
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 1

A Generic Resource Distribution and Test
Scheduling Scheme for Embedded Core-Based SoCs

Dan Zhao, IEEE Student Member and Shambhu Upadhyaya, IEEE Senior Member

Abstract— We present a novel test scheduling algorithm for
embedded core-based SoCs based on a graph-theoretic formu-
lation. Given a system integrated with a set of cores and a set
of test resources, we select a test for each core from a set of
alternative test sets, and schedule it in a way to evenly balance the
resource usage, and ultimately reduce the test application time.
Improvements to the basic algorithm are sought by grouping
the cores and assigning higher priorities to those with smaller
number of alternate test sets. The algorithm is also extended
for solving the general test scheduling problem where multiple
test sets are selected for each core from a set of alternatives
to facilitate the testing for various fault models. A simulation
study is performed to quantify the performance of the proposed
scheduling approach.

Index Terms— BIST, DFT, IDDQ, Resource balancing, system-
on-a-chip test scheduling, test sets selection.

I. INTRODUCTION

THE system level integration is evolving as a new style of
system design, where an entire system is built on a single

chip using pre-designed, pre-verified complex logic blocks
called embedded cores. The system designers or integrators
may use the cores which cover a wide range of functions
from CPU to SRAM to DSP to analog, and integrate them
into a system on a single chip (SoC) with their own user-
defined-logics (UDLs). The SoC technology has shown great
advantages in shortening time-to-market of a new system and
meeting various requirements such as performance, size and
cost of today’s electronic products.

However, testing such core-based SoCs poses a major
challenge for system integrators, as they may have limited
knowledge of the cores due to IP (intellectual property)
protection. On the other hand, various testing methods such
as BIST, scan, functional and IDDQ for many kinds of design
environments are provided by different core vendors. Future
SoCs will see several hundreds of embedded components in a
single package [1]. As a result, it increases system complexity
and test cost in terms of test application time. Therefore, SoC
manufacturing test becomes a bottleneck in SoC design cycle.

The overall test time of a testing scheme is defined as the
period from the start time of test activity to the end time when
the last test task finishes. Note that, only when all test sets in
parallel test queues finish their tasks, we say it is the end of

Manuscript received December 7, 2002; revised July 18, 2003. This work
was supported in part by a NYSTAR grant from Microelectronics Design
Center, University of Rochester. The paper was published in parts at IEEE
GLSVLSI 2002 and IEEE ISCAS 2003.

D. Zhao and S. Upadhyaya are with Department of Computer Science and
Engineering, State University of New York at Buffalo. Please send comments
to

�
danzhao,shambhu � @cse.buffalo.edu.

test. The test time may be reduced by using shorter test vectors
or better scheduling schemes. Given a set of test sets and test
resources, the goal of test scheduling is to schedule the tests in
parallel so that those nonconflicting tests (which do not share
the same test resource) can be executed concurrently, and thus
to reduce the total test time for an SoC.

In this paper, we formulate the test scheduling problem for
embedded core-based SoCs as a shortest path problem. We first
consider a system where one test set needs to be selected for
each core from a group of alternative test sets using different
test resources, and propose a novel test scheduling algorithm to
reduce the overall testing time. Then, we extend the algorithm
to support multiple test sets selection for each core. The basic
idea is to effectively construct a shortest path going through
each core exactly once, while simultaneously balancing the
parallel resource usage. Our major technical contributions are
as follows:

(1) Formulation of test scheduling problem for SoCs as the
single-pair shortest path problem by representing vertices as
test sets, directed edges between vertices as a segment of a
schedule sequence, and the edge weight as the test time of
the test set at the end of the segment. Thereby, the problem of
minimizing overall test time of a schedule becomes equivalent
to the problem of finding a shortest path.

(2) Handling constrained scheduling by parallel resource us-
age queues. Resource conflict is the most commonly addressed
constraint during scheduling, which arises due to the same
DfT hardware shared among several cores. In addition, certain
fault coverage should be achieved when testing an SoC. One
method or a combination of several methods may be needed
to test a core in order to attain the required fault coverage. In
this work, we define � queues in parallel corresponding to �
resources, thus the test sets competing for the same resource
will sequentially enter the resource usage queue.

The rest of this paper is organized as follows. In Sec. II,
we discuss the existing scheduling schemes and the motivation
behind SoC modeling and scheduling. Sec. III describes a
general SoC model, in which each core may have multiple test
sets using different resources. In Sec. IV, we formulate the test
scheduling problem as the shortest path problem and propose
a novel scheduling scheme based on effective balancing of
resource usage. Furthermore, we propose a grouping scheme
and all-permutation scheduling to further reduce the overall
test time. In Sec. V, we show the experiments based on
randomly generated systems and compare the results with
other scheduling approaches. Sec. VI extends the algorithm
by selecting multiple test sets for each core. Finally, Sec. VII
concludes the paper and presents the future work.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 2

II. BACKGROUND

A. Related Work

A number of approaches have been proposed recently for
test scheduling. Chakrabarty has shown in [2] that the test
scheduling decision problem for SoCs is equivalent to � -
processor open shop scheduling, which is known to be NP-
complete. In this model, � test resources (such as external
test bus and BIST) corresponds to � processors, while each
test for a core using a resource is viewed as a task for a
job running on a processor. The finish time of a schedule
is the latest complete time of individual processor schedule.
Mixed Integer Linear Programming (MILP) technique is used
to minimize the finish time. However, the computation time
of MILP grows exponentially with the number of cores and
test resources, and makes this approach unscalable to large
systems. Chou et al. [3] have analyzed the test scheduling
problem with resource conflicts and power constraints using
graph theory. Clique identification and covering table min-
imization technique are applied on the Test Compatibility
Graph (TCG). However, this work is limited to a theoretical
analysis rather than proposing an algorithm to solve it. Huang
et al. [4] have transformed the problem to bin-packing and
adopted a heuristic Best-fit algorithm to map the pins of
embedded cores to SoC I/O pins. Iyengar et al. have advanced
the rectangle packing approach in [5] to design wrapper scan
chains and configure test access mechanism (TAM) buses at
the same time. However, these approaches mainly focus on
test access architecture configuration and test compatibility is
not effectively utilized. Larsson and Peng have proposed a
test parallelization combining scheduling scheme to minimize
test time under power limitation [6]. But the problem is quite
simplified by the assumption of linear dependence of test time
and power on scan chain subdivision.

The readers may also refer to [7]–[12] for other scheduling
algorithms.

