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Autoregressive Spectral Estimation by Application of
the Burg Algorithm to Irregularly Sampled Data
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Abstract—Many methods have been developed for spectral anal-
ysis of irregularly sampled data. Currently, popular methods such
as Lomb–Scargle and resampling tend to be biased at higher fre-
quencies. Slotting methods fail to consistently produce a spectrum
that is positive for all frequencies. In this paper, a new estimator
is introduced that applies the Burg algorithm for autoregressive
spectral estimation to unevenly spaced data. The new estimator
can be perceived as searching for sequences of data that are almost
equidistant, and then analyzing those sequences using the Burg al-
gorithm for segments. The estimated spectrum is guaranteed to be
positive. If a sufficiently large data set is available, results can be
accurate up to relatively high frequencies.

Index Terms—AR spectral estimation, covariance estimation, ir-
regular sampling, turbulence spectra.

I. INTRODUCTION

SPECTRAL analysis of stationary stochastic signals is used
in various fields. In some situations, the data to be examined

will be irregularly sampled. Examples of irregularly sampled
data are astronomical data and turbulence data as observed by
Laser–Doppler anemometry.

Many techniques of spectral estimation for unevenly spaced
data have been developed. Currently, most popular techniques
fall into one of three categories, namely slotting techniques, re-
sampling methods, or variations of the Lomb–Scargle estimator.

Slotting methods estimate an equidistant covariance function
from the irregularly sampled data. Many variants of slotting al-
gorithms currently exist, among which are slotting with local
normalization and fuzzy slotting [1]. Local normalization re-
duces the variance of the estimated covariance function. Fuzzy
slotting produces a smoother covariance function by distributing
products over multiple time slots. Covariance functions as esti-
mated by slotting techniques are usually not positive semi-def-
inite. This results in spectra that can become negative at a large
percentage of the estimated frequencies. This effect can some-
times be reduced by using creative windowing schemes such as
variable windowing. The variable windowing technique takes a
wide covariance window at low frequencies and a smaller one at
higher frequencies. The effectiveness of such schemes, however,
is dependent on the true characteristics of the data and therefore
cannot be used generally [2].

The second class of estimators resamples the data on an
equidistant time grid. After resampling, the data can then
be analyzed using the periodogram or time series models.
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While resampling methods can be used to obtain an estimated
spectrum that is guaranteed to be positive, results at higher
frequencies can be severely biased. An example of a popular
resampling method is sample and hold resampling [3]. Results
of sample and hold reconstruction can be described as low-pass
filtering followed by adding colored noise. These effects can
be eliminated using the refined sample and hold estimator [4].
This refined estimator, however, does not guarantee a spectrum
that is positive. As a result, the estimated spectra are often
negative at higher frequencies.

The third category consists of estimators that use variations
of the Lomb–Scargle estimator. Lomb–Scargle directly esti-
mates a spectrum from the irregularly sampled data [5], [6].
The Lomb–Scargle spectrum can be completely alias free and
reduces to the periodogram if the data happen to be regularly
sampled. It can be perceived as a least squares fit of sines and
cosines to the irregularly sampled data. The Lomb–Scargle
method is guaranteed to produce a spectrum that is positive. It
is able to accurately detect peaks up to very high frequencies
in a relatively low noise environment, but fails to accurately
describe any slopes in the spectrum.

In this paper, a new estimator is introduced, which attempts to
directly fit an autoregressive time series model to the unequally
spaced data, using a modified version of the Burg algorithm for
segments.

II. BURG FORSEGMENTS

An autoregressive (AR) model is a possible method of mod-
eling a stationary stochastic process. Given the signal, the
autoregressive model can be written as

(1)

where is an independent identically distributed stochastic
sequence with zero mean and variance. The coefficients
are called the autoregressive parameters of the model, andis
the model order. It can be shown that almost any stationary sto-
chastic process can be modeled as an unique AR() process,
independent of the origin of the process. In practice, finite order
AR( ) processes are sufficiently accurate because higher order
parameters tend to become small and not significant for estima-
tion. Once such a model of the process is available, its spectrum
can be easily computed

(2)

Experience with equidistant data shows that spectra that have
been estimated using AR models can be more accurate than the
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best possible windowed periodogram. If this accuracy is not
good enough, an estimated AR model can also be used as a
basis for estimating the additional moving average (MA) model
or even the combined autoregressive moving average (ARMA)
models that can increase the accuracy even further.

One possible method to estimate the autoregressive coeffi-
cients from equidistant data is the Burg algorithm [7]. The
Burg algorithm does not directly estimate the parameters, but
instead it estimates reflection coefficients. The th reflection
coefficient is a measure of the correlation between and

after the correlation due to the intermediate observa-
tions has been filtered out. Reflection
coefficients can be transformed into autoregressive parameters
by applying the Levinson–Durbin recursion formulas [8].

