that is, at

. Then the solutions for both locations coin-
cide and the components are not resolved. If , the likeli-
hood function has a saddle point at the origin and two equivalent
maxima for . Then the solutions for the loca-
tions of the components are different and the components are
resolved. The conclusion is thatthe sign of is the resolution
criterion.

VIII. N UMERICAL COMPUTATION OF THECRITERION VALUE

In [15], it is shown that the sign of is the sign of the quantity

(4)

where , , and is the second-order
derivative of with respect to . The expression (4) is evalu-
ated at the one-component stationary point . Notice
that this criterion is applicable to any log-likelihood function
and component function.

The procedure for the computation of the criterion (4) is as
follows. First, the maximum likelihood solutionsand for the
parameters and of the one-component model are es-
timated from the available observations. The estimates are sub-
stituted in (4). The sign of the result shows if distinct estimates
for and are obtained or not. Thus, for a general class of
log-likelihood functions and component functions, the quantity

is an unambiguous criterion for resolvability.
In [15], it is also shown that the three equations

for (5)

define the bifurcation set. They are obtained by equating both
the gradient of the log-likelihood function with respect toand

and the quantity defined by (4) to zero. Thus it is certain
that is the one-component stationary point and that
this point is singular. Notice that (5) represents three equations
in the observations and the parametersand . Hence, after
hypothetical elimination of both parameters, a single equation
in the observations results. Therefore, the bifurcation set has
codimension 1 and divides the space of observations into two
regions corresponding to one-component-like and two-compo-
nent-like observations, respectively.

IX. PROBABILITY OF RESOLUTION

If the observations are statistical, the sign of the criterion
becomes a stochastic variable. Then, the probability thatis
positive is the probability of resolution. In the space of the ob-
servations, the points representing the sets of observations are
distributed about the point representing the expectations of the
observations. The probability of resolution is the probability that
a point representing a set of observations is on the side of the
bifurcation set corresponding to distinct component locations.
The probability of resolution is, therefore, determined by the
location of the point representing the expectations relative to
the bifurcation set and by the distribution of the observations
about this point. Equations (4) and (5) show that the bifurca-
tion set or, equivalently, the resolution criterion depends on the
chosen likelihood function, on the chosen component function,
and on the number of measurement points and their locations.
The chosen component function may be wrong which means
that it is different from the function describing the components
of the expectations of the observations. Then it is even possible
that the point representing the expectations is on the side of the
bifurcation corresponding to nonresolution This illustrates the
influence of modeling errors, that is, systematic errors on res-
olution and on the probability of resolution. For illustrative ex-
amples of the influence of systematic and nonsystematic errors
on resolution, see [15].

Equation (5) shows that the bifurcation set is specific for
the chosen component function. This function may describe
instrumental response, such as the point spread function or
the impulse response. Then the bifurcation set is characteristic
of the kind of instrument used. Since the distribution of the
observations and the bifurcation set combined determine the
probability of resolution, the instrument influences this proba-
bility. However, as the systematic and nonsystematic errors are
smaller, the probability of resolution increases, no matter the
nature of the component function, that is, the characteristics of
the instrument.

X. GENERALIZATIONS AND EXTENSIONS

The resolution definition using the criteriondefined by (4)
has been generalized in a number of respects. First, it may be
shown to apply if the amplitudes of the components are dif-
ferent. Also, a parametric background function may be added
to the two-component model, for example, a trend, an offset,
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or a day-and-night cycle with one or more unknown parame-
ters. Furthermore, the resolution criterion may, with slight mod-
ifications, also be used for component functions that are func-
tions of two or more variables. Examples are two-dimensional
components in optics and electron optics, such as Airy patterns.
Moreover, in optical applications, it may be used in the presence
of partial coherence of the components. Finally, the analysis
presented is not limited to two-peak models but also includes
models like two sinusoids with closely located frequencies or
biexponentials with little differing decays. For a survey of these
generalizations and extensions, see [15].

XI. CONCLUSION

The first part of this paper is a sketch of the development of
the concept of resolution. Classical definitions like Rayleigh’s
are fully based on properties of the imaging instrument and are
deterministic. Later definitions, inspired by information theory,
decision theory, or asymptotic parameter estimation theory, de-
pend on the statistical properties of the observations. Finally, a
relatively recent alternative definition is presented also inspired
by parameter estimation but avoiding unrealistic assumptions,
in particular asymptoticity.

The second part of the paper introduces this alternative defi-
nition and outlines its theoretical basis. Its main characteristic is
that it is much more general than the existing definitions since
it applies to any number of observations, any likelihood func-
tion, and component function used. Moreover, the errors may
be statistical fluctuations of the observations or systematic, that
is, modeling errors.
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