B. Rationale

Most of the existing approaches assume that all of the given
test sets have to be used in testing. Although test scheduling
with multiple test sets has been introduced in [8] and an
MILP model has been developed in [2], their work focuses
on selecting a test set for each core from a set of alternatives
with a varying proportion of BIST and external test patterns,
which is just a special case of the problem to be studied in
this approach. We assume that a core may be provided with
several test configurations, each corresponding to a test set, or
a core may consist of several functional blocks or submodules,
each of them requiring a different test method in order to
meet the fault coverage requirement. For example, a core
may be provided by core vendors with several precomputed
test patterns to provide flexibility for different system needs.
Moreover, as system integrators can purchase cores from
various core vendors, multiple core vendors may provide cores
with similar functionality but different test configuration. In
this case, we may consider the test sets for a core with similar
functionality as a group of candidates (i.e., alternate tests).
The system integrators need to select one from each group

for their system. To our knowledge, this is the first paper to
address such an SoC testing problem.

In this paper, we propose a scheduling algorithm for the
case where only one from a group of test sets may be selected
for each core to perform testing, and take into consideration
the test conflicts and the fault coverage requirements. Our
method subsumes the problem of constrained scheduling,
where some tests may not be executed concurrently due to
resource conflicts. In those existing approaches, for example,
the MILP formulation, additional constraints have to be added
to formulate the problem thus increasing complexity. However,
we map the test resources into parallel queues, and the nodes
competing for the same resource will sequentially enter the
particular resource queue, thus no additional constraints are
necessary. The goal behind our formulation is that we expect
to minimize the overall testing time by shortening the usage
time for any particular test resource. Thus we view test
resources as queues and the test to be scheduled as the job
entering corresponding queue. The test scheduling problem
is deduced to minimizing the longest queue length which
represents the overall testing time. In order to solve this
problem, we formulate it as a single-pair shortest path problem
by representing vertices as test sets, directed edges between
vertices as a segment of a schedule sequence, and the edge
weight as the test time of the test set at the end of the segment.
Thereby, the original problem becomes finding a shortest path
from the source to the destination by going through each core
exactly once.

III. PRELIMINARIES

A. SoC Modeling

A general SoC model is shown in Figure 1, which consists
of digital cores (��� , ��� and ��� , for example), analog cores
(��� and ���) and mixed-signal cores () as well as UDLs
which can be treated as cores so as to unify the formulation.
In order to facilitate test reuse, a test access architecture,
which consists of test wrappers, test access mechanism (TAM)
and test source and sink, is constructed for individual cores
embedded in the SoC so that the tests can be applied and
the responses can be observed at the chip level. The wrappers
are logic structures that surround the cores to support both
core isolation and test access to IP cores during test operation.
The TAM works as “test data highway” which propagates test
patterns from the test pattern source to the core-under-test
(CUT) and test responses from the CUT to the test pattern
sink, as well as the control signals to perform system chip
test in a predetermined schedule. In addition, each core may
include several functional modules, and each block may be
tested by one or multiple test sets using one or multiple
resources, thus to provide flexibility for test scheduling. As
we can see, if analog, digital and mixed-signal cores do not
share resources (for example, the mixed-signal tests must be
executed on a special mixed signal test bus like IEEE 1149.4
test bus), they can be separated and tested in parallel using
the same scheduling technique, as shown in Figure 2.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 3

B2

B1

A_wrapper

D3

D_wrapper

A_wrapper

iB is denoted as different functional blocks in a core
M is a mixed−signal core
A1 − A2 are analog cores
D1 − D3 are digital cores
r1 − r8 are different test resources

r8

r7

r6

r5

r4

r3

r2

r1

A2

D1

D_wrapper

B2

B1

M

B2

B1

B3

B2
B1

D2

D_wrapper

UDL

A1

A_wrapper

Fig. 1. A General SoC Model.

D2

r2 r3 r4 r5r1 r6 r7 r8

MD3 UDLD1 A1 A2

Fig. 2. Graph Representation of Resource Sharing.

B. System Definition and Assumptions

Before introducing the system definition, we list the assump-
tions made for this work.

(1) It is assumed that an SoC is embedded with � testable
cores with � test resources. A core may need to perform
one test (or several tests) by using one resource (or several
resources) to meet the required fault coverage.

(2) Test resources are defined as test buses, BIST, or any
specific set of circuit blocks for certain test configuration. For
instance, the circuit blocks, i.e., the test control logic, TPG,
compressors/analyzers, and any intervening logic, needed to
execute BIST test on core ��� are grouped as test resource ���
for ��� .

(3) A collision occurs when the tests sharing the same
resource or the tests for the same core are performed in
parallel. Therefore, a core can be tested by one test set by
using certain resource at one time. A resource can be shared
among several cores, but only one resource can be used by a
given core at a given time.

(4) Each test set includes a set of test vectors. Different
test sets may have different test times by using different test
resources. In other words, core vendors may have provided a
set of alternative tests, and one test from each group needs to
be performed to achieve the required fault coverage.

Given the test times and the required fault coverage, the goal
of the scheduling technique is to efficiently determine the start
times of the test sets to minimize the total test application time.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

r

T

n/a

T

T

n/a

n/a

T T

r

T

r

Tn/a

n/a

T

n/a

T

n/a

T

c

r

c

c

c

c

n/a

n/a

n/a

ijT

22

1

2

3

4

n

m

nmn3

11

31 2

12

43

2m

n2n1

31

Fig. 3. Matrix Representation of Test Sets.

Formally, we define the SoC model as TM= � C, RSC,
T, FC 	 , in which C= �
� ����� �
�����������	 is a finite set of
cores, RSC= ��� ����� �
�����������	 is a finite set of resources,
FC is the fault coverage required to test each core, and
T= ��� � ����� � �
�������� �������������� ������� �
�������������	 is a finite set of
tests, which is shown as an ��� � matrix in Figure 3. Test set
����� represents a test set for testing core ��� by using resource
��� , and has a test time of !��� . The entries with �#"
$ indicate
that such test sets are not available.

IV. THE PROPOSED TEST SCHEDULING ALGORITHM

We introduce a new scheduling algorithm for SoC testing.
The basic idea of the proposed approach is to map the test
sets to a directed graph with weighted edges, and apply the
shortest path algorithm to obtain the best testing scheme.

A. Problem Definition

We consider a system discussed in Sec. III-B and assume
that one core needs only one test set (selected from a number
of candidates) to achieve the required fault coverage (however,
this assumption will be nullified in the extended approach to
be discussed in Sec. VI). According to the matrix shown in
Figure 3, we can construct a graph with �%�&� vertices, one
for each entry in the matrix (see Figure 4).
' If an entry is �#"
$ (which indicates that the test is not

available), it is mapped to a dummy vertex (see the
shaded circles in Figure 4).' A vertex ����� ((representing the core index and) rep-
resenting the resource index) is connected to all vertices
(except the dummy ones) in the next column (i.e., �*�,+ ��- . ,/103240 �) with directed weighted edges.