The Burg algorithm is a recursive algorithm. Specifically, this
means in the th step of the algorithm reflection coefficient
is estimated while the previous coefficients remain
fixed. The Burg algorithm can be adapted to estimate the re-
flection coefficients from multiple segments of data. Suppose
you have segments of data, stored as up to ,
generated by the same stationary stochastic process, but not nec-
essarily of equal length. The first reflection coefficientcan
now be estimated using the following equation, with and

(3)

New functions and can then be computed using

(4)

The new functions and , called the forward and
backward prediction errors, can then be used to estimate a new
reflection coefficient . After the final parameter has
been computed, an AR() model can be calculated by applying
the Levinson–Durbin formulas. A more complete and detailed
description of the Burg algorithm for segments can be found in
[9].

This algorithm is particularly useful for estimatng coef-
ficients from segments of unequal length. Suppose you are
trying to estimate an AR model of order 20 when you have
10 segments with 10 observations and one longer segment
of 100 observations. Using the Burg algorithm for segments,
the first reflection coefficients up to can be estimated
using all segments while reflection coefficients up to
can be estimated from the segment of 100 observations. This
example shows that the Burg algorithm for segments uses all
information contained in all segments efficiently.

As can be seen from (3) all reflection coefficients are guaran-
teed to have an absolute value that is smaller than 1. This means
that all AR models estimated using the Burg Algorithm are guar-
anteed to be stationary.

III. B URG FORIRREGULARLY SAMPLED DATA

Suppose you are trying to estimate a spectrum up to a max-
imum frequency of . To apply the Burg algorithm of (3)
and (4), you would need data sequences whose sampling in-
terval is exactly . In unequally spaced data, however, the prob-
ability of finding two points spaced exactly apart, is zero.
There is, however, a finite probability of finding two points
spaced ( ) apart. To exploit this information in the
data, (3) can be modified to

(5)

In the first step of the redefined algorithm, both and
are again set to the irregularly sampled signal . In following
steps, only those data points that have contributed to the estima-
tion of can possibly be used in estimating the next reflection
coefficient . The forward and backward prediction errors,

and , that are required in the next steps of the algo-
rithm, can then be constructed by

(6)

If there are multiple predictions of or at any given
point in time, these multiples can be eliminated by choosing that
prediction that minimizes . It can be shown the
redefined algorithm of (5) and (6) will reduce to Burg for seg-
ments if the data to be examined happen to be regularly sampled.

The redefined algorithm can be perceived as trying to find se-
quencesofirregulardatapointsthatarespaced“almostregularly.”
Whetherornotasetof irregular datapoints isspaced “almost reg-
ularly” is determined by the parameter, which is called the
slotwidth.All of the “almost regularly” spacedsets (orsegments)
found are then combined, using the same method as is used in
Burg’s algorithm for segmented data, to estimate the reflection
coefficients . One of the properties of the new algorithm is that
the estimated reflectioncoefficients areguaranteed tohave anab-
solutevalue that issmaller thanone.Thismeans thatall estimated
models are automatically stationary. Also, the estimated power
spectra are guaranteed to be positive [8].

Another property of the new algorithm is that the number of
products in the numerator of (5) will reduce very fast. This can
be explained by realizing that the probability of finding seg-
ments that are “almost equidistant” decreases roughly expo-
nentially as the segment length grows. Therefore, to estimate
the high-order AR model the number of irregular observations
should be very large.

Choosing the value for the slot width can influence the rate at
which the number of products decreases. The high value of
will result in a slow decrease, whereas a low value of will
cause a rapid decline in the number of products. An example on
how fast the number of products decreases for different values of
the slot width, can be found in Fig. 1, where the average number
of products available for estimating a parameteris plotted.
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Fig. 1. Average number of products when estimating a parameterk from
200,000 irregular observations, using different values of�� . The average
number of observations per time unit is�.

Fig. 1 has been obtained using 100 runs with 200,000 irregular
observations and a constant average number of observations per
time unit, . The observation instances are uniformly distributed
over the observation period. The figure is independent of any
other data properties. It can be seen quite clearly that a smaller
slot width reduces the number of products much faster than a
larger slot width.

In equidistant time series analysis, the varianceofestimated
parameter , using Burg’s method, can be approximated by

(7)

where is the number of products used to estimate parameter
. This empirical result can be found using finite sample theory

for AR estimation [10]. When estimating parameters in irregu-
larly sampled data, the variance, is still described accurately
using the relation above.

Choosing the value of not only influences the variance
of the estimated parameters, but also the bias. A large value of

will result in parameters that have a low variance, but a high
bias. Similarly, choosing a small value for will result in a
model that has a greater variance, but a lower bias.