Definition 1: The weight of an edge connecting vertices �*576
and ����� is defined as a vector, 8�9:��5
6;�������7<>=?9A@B������� C���
�������@D<
(only the)D �E entry, corresponding to resource ��� , has a value
of the test time for ����� , while other entries are zeros). The
major motivation behind using the weight assignment is to
allow the shortest path algorithm to consider, and moreover,
balance the usage of test resources.
' In addition, two special nodes, the source F and the

destination G are added. Node F connects the vertices
� �!. (

/H0I2J0 �) with the weight of 8�9�F���� �!.K<L=
9A@B������� �!.;�������@D< . The vertices ���D. (

/�0M2N0 �) connect
to node G with a weight of (0,0,...,0).

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 4

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

T

dT

T

s

T

(0,0,..,0)

T

(0,0,..,0)

T

(0,0,..,0)

T

c

T

c

T

c

.

.
.
.

.

. c

r

r

(0
,0

,..
,0

)

r

r

t
(0,0,

,...,0)

n2
t(0,

n3

t(

,...,0)

n1

,..,0)

,0,..,0)

(
,0

,..
.,0

)

12t
(0,

,...
,0)

nm

3 n3

m 2m

2

22

1

(0,0, tnm

,..
.,0

)

(0
,0

,t n3

,0
,..

,0
)

(t n
1

,..
,0

)

(0
,t

n2

,...,0)(0,0,tnm

,0,..,0
)

(t31

,0
,..

,0
)

(t 3
1

,)
(0,0,...,t2m

,)

(0,0,..., t2m
,)

(0,0,..., t2m

,)

(0,0,..., t2m

,...,0)

(0, t22

,...,0)(0, t22

,...
,0)

(0,t 22

,..
.,0

)

(0
,t

n222

n1

31 2

11

n

t 12

11

31

Fig. 4. The Graph Constructed From the ����� Matrix.

Definition 2: For a path � from a vertex ��� + ��- � to F
including the vertices � �!.������ ��.	�7����������,.�
 (

2 �������� 2 � can be
any value between 1 to �), the length of the path � =
9�F
��� �!. � ��� ��. � ����������,.
 �����,+ ��- �7< is denoted by the distance
vector �H9��� ���,+ ��- ��� F7<>= 9 ��� � � ��� � ���� ��� . ������ � �� < , where
��� . =�� ���� � C� . is the sum of the test time shown in the

2 �E
entry of the weights of all edges along the path � . In addition,
the predecessor of � �,+ ��- � on the path � to F is recorded in� � + ��- � .

We define � queues in parallel corresponding to � re-
sources that may be used at the same time independently [13]
(see Figure 5). The length of the queue denotes the total testing
time of all test sets using the resource. For example, as we can
see from Figure 4, the nodes on the first row enter resource
queue � � depending on whether the path is going through
them, and their weights contribute to ��� � of �H9��� F�� G < .
Since the longest queue length dominates the overall test
time of a schedule, the absolute value of the path distance� �H9��� F�� G < � is defined as ��� � � �!� � � ��� � ���� ��� . ������ � �� 	 .
Accordingly, the test scheduling problem can be converted
to the problem of finding a shortest path from F to G . More
specifically, the SoC test scheduling problem " �#" 9%$ � ���	&A��F���GB<
can be formulated as follows." �#" 9%$ ������& � F���G < : Given an SoC represented by an � � �
matrix, construct a weighted, directed graph ' 9)(�%* < (where
(includes � � � vertices), with � -tuple weight function
8�9:��576;�������7< =?9A@B������� C�����������@;< for some edges. The length of
a path � is the sum of the weights on corresponding resource
tuples of its constituent edges. We define the shortest-path
weight from source F to destination G by

+ 9�F
��G < =
, ��-/.�� � �H9�0� F1� G < � 	D� (3254�6 (F� �F#� $; �E F87 � G9 � :� �E;4��
8>(F<4

(1)
The objective is to find a path � from source F to destination

G such that �H9�0�BF#� GB< = + 9�F
��G < .
B. The Schedule With Modified Single-Pair Shortest-Path
(SPSP) Algorithm

Dijkstra’s algorithm [14] is a well-known approach to solve
the single-source shortest path problem when all edges have

nonnegative weights. A variation of this algorithm can be used
to find the shortest path from F to G of the graph shown in
Figure 4. More specifically, each vertex � ��� maintains a � -
tuple vector as the distance to the source F , �H9�0�K�*���#� F�< =
9 ��� � � ��� � ������ � �� < , and � ��� to record its predecessor on the
shortest path to F . Each vertex may be in one of the following
three states:
' state 1: not updated; the distance vector is 9 9 � 9 ������ 9 < .' state 2: updated; the distance vector has been updated at

least once.' state 3: finalized; the distance vector is the shortest
distance to F , and it will not be updated in the future.

Initially, F is finalized (i.e., in state 3), with the distance
vector �H9���>F5� F7<4= 9A@B��@ �������@;< , and all other vertices
are not updated (i.e., in state 1), with the distance vector
�H9�=�;�����>� F7< = 9 9 � 9 ������ 9 < . F will update the distance
vectors of all its neighbors (� �!. , / 0 2 0 � , in Figure 4).
More specifically, �H9�0�D� �C.?� F7< = 8�9�F���� �C.K< , � �C. = F , and
the states of these vertices will be changed to state 2. Then, one
of the vertices in state 2 with the smallest

� �H9�=�B� �!.�� F7< �
will be selected and finalized. Again, it will update the distance
vector of all of its neighbors. In general, when a vertex �*���
(with the smallest

� �H9�0�K�����1� F7< � among all vertices in state
2) is finalized, it will update the vertices � �,+ ��- . (

/ 0 2�0 �).
If �H9���*���,+ ��- .@�IF7<BAC�H9�D�*�����E� F7<GF 8�9:�����������,+ ��- .K< ,
then �H9�@�D���,+ ��- .H� F7< =I�H9�@�;�����J� F7<KF 8�9:�����������,+ ��- .K< ,
and � � + ��- . = ����� . This algorithm will continue until the vertex
G is finalized. The pseudocode is provided in Appendix. It
can be shown that, the worst-case time complexity of the
initialization step is L 9)(�< , and the computation is dominated
by Priority Queue operation L 9M*�NPORQS(�< , where (is the
number of vertices and * is the number of directed edges
in Graph ' . Therefore, the worst case time complexity of
this algorithm is L 9M*TN/OUQS(�< =VL 9 � � �>N/OUQ�9 �N�#<�< , where �
is the number of resources and � is the number of cores in
the system, respectively.