An example on how the value of determines the bias
of an estimated model can be found in Fig. 2. In Fig. 2, three
AR(5) models have been estimated using exactly the same data.
It can be seen that the model with the smallest slot width has the
smallest bias.

Since there is usually no aliasing in irregularly sampled data,
there is no natural limit for the maximum frequency that can
be estimated. The maximum frequency of the model to be com-
puted can therefore be selected freely by choosing a value for.
However, describing a spectrum up to higher frequencies could,
for example, mean that a declining slope goes down deeper, or
extra peaks in the spectrum could be found. In the first example,
a lower bias level is required; in the second scenario the higher
order AR model is needed. This means that estimating a spec-
trum up to higher frequencies usually demands more irregularly
sampled data.

Fig. 2. Bias of AR(5) models using different slot widths, but the same 200,000
irregular observations.

IV. ORDER SELECTION

After a number of AR( ) models have been estimated, the
user is left with the problem of how to select the best model
order. The best order can be estimated by selecting that order
which minimizes an order selection criterion. A popular selec-
tion criterion for equidistant data is Akaike’s information crite-
rion (AIC) [11]. AIC ( ) is given by

(8)

where RES() is equal to the residual variance of the model of
order and is the number of equidistant observations. The
value of 2 in the expression above is often called the penalty
factor. RES() can be calculated by

(9)

where is the variance of the irregularly sampled signal .
The factor in the AIC criterion is based on the fact that
the variance of each extra selected parameter is asymptotically
equal to . Using irregularly sampled data, however, the
number of products tends to decrease roughly exponentially.
To compensate for this, AIC can be modified to

(10)

where is the number of products in the numerator of (5) that
were used when estimating parameter.

If this modified AIC criterion is applied to unevenly spaced
data, the model order is regularly selected too high. This effect
can be partially explained by analyzing the expectation and vari-
ance of the AIC criterion for irregularly sampled data [12].

By making two modifications to the order selection criterion,
the problem of selecting too high orders can be reduced. The
first modification is to raise the penalty factor. By raising the
penalty factor, the probability that a model is selected with an
order higher than the optimal order reduces, possibly at the cost
of some bias.
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The second change to the criterion should prevent the selec-
tion of AR models that have parameters that have been estimated
with less than 15 observations. The reason for this is, that simu-
lations show that parameters that have been estimated with less
than 15 observations tend to behave erratically.

Applying the said modifications to (8) results in the following
new criterion:

if

if

(11)

in which is larger than 2.

V. PERFORMANCE OF THENEW ESTIMATOR

The performance of the new estimator has been tested in
simulations. The simulated data had a spectrum consisting of
two rapidly declining slopes. The first slope descends at a rate of

up to 0.1 , and then descends at a rate of from
that point onwards, where is the average data rate. This type of
spectrum is representative of turbulence data. To test the ability
of the new estimator to detect peaks, a second set of simulations
was performed, with peaks added to the simulated spectra.

In equidistant spectral analysis, estimates are usually given
for frequencies up to half the mean data rate, due to aliasing con-
straints. When analyzing unequally spaced data, however, often
no aliasing can occur. Therefore, the new estimator was tested
not only up to the usual , but also up to and . All
simulations were done using 200,000 irregular observations.

Test data has been generated using the following procedure.
First equidistant data points were generated using the
high-order AR process. Then, randomly data points were
discarded. Each data point had a probability of 99/100 to be dis-
carded. This means that effects such as the so-called velocity
bias were not simulated. The resulting data was nonequidis-
tant, and time intervals between observations were roughly dis-
tributed exponentially.

The Burg method for unequally spaced data was used, em-
ploying slot widths of , and , where is
the average number of irregular observations per time unit. Both
AIC and AIC (using penalty ) were used for
order selection. As a reference for the performance of the new
estimator, results of the sample and hold reconstruction method
are given as well. The spectra of the sample and hold data have
been estimated using the ARMAsel time series analysis algo-
rithm [13]. Results were not compared with the refined sample
and hold estimator, since the refined estimator is not guaranteed
to be positive, especially at higher frequencies.