Figure 6 shows an example of applying the algorithm for
a core-based system with 7 cores and 4 resources (as shown
in Table I). We first construct a graph (see Figure 6(a)) as
described in Sec. IV-A, then we apply the modified SPSP al-
gorithm to find the shortest path from F to G (see Figure 6(b)).

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 5

usage of

.

.

.

.

.

usage of

usage of

list of parallel queues

usage of
.Tnm

t12 t
12

11

T T11

3nm r

r2
for coretest set ic

mr

ij

1r

t

t

Fig. 5. Parallel Usage of Test Resources.

TABLE I

THE MATRIX OF TEST SETS FOR AN EXAMPLE SYSTEM

����� ��� �	� ��
 �� �
� � 12 7 ���	� 6 3
� � ����� 4 1 ���	� 2
�
 3 ����� 8 12 3
� � ����� ����� 13 9 2
�� 5 7 6 2 4
��� 5 ����� 1 ���	� 2
�� 4 6 ���	� ���	� 2

As we can see from Figure 6(b), a shortest path from F to G
includes tests � ��� , � � � , � � � , ��� � , ��� � , ��� � and ��� � , within
which � � � , ��� � and ��� � are the tests sequentially entering
resource queue � � , � � � and ��� � sequentially enter resource
queue � � , and ��� � and � � � are the only test sets using resource
� � and �!� , respectively. The test sets in different resource
queues can be applied concurrently. The distance vector of
G , �H9� �>G � F7< = 9 /#" �%$;� /�& �	'D< , represents the total test
time on the corresponding resource queue. As we can see,
queue � � is the longest resource queue which results in an
overall test time of

� �H9� � G�� F7< � = /(&
. We convert the

shortest path from F to G into a way of resource usage of the
cores as shown in Figure 7(a). As a matter of fact, the shortest
path from F to G is constructed by balancing the resource
queue lengths. In addition, as we have noticed, one of the
advantages of the proposed approach is that there is no idle
time between successive tests (namely, explicit dead time) in
any of the queues.

Proposition 1: A shortest path from source F to destination
G is constructed in a way that balances the resource usage
queues.

Proof: As shown in Figure 5, we have defined � queues
in parallel corresponding to � resources. Meanwhile, the
graph on which the modified shortest path algorithm is applied
is constructed in a way that the rows are corresponding to the
resource usage queues while the columns are corresponding to
the cores in the SoC. In other words, the vertices in column
(represent all the tests for core � � and the vertices in row)
are the candidate tests entering resource queue ��� . As we have

discussed earlier, each vertex maintains a � -tuple vector as the
distance to source F , �H9� � �����@� F�<�=%9 ��� � � ��� � ������ � �� < .
Each vertex ����� in the graph is updated when a shorter
longest queue length can be reached when going through
vertex ���*) ��- . , i.e., �H9� �1����� � F7< A �H9� �1���*) ��- .��
F7<GF 8�9:���*) ��- .;�������7< . Vertex ����� is finalized when its longest
queue length

� �H9�0�D�����1� F7< � is the smallest among updated
vertices. That means, a shortest path is constructed from F
to ����� . Thus, the shortest path from F to G is constructed by
balancing the resource queues to minimize the length of the
longest queue which dominates the total test time.

Proposition 2: There is no “explicit dead time” in this
resource balancing approach.

Proof: Explicit dead time arises due to resource conflicts.
There are two types of resource conflicts defined in our system.
1) Several tests compete to use the same resource; 2) Different
tests for the same core are executed at the same time. Conflict
of the first kind is totally overcome by the resource balancing
approach, since the tests competing for a resource sequentially
enter the resource queue. Although for each core a set of tests
is provided, only one of them will be executed to test the core.
So the conflict of the second kind is eliminated.

C. Grouping Scheme

As there is no explicit dead time in resource balancing, our
purpose is to effectively reduce the implicit dead time (i.e., the
idle time appearing at the beginning or the end of a schedule)
at the end of the resource queues (obviously, no implicit dead
time appears at the beginning in this approach). Because the
shortest path from F to G is set up by going through certain test
set of each core from left to right, different ordering of ready-
to-schedule cores (i.e., the cores before entering the resource
queues) results in different schedule of tests, and accordingly
the total test time.

We group the cores based on the number of available tests
they have, such that in a group ' � , all cores have + alternate
test sets. This is a one time effort. For example, the right most
column of Table I shows the + value of each core. The cores
in the group with smaller + value will be scheduled earlier,
because these tests have to be put into certain queues (i.e.,
the corresponding cores have to be tested by using certain

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 6

(1
2,

0,
0,

0)

(0,4,0,0)

(0,0,1,0)

(0,0,1,0)
(0

,4
,0

,0
)

(4,0,0,0)
(0,6,0,0)

(0,0,1,0)(0,0,1,0)

(0,0,1,0)

(5
,0,

0,0
)

(5
,0

,0
,0

)

(0,0,1,0)

(0,7,0,0)

(0,0,0,2)
(0,0,13,0)

(0,7,0,0)

(12,7,14,6)

(12,7,14,6)

(8,13,14,6)

(8,0,14,6)

(3,7,14,6)

(3,0,7,15)

(3,0,14,8)

(0,4,8,6)

(0,4,0,6)

(0,0,1,6)

(0,0,0,6)

(0,7,0,0)

(12,0,0,0)

(0,0,13,0)

(0,0,13,0)

(0,4,0,0)

(0,0,0,6)

(0,0,0,9)

(4
,0

,0
,0

)

(5,0,0,0)

(5,0,0,0)

(5
,0

,0
,0

)

(0,0,0,0)
(0,0,0,0)

(3
,0

,0
,0

)

(0,0,1,0)

(3,0,14,6)

(b) The Schedule Without Grouping

(a) The Graph of The Example System

(0,6,0,0)

(0,0,0,12)

(0,0,0,12)

(0,0,8,0)

(3,0,0,0)

(5
,0

,0
,0

)

(0,0,6,0)

(0
,7

,0
,0

)

(0,0,6,0)

(0,0,0,2)(0,0,0,9)

(0,0,0,9)

(0,0,8,0)

(8,7,14,6)

(3,7,15,6)

(3,0,1,15)(0,0,1,18)

(3,0,1,6)

T

c1 c7c6c5c2 c3 c4

c1 c7c6c5c2 c3 c4

r3

r2

r1

r4

r3

r2

r1

r4

T

s d

s d

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

34

72

T

33 43

5444

5131

52

11

23

12

53

14

22

T

T23

T31

T33

T34

T43

T44

T51

T52

T53

22

71

63

61

72T

71T

63T

61TT11

T12

54
14

T

Fig. 6. The Scheduling With The Modified SPSP Algorithm.

(c) All Permutation

112

1 2

73

21

r3

r2

r1

0

r4

r3

r2

r1

(b) With Grouping

1

7

r1

7

0

0

0

14

4 7

0 9

8

7

0

0

0

0 6

0

0

0

8

r4

r3

r2

r4

123

(a) Without Grouping

C1

C2

C7

C5 C4

C3

C6C2

C4

C6C2 C5

C1

C3C7

C1

C4

C5

C7C6C3

Fig. 7. The Final Schedule Illustrated on Parallel Queues.

resources). Then, we schedule the test sets in the group with
larger + value to balance the lengths of the resource queues,
and accordingly shorten the longest queue length. Balancing
queue length ultimately results in shorter overall test time.

Figure 8 illustrates the execution of the algorithm with
grouping for the given example. Core � � , �	� , �%� and �(� have 2
alternate test sets and are scheduled first. With the + value of
3, � � and � � are the cores to be scheduled next, and finally �#�
with + of 4 is scheduled. After the graph is constructed, the
shortest path algorithm described in the previous subsection
can be employed here to find the shortest path. Figure 7(b)
shows the resource usage of the final schedule. Compared to
the case without grouping, the total test time is reduced by
30% by using the grouping scheme. As we can see, grouping
the cores properly before scheduling can reduce the total
testing time and achieve better balancing of resource usage,
while the worst case time complexity remains the same.

D. All Permutation Scheduling

As we have discussed above, different ordering of the cores
will affect the performance of the schedule significantly. To
perform test scheduling on a system embedded with � cores,
there are ��� ways for the ordering of the cores. Thus the
optimal schedule can be determined after running ��� times
of the SPSP algorithm on all ��� different ordering of cores.
Clearly, the computation is quite excessive (the worst case
time complexity is L 9:��� � � �>N/ORQ�9 � �#<�<).

One way to reduce computational complexity while elim-
inating the effect on core ordering is to construct a single
graph with all possible permutations of the cores and running
the SPSP algorithm once. We call this kind of scheduling
as All-Permutation Scheduling. In this model, the graph is
constructed with the size of � � � � � . We list all the tests
(including the dummy nodes) for the cores in one column
and copy by � times, thus there are ��� possible ways for the

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 7

(a) The Graph After Rearranging The Cores

(7,7,2,9)

(4,0,2,15)

(12,6,2,9)

(0,6,0,0)

(4
,0

,0
,0

)

(5
,0

,0
,0

)

(0,0,0,6)

(12,0,0,0)
(12,0,0,0)(4,0,0,0)

(0,0,0,9)

(0,0,2,9)

(0,0,1,9)

(0,4,13,0)(0,0,1,0)

(0,4,0,0)

(0,7,0,0)

(9,7,10,9)

(0,0,0,12)

(0,0,0,12)
(0,0,0,12)

(4,7,2,9)(0,6,2,9)

(4,0,2,9)(5,4,0,9)

c2 c6 c7c4 c3c1 c5

(7,7,8,9)

(7,7,8,9)

(7,14,2,9)

(0,0,0,6)

(0,7,0,0)

(0,0,6,0)

(0,0,0,2)
(0,0,0,2)

(0,0,0,2)

(5,0,0,0)

(0,0,8,0)

(0,0,8,0)

(0,0,8,0)

(3,0,0,0)

(3
,0

,0
,0

)

(3,0,0,0)

(0,0,0,0)

(0
,0,

0,0
)

(0,0,0,0)
(0,0,0,0)

(b) The Schedule With Grouping

(0,0,6,0)

(0,7,0,0)(5
,0,

0,0
)

(0,0,1,0)
(0,0,1,0)

(0,6,0,0)

(0,0,0,9)

(0,0,13,0)

(0,0,13,0)(0,0,1,0)

(0,4,0,0)

(4,7,10,9)

(4,7,2,21) (7,7,2,11)

(5
,0

,0
,0

)

(5
,0

,0
,0

)

(0,7,0,0)

(0
,7

,0
,0

)

(0,0,6,0)

r2

r1

r4

r3

r2

r3

s d

ds

c5c1 c3c4 c7c6c2

r1

r4

3111

11

T

13TT

51T

T33

T34

T

T

63

T22

T23
T43

T44

T61

T63

T71

72
T12

T

T44

T61

T 53

T71

T72

T11

T12

T14

T51

T43

T52

53

T54

54T

52T

34T

33T

31T

T22

T23
T

Fig. 8. The Scheduling With Grouping Scheme.

TABLE II

THE TEST SETS FOR ALL PERMUTATION SCHEDULING

� ��� �(� �%� �	
 ��
� � ��� � ����� ����� � �*�
� � ���	� � � � � �
 �����
�
 �
� ����� �

 �
 �

ordering of these cores. Note that, when we connect a vertex
in column ((

/10 (0 ��� /) to a vertex in column 9:(F / < , they
should not belong to the same core. We use a simple example
for illustration, which includes 3 cores and 4 resources as
shown in Table II. We first construct the graph as shown in
Figure 9. In this way, we consider all

� � = ' permutations
of the three cores in one graph: (1) � � , � � , � � ; (2) � � , � � , � � ;
(3) � � , � � , � � ; (4) � � , � � , � � ; (5) � � , � � , � � ; (6) � � , � � , � � .
With the graph ready, the shortest path algorithm discussed
in Sec. IV-B can be employed on this graph with a minor
modification that a vertex � ��� cannot update those neighbors in
the next column if the cores they belong to have already been
included in the shortest path of � ��� to F . Therefore, for each
vertex ����� we maintain a record that traces the cores which
consist of the shortest path from ����� to F . Note that, the all-
permutation scheduling doesn’t result in an optimal schedule,
because when we construct the shortest paths for the vertices
to F , some among the ��� permutations will not be taken into
consideration anymore since those finalized vertices will not
contribute to the shortest path from F to G .

We apply the all-permutation scheduling (AP, for short)
on the same example used by the schedules with/without
grouping (WG and WOG for short, respectively), the schedule

result is shown in Figure 7(c) (We don’t show the graph of
all-permutation scheduling due to its complexity). When we
compare the results of the three approaches, an interesting
observation is that although AP approach considers all possible
permutations of the cores at one time, it doesn’t result in a
better performance than WG approach. It’s because balanc-
ing the resource usage queues at the earlier stage does not
guarantee the final result to be well balanced. For example,
Figure 10 shows the shortest paths constructed by WG and
AP approaches on the example system. Although, AP results
in more balanced queues from stage 2 to 6 (for instance, when
in stage 2, the longest queue length in AP is 2 while in WG
9), it leads to a longer longest queue length (11) than that in
WG (9). As we can see, till the last stage, WG balances the
queues by inserting tests into other queues than the longest
queue. While in AP, it balances the resource queues well at
the beginning (till stage 6, the longest queue length in AP is
7), but in the final stage, it cannot result in more balanced
queues rather than increasing the length of the queue of � �
(which results in the longest queue length finally). In addition,
all-permutation scheduling results in much higher complexity,
L�9M*�NPORQS(�< = L�9 � � � � NPORQ�9 �N� � <�< .