Since in simulations the true properties of the data are known,
the quality of estimated results can be established. A quality
measure for the fit is the aliased model error, ME[14]. ME
is defined as

(12)

In the equation, above is the number of irregular observations,
PE is the expectation of the prediction error of the estimated

TABLE I
ALIASED MODEL ERRORS(ME ) OF THE ESTIMATED SPECTRAWITHOUT A

PEAK, UP TOFREQUENCIES OFf =4, f =2 AND f USING 200 000 IRREGULAR

OBSERVATIONS. RESULTSWERE AVERAGED OVER 100 RUNS

TABLE II
ALIASED MODEL ERRORS(ME ) OF THEESTIMATED SPECTRACONTAINING A

PEAK, UP TOFREQUENCIES OFf =4, f =2 AND f USING 200 000 IRREGULAR

OBSERVATIONS. RESULTSWERE AVERAGED OVER 100 RUNS

model using new data at sampling interval, and is the
minimal prediction error of the true model at sampling interval

. The model error consists of bias and variance contributions.
The bias contribution scales proportional with the number of
observations . The expected variance of the estimated param-
eters contributes per estimated parameter, where is
the number of products used in the numerator of (5) to estimate
the parameter. The model errors for the estimated spectra were
averaged over 100 runs. The results can be found in Tables I
and II. Table I presents the averaged model errors of the spectra
without a peak; Table II presents the averaged results when the
true spectrum contained a peak.

When estimating up to a frequency of (Figs. 3 and 4),
the Burg irregular method already performs better than sample
and hold. In spectra containing only slopes, it can be seen that
the bias of the Burg method is not significant, even at the largest
slot width . Therefore, the results using different slot widths
are similar. When a peak is added to the spectrum at ,
the performance of Burg irregular with slot width is
relatively poor. This can be understood by realizing that using
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Fig. 3. True Spectrum and the selected spectra up to 0.25f using 200,000
irregular observations, using sample and hold reconstruction and Burg irregular
model(�� = 0:5� ).

Fig. 4. True spectrum and the selected spectra up to 0.25f using 200,000
irregular observations, using sample and hold reconstruction and Burg irregular
model(�� = � ).

this slot width means that on average only four parameters can
be reliably estimated. This is simply not enough to describe both
peak and slopes; thus bias is introduced. Using
or , results remain good because enough parameters
can be estimated to describe both the peak and the slopes.

When estimating up to (the usual frequency in the
equidistant case), the new estimator performs much better than
sample and hold reconstruction (Figs. 5 and 6). This result is
caused by the fact that, even at a slot width of , the bias of
the Burg irregular method is much smaller than the bias in the
spectrum of the sample and hold technique. The optimum slot
width for Burg irregular is for the spectrum
without peak. The reason for this is that only a few parameters
are required to describe such a spectrum. A small slot width
will then have the advantage because of its lower bias. When a
peak at is added, the optimum slot width is . A
slot width of performs relatively poorly for the same
reasons as mentioned before. A slot with of allows enough

Fig. 5. True spectrum and the selected spectra up to0:5f using 200,000
irregularly sampled observations, using sample and hold reconstruction and
Burg irregular(�� = 0:25� ).

Fig. 6. True spectrum and the selected spectra up to0:5f using 200,000
irregularly sampled observations, using sample and hold reconstruction and
Burg irregular(�� = 0:5� ).

parameters to be estimated to describe the peak accurately, but
the larger bias of the larger slot width causes the result to be
somewhat less accurate.

Results from estimates up to the mean data rate (Figs. 7 and
8), again show that Burg irregular outperforms sample and hold
reconstruction. Both estimators, however, fail to describe the
slope properly at higher frequencies. Results of the Burg esti-
mator could have been better if more unequally spaced obser-
vations had been available. This would have allowed the usage
of smaller slot widths that have a lower bias.

When a peak is added, the Burg irregular estimate is not able
to describe the peak accurately; high slot widths are too biased,
and low slot widths do not allow for enough parameters to be
estimated for an accurate description of the extra peak.

In all frequency ranges, for spectra with or without peak, it
can be seen that order selection using AIC performs better
than AIC , see Tables I and II. This is especially true for
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Fig. 7. True spectrum and the selected spectra up tof using 200,000
irregularly sampled observations, using sample and hold reconstruction and
Burg irregular(�� = 0:25� ).

Fig. 8. True spectrum and the selected spectra up tof using 200,000
irregularly sampled observations, using sample and hold reconstruction and
Burg irregular(�� = 0:25� ).

those situations where the average model error is relatively small
(average ME ). This can be explained by realizing that
order selection only helps to reduce the variance contribution
to the model error. If the model error is mainly caused by bias,
the reduction in model error will be less significant. Although
AIC already performs better than AIC , the best model
order is often not selected. This means that the performance
could be improved by using a better selection criterion.

VI. CONCLUSION

A new estimator is introduced that fits an AR model directly
to irregularly sampled data. The new estimator combines a spec-
trum that is guaranteed to be positive with accurate results at
higher frequencies. Results are often better than those that can
be obtained by existing techniques.

Order selection for the Burg irregular algorithm requires new
order selection criteria. A modified AIC criterion has been pre-
sented that performs better than the standard AIC criterion.
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