V. SIMULATION STUDY

We evaluate the proposed scheduling algorithms by imple-
menting them in C and running simulations on Sun Enterprise
450 Workstation with four 450MHz UltraSPARC-II CPUs. We
define the balance ratio as ' as given below:

' =
�����	�

�
�

�����	�

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 8

s

r

r

r

r

r

r

r

r

d

T

T

T

T

r

T

T

r

T

r

T

c

T

T

m
T

n

T

r T

T

T

TT

c

T

c

T

T

T

T

T

T

3

12

2

14

22

T

11

23

12

31

14

33

22

T

23

11

31

(

34

,0
,0

,0
)

33

11

33

34

31

23

2

14

12

11

,0
,0

)

34

22

4

14T

(0
,0

,0
,

)

22T(0, ,0,0)

3

1

1

2

(0
,

4

12

3

T23
(0,0, ,0)

T
31

(
,0,0,0)

T
33

(0,0,
,0)

T
34

(0,0,0,
)

T
31

(
,0,0,0)

T
33

(0,0,
,0)

T
34

1

)

4

11

(
,0

,0
,0

)
T 1

2
(0

,
,0

,0
)

14T
(0

,0
,0

,
)

T
23

(0,0,
,0)

T22

(0,
,0,0)

T 1
2

(0
,

,0
,0

)

T 11

(
,0

,0
,0

)
14T

(0
,0

,0
,

)

T22

(0,
,0,0)

T
23

(0,0,
,0)

T
31

(
,0,0,0)

T
34

(0,0,0,
)

T
33

(0,0,
,0)

3

(0,0,0,

2

1

T

n

(0,0,0,0)
(0,0,0,0)

(0,0,0,0)

(0,0,0,0)

(0
,0

,0
,0

)
(0

,0
,0

,0
)

Fig. 9. The Graph Constructed for All Permutation Scheduling.

s dT

T

T

T

T T

(b) The Shortest Path in All Permutation Schedule

T T T

T T d

(a) The Shortest Path in The Schedule With Grouping

s TT T

71 12

(0,0,0,0) (0,0,1,9)(0,0,1,0)

44

71 1231

63

44

23

63

(7,7,8,9) (7,7,8,9)(7,7,2,9)(4,7,2,9)(4,0,2,9)(0,0,2,9)

5331

54

(0,0,0,0) (0,0,1,0) (0,0,2,0) (0,0,2,2) (3,0,2,2) (7,0,2,2) (7,7,2,11) (7,7,2,11)

23

Stage 2 Stage 6

(7,7,2,2)

Fig. 10. Comparing The Shortest Paths in The Schedules With WG and AP Approaches.

where
�����	�

is the total test time of a schedule without
grouping while

�
can be either

� � �
or

�
� � , i.e., the total

test time of a schedule with grouping or all-permutation
scheduling.

In simulation scenario 1, we assume that there are 5
resources in the system and each core may be provided with
1 to 3 test sets using corresponding resources to meet the
fault coverage requirement. Table III shows the comparison
results of the performance of WG over WOG, as well as AP
over WOG. The number of cores (NumCore) in the SoCs
changes from 10 to 45. TL in WOG/WG/AP represents the
total test time by using WOG/WG/AP approach and the

balance ratio of WG to WOG is represented by ' � � in
percentage, while the balance ratio of AP to WOG in ' � � .
ET in WOG/WG/AP means the corresponding CPU execution
time in these approaches, represented in milli seconds. As we
can see, WG and AP perform better than WOG since both ' �	�
and ' � � are greater than zero. When Comparing WG with
AP, WG achieves better performance than AP in terms of the
balance ratio and the CPU execution time. ' � � reaches as high
as 9.48% when NumCore is 40, while ' � � is 4.97%. When
NumCore is 45, AP needs

/���� & " $ � F CPU time to execute the
algorithm while WG only needs

� � F .
In scenario 2, we study the effect of the number of cores

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 9

TABLE III

THE COMPARISON BETWEEN WOG, WG AND AP APPROACHES.

of TL TL TL ����� ����� ET (���) ET (���) ET (���)
cores in WOG in WG in AP (%) (%) in WOG in WG in AP

10 136592.84 126900.89 131228.16 7.10 3.93 0 0 117

15 186448.02 170924.75 179253.49 8.33 3.86 1 1 837

20 224807.08 205515.81 216476.31 8.58 3.71 1 1 3394

25 270352.56 246014.63 258553.52 9.00 4.36 2 2 10005

30 318043.99 290777.63 307681.87 8.57 3.26 3 3 24359

35 365636.25 332672.08 350888.77 9.02 4.03 3 3 51968

40 413141.74 373992.82 392622.08 9.48 4.97 4 4 94022

45 455018.06 417752.12 434622.70 8.19 4.48 5 5 158427

10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

11

12

13

Number of cores

G
 (

%
)

MaxNumRes=6
MaxNumRes=5
MaxNumRes=4
MaxNumRes=3
MaxNumRes=2

(a) � ��� Changing With NumCore.

2 2.5 3 3.5 4 4.5 5 5.5 6
5

6

7

8

9

10

11

12

13

Maximum number of resources for each core

G
 (

%
)

NumRes=6
NumRes=5
NumRes=4
NumRes=3

(b) � ��� Changing With MaxNumRes.

Fig. 11. � �	� Changing With The Resource Distribution.

on the test time and the maximum number of resources
(MaxNumRes) provided for each core on the test time. We
first assume that the total number of resources in the system
is 6. Figure 11(a) shows the ' �	� values with number of
cores ranging from 10 to 100 and maximum number of
resources ranging from 2 to 6. As we can see, with the
same maximum number of resources, ' �	� increases when
the number of cores increases. After it reaches a peak, it
drops slowly when the number of cores increases further. For
example, when MaxNumRes is set at 5, ' �	� increase from
10% when NumCore is 10. It reaches a peak of 11.49% when
NumCore is 30. Then it drops slowly, ' � � decreases to 8.14%
with NumCore 100. This is reasonable because, when there are
small number of cores, the total number of tests is also small
and we could not balance the resource queues more evenly
due to less flexibility. As the number of cores increases, the
flexibility increases, and accordingly, ' �	� increases. On the
other hand, when there are a large number of tests, the benefit
of grouping will be dominated by the randomness, which in
turn results in the dropping of the curve.

Moreover, we choose the number of cores to be 25 (for
example), and change the total number of resources in the
system from 3 to 6. Figure 11(b) shows ' �	� with various
maximum number of resources for each core. As we can see,

with the same total number of resources, ' �	� increases with
the maximum number of resources for each core, while with
the same maximum number of resources for each core, ' �	�
increases when the total number of resources increases. This is
again due to the change in flexibility of choosing test resources
as discussed above.

Based on our simulation, we have the following result.

Proposition 3: Grouping always helps balance the resource
usage queue lengths fast and efficient.

VI. FAULT-MODEL ORIENTED MULTIPLE TEST SETS

SCHEDULING

In the previous section, we assumed that one core needs
only one test set. However, it is possible that a core may need
multiple (say

�
) test sets to achieve a certain fault coverage.

For example, in an embedded core-based SoC, several test
methods are used to test the embedded memory. As we
know, in addition to stuck-at, bridge, and open faults, memory
faults include bit-pattern, transition, and cell-coupling faults.
Parametric, timing faults, and sometimes, transistor stuck-
on/off faults, address decoder faults, and sense-amp faults are
also considered. [15] lists various test methods for embedded
memory, i.e., direct access, local boundary scan or wrapper,
BIST, ASIC functional test, through on-chip microprocessor,

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 10

70 15

Core 0

Core 2

13

3

r3

r2

r1

10

r3

r2

r1

r0

Core 2

4

0

0 4 7

80

11210

740

0

210

r0

Core 0_1

10

(b) Rescheduling to Avoid Conflicts(a) Test Set Selection for Each Fault Model of Cores

7

Core 1

Core 1

Core 1

Core 3

Core 3

Core 0Core 0_0

Core 3_1

Core 1_1

Core 1_2

Core 1_0Core 3_0

Fig. 13. Multiple Test Sets Scheduling.

0

3r
1r

3

0

r
2r

r
r

2

f

r
1r

c0

c1

c3

00f

f01

r

Resource
Usage

Candidate Fault
Model

Core
Test setID

2r
3r
1r
1

0r

0r
3r
2r
1r
0r

10

= 4
02t = 6

10t = 3

11t = 8

12t = 12

13t = 13

15t = 5

t

31f

2c

r2
r3

r2

00t = 12

01t = 7

04t = 1
03

14

t = 6

32t = 18

33t = 11

34t = 9

20f

30f

12f

11f

31

t = 8

16t = 3
17t = 6
18t = 11

20t = 5

21t = 1

30t = 4

Fig. 12. A Fault Model Based System.

etc. Different test methods may require different test resources,
use different test times, and provide different fault coverage. In
this case, we can simply make

�
virtual cores and convert the

1-
�

mapping to a 1-1 mapping. The only difference between
this and the single test selection we discussed earlier is that,
when choosing the shortest queue, one has to check if the
selected test set conflicts with others which are for the same
core and overlap the running time. Figure 12 shows an example
system, in which the tests are to be performed using the
corresponding resources, for instance, test ��� to be applied
using resource ��� , test � � using resource � � , etc. For each fault
model, we need to select one test method by applying certain
test from the candidates. Figure 13 illustrates the multiple test
sets scheduling for the system, which can be performed in two
steps.

First, we create
�

virtual cores for each core corresponding
to
�

fault models. For example, in Figure 12, two virtual cores,
� :��R4�@ @ and

� :��R4�@ / are generated for Core ��� according
to the two fault models, 2���� and 2�� � , respectively. For each
fault model, a group of test sets with various test times are
provided for the required fault coverage. This means, each

virtual core has a group of test sets available and we select
one of them to perform testing. For instance, in order to cover
fault 2���� , we need to select one test set from the alternate test
sets, ���� , �� � and �� � . Thus we map the multiple tests selection
model to the single test selection case. We select the tests in a
way that we balance the queues in order to avoid the situation
where all the test sets will only use some of the resources
and thus result in long length in these queues. In the second
step, we need to reschedule the tests for the same core which
overlap the running time. The shortest-task-first procedure is
adopted here for rescheduling [16]. The worst case complexity
is O(� �), where � is the number of virtual cores.

VII. CONCLUSION AND FUTURE WORK

Optimal test scheduling for embedded core-based problem
is a NP-hard problem. In this paper, we have formulated the
SoC test scheduling to the single-pair shortest path problem,
and presented efficient test scheduling heuristic algorithms for
embedded core-based SoCs. With the flexibility of selecting a
test set from a set of alternatives, we have proposed to schedule
the tests for a given system in a way that balances the resource
usage queue as evenly as possible, thus reducing the overall
test time. Moreover, we have presented a grouping scheme
and all permutation scheduling to optimize the schedule and
evaluated the proposed approaches via simulation. Our simu-
lation results have shown that there is no explicit dead time
in our approach and we can further reduce the implicit dead
time by proper grouping. We have also extended the algorithm
to allow multiple test sets selection from a set of fault model
based alternatives. We expect that the proposed approach can
be properly extended for testing the mixed-signal SoCs as well.
In our future work, we will discuss the modeling of mixed-
signal SoCs for testability analysis, scheduling and diagnosis,
and present efficient test scheduling algorithms to minimize
the test cost.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 11

APPENDIX

THE PSEUDOCODE OF THE SHORTEST PATH ALGORITHM

structure CORE: ��� ; /* core id */����� � ; /* the num of test sets */�
	 ��� ; /* the test time of each test set */�	 ��� ; /* the corresponding test resources */
structure NODE: ����� �
	 ��� ; /* a vector of distance to � */���
	 ��� ; /* the weight on the incident edge */���� � ; /* the predecessor */����� ����� � ; /* the max among ����� �
	 ��� */

Modified SPSP (int � , int � , struct CORE �
� ���	 ��� , struct NODE � �
�� �!�"	 �#�$�)
begin
/* initialize % 	 &'� */
for each vertex �)(*% 	,+�-.- �#�$� /* � is the num of resources, � is the num of cores */

for the distance on each resource queue /0(�	 +�-1- ���
� �!�� �
�2	 � �3- ����� �
	 / ��465 ;

for the weight of the incident edge on each resource queue /0(�	,+�-.- ���
� �!�� �
�2	 � �3- ���
	 / �$4 � �!�� �
�"	 � �3- �
	 / � ;

� �
�� �!�"	 � �3- �78� � 4:9<;�= ;
� �
�� �!�"	 � �3- ����� ����� �2465 ;

/* initialize source � */
for the distance on each resource queue />(?	,+�-.- ���

� �
�� �!�"	 � �3- ����� �
	 / �74A@ ;
� �
�� �!�"	 � �3- �78� � 4:9<;�= ;
� �
�� �!�"	 � �3- ����� ����� �24A@ ;
/* initialize destination � */
for the distance on each resource queue />(?	,+�-.- ���

� �
�� �!�"	 � �3- ����� �
	 / ��465 ;
for the weight of the incident edge on each resource queue />(�	 +�-1- ���

� �
�� �!�"	 � �3- �'�
	 / ��4:@ ;
� �
�� �!�"	 � �3- �78� � 4:9<;�= ;
� �
�� �!�"	 � �3- ����� ����� �2465 ;

BDCFE8G�H
;

Enqueue all vertex �)(*% 	 &JI � I � � into priority queue K 	,+�-.- �#�>LNM8� ;
while KPO4 G

/* � C
Extract-Min(K) */

Dequeue(�QI K IR�SIR�); /* remove node � from K with minimum ����� ����� � value */BDCFB0T>E � H
;

if (node ��4U4 �)
for each node �>(<V'��/ 	 � �

for the distance on each resource queue /0(�	,+�-.- ���
K 	 � �W- ����� �
	 / ��4 K 	 � �W- �'�
	 / � ;

update K 	 � �W- ����� ����� � C ����� E K 	 � �W- ����� �
	 / � H ;
K 	 � �3- ���� � C � ;
Enqueue(� I K IR�SIR�); /* add node � into K */

else if (node �#4X4 �)
print minimum distance vector;
print path from �'YZ� ;
break; /* a shortest path from � to � is found */

else
for each node �)(<V'��/ 	 �7�

/* relaxation */
for the distance on each resource queue />(�	,+�-.- ���

V 	 / ��4 K 	 � �3- ����� �
	 / � ;
for the distance on each resource queue />(�	,+�-.- ���[/ ��4 K 	 �7�3- ����� �
	 / ��L K 	 � �3- �'�
	 / � ;
if (\ �
��� � �^] V I [IR�<_^4U4`+) /* if V6a [

return 1; else return -1 */
for the distance on each resource queue /0(�	,+�-.- ���

K 	 � �W- ����� �
	 / �74 K 	 �7�3- ����� �
	 / ��L K 	 � �3- ���
	 / � ;
update K 	 � �W- ����� ����� � C ����� E K 	 � �W- ����� �
	 / � H ;
K 	 � �3- ���� � C � ;
Enqueue(� I K I �SIb�); /* add node � into K */

end

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. #, NO. #, # 2003 12

REFERENCES

[1] A. Allan, D. Edenfeld, J. William H. Joyner, A. B. Kahng, M. Rodgers,
and Y. Zorian, “2001 technology roadmap for semiconductors,” IEEE
Computer, vol. 35, no. 1, pp. 42–53, January 2002.

[2] K. Chakrabarty, “Test scheduling for core-based systems using mixed-
integer linear programming,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 19, no. 10, pp. 1163–1174, October 2000.

[3] R. Chou, K. Saluja, and V. Agrawal, “Scheduling tests for VLSI systems
under power constraints,” IEEE Trans. on VLSI Systems, vol. 5, no. 2,
pp. 175–185, June 1997.

[4] Y. Huang, W. T. Cheng, C. C. Tsai, N. Mukherjee, O. Samman,
Y. Zaidan, and S. M. Reddy, “Resource allocation and test scheduling
for concurrent test of core-based SoC design,” in The 10th Asian Test
Symposium, October 2001.

[5] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On using rectangle
packing for SOC wrapper/TAM co-optimization,” in Proc. IEEE VLSI
Test Symposium, 2002.

[6] E. Larsson and Z. Peng, “System-on-chip test parallelization under
power constraints,” in Proc. of IEEE European Test Workshop, May
2001.

[7] V. Muresan, X. Wang, V. Muresan, and M. Vladutin, “A comparison of
classical scheduling approaches in power-constrained block-test schedul-
ing,” in Proc. of ITC, October 2000, pp. 882–891.

[8] M. Sugihara, H. Date, and H. Yasuura, “Analysis and minimization of
test time in a combined BIST and external test approach,” in Design,
Automation and Test in Europe Conf., March 2000, pp. 134 – 140.

[9] S. Koranne, “On test scheduling for core-based SoCs,” in Proc. IEEE
Int’l Conf. on VLSI Design, January 2002, pp. 505–510.

[10] Y. Zorian, “A distributed BIST control scheme for complex VLSI
devices,” in Proc. IEEE VLSI Test Symposium, April 1993, pp. 4–9.

[11] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and
test access mechanism co-optimization for system-on-a-chip,” in Proc.
of ITC, 2001, pp. 1023–1032.

[12] D. Zhao and S. Upadhyaya, “Adaptive test scheduling in SoCs by dy-
namic partitioning,” in IEEE Int’l Symp. on Defect and Fault Tolerance
in VLSI Systems, November 2002, pp. 334–342.

[13] D. Zhao, S. Upadhyaya, and M. Margala, “Minimizing concurrent test
time in SoCs by balancing resource usage,” in Proc. of the 12th ACM
Great Lakes Symposium on VLSI, April 2002, pp. 77–82.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, Second Edition. The MIT Press, 2001.

[15] R. Rajsuman, “Design and test of large embedded memories: An
overview,” IEEE Design and Test of Computers, vol. 18, no. 3, pp.
16–27, May-June 2001.

[16] R. Conway, W. Maxwell, and L. Miller, Theory of scheduling. Addison-
Wesley, 1967.

Dan Zhao received the B.S. degree in Biomedical Instrument from Zhejiang
University, China in 1996 and the M.S. degree in Computer Science and
Engineering from the State University of New York at Buffalo in 2001. She
is currently a Ph.D. candidate in Computer Science and Engineering at the
University at Buffalo. She is working in the area of embedded core-based
System-on-Chip testing in the Electronic Test Design Automation Laboratory.
Her research interests include VLSI design and testing, CAD, fault tolerance
in real-time embedded system.

Shambhu J. Upadhyaya received his Ph.D. degree in Electrical and Com-
puter Engineering from the University of Newcastle, Australia in 1987. He is
currently an Associate Professor of Computer Science and Engineering at the
University at Buffalo. He is a recipient of the 2000-01 IBM Faculty Partner
Fellowship. He served as the Program Co-Chair of the 1995 IEEE Great Lakes
Symposium on VLSI and the 2000 IEEE Symposium of Reliable Distributed
Systems. His research interests are VLSI Testing, fault diagnosis, fault tolerant
computing, information assurance techniques and diagnostic reasoning. He is
an associate editor of IEEE Transactions on Computers and is a senior Member
of IEEE.

