
UNIVERSITY OF CINCINNATI

 Date: January 14, 2004

I, __Vinod Narayanan__________________________ _ ____,

hereby submit this work as part of the requirements for the degree of:

 Master of Science

in:

 Electrical Engineering

It is entitled:

 “A Built-In Self Testing Method For Embedded Multi-Port

 Memory Arrays”

This work and its defense approved by:

Chair: Wen-Ben Jone
 Fred Beyette
 Harold Carter

A BUILT-IN SELF-TESTING METHOD FOR EMBEDDED

MULTIPORT MEMORY ARRAYS

A thesis submitted to the

Division of Research and Advanced Studies
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in the Department of
Electrical and Computer Engineering and Computer Science

of the College of Engineering

January 2003

by

Vinod Narayanan

B.E.(E.E.), Madurai Kamraj University, India, June 2000

Thesis Advisor and Committee Chair: Dr. Wen Ben Jone

Dedication

To my dearest parents

Abstract

With recent advances in semiconductor technologies, the design and use of memories for
realizing complex system-on-a-chip (SoC) is very widespread. The growing need for storage in
computer, communication, and network appliances has motivated new advancements in faster and
more efficient ways to test memories. Semiconductor memories are considered to represent 30-35%
of the semiconductor market currently. The design flexibility and performance offered by component
generators have made the life of the circuit designer easier, but have posted new challenges to
test. Thus, as time progresses and the demand for data storage goes high, testing semiconductor
memories efficiently becomes more and more important.

Efficient testing schemes for single-port memories have been readily available. Multiport
memories are widely used in multi-processor systems, telecommunication ASICs etc. Research
papers which define multi-port memory fault models and give march tests for the same are currently
available. However, little work has been done to use the power of serial interfacing for testing multi-
port memories. In this thesis, we discuss some basics about the architecture of two-port memories
and fault models for the same. We will then use the serial testing mechanism to propose new
algorithms which can prove effective to reduce the hardware cost considerably in a chip with many
multi-port memories. Once we understand how serial interfacing helps testing two-port memories,
one possible extension is to use serial interfacing for p-port memories (p>2). The proposed method
based on the serial interfacing technique has the advantages of high fault coverage, low hardware
overhead and tolerable test application time. Precise fault modeling and efficient test design are
both important to keep the test cost and test time in acceptable limits.

Acknowledgements

I wish to express my sincere thanks to my advisor, Dr. Wen-Ben Jone, for the guidance and
constructive criticism that he provided throughout my work. He was always ready to provide his
guidance and help in solving problems, even during weekends. This work would never have taken
this form without his encouragement and expertise. Thank you Dr. Jone, for all that you have
done for us.

I would like to thank the members of my thesis committee, Dr. Carla Purdy and Dr. Harold
Carter, for spending their invaluable time reviewing this work. Special thanks are also due to my
close friends for the wonderful time I have had in their company. I would like to thank the Almighty
for all He has done for me, and pray that He always guides me in the right direction. Last, but not
the least, I would like to express my gratitude to my parents who have helped mould me into what
I am today.

Contents

1 Introduction 1

2 Background 4
2.1 Introduction . 4
2.2 Serial Interfacing Technique and SMarch Algorithm 5
2.3 Redundant Operations and RSMarch Algorithm . 6
2.4 Selective Bit-Pattern Generation and Bi-Directional Serial Interface 9
2.5 Multiple-Port Memory Testing . 10

3 Two-Port Fault Models 13
3.1 Single-Cell Two-Port Faults . 14
3.2 Double-Cell Two-Port Faults . 14

3.2.1 2PF2aa . 14
3.2.2 2PF2vv . 15
3.2.3 2PF2av . 16

4 Serial Interfacing Design for Multiport Memory Testing 17
4.1 Conditions to Detect 2PF1 . 17

4.1.1 Conditions to Detect wDRDF & wDRDF . 17
4.1.2 Conditions to Detect wRDF & wRDF . 18
4.1.3 Conditions to Detect wRDF & wTF . 18
4.1.4 Conditions to Detect All 2PF1 Faults . 18

4.2 Parallel March Algorithm 2PF1 . 19
4.3 Serial March Algorithm 2PF1 . 20

5 Serial March Algorithm for Coupling Faults 26
5.1 Conditions to Detect 2PF2aa . 27
5.2 Parallel March Algorithm 2PF2aa . 28
5.3 Conditions to Detect 2PF2vv . 30
5.4 Parallel March Algorithm 2PF2vv . 31
5.5 Unified Parallel March Algorithm 2PF2aa-vv . 32
5.6 Serial March Algorithm 2PF2aa-vv . 32
5.7 Detection of 2PF1 faults by SMarch 2PF2aa-vv Algorithm 33
5.8 Conditions to Detect 2PF2av . 33
5.9 Parallel March Algorithm 2PF2av . 35
5.10 Serial March Algorithm 2PF2av . 35

i

6 Testing for Same-Word Faults 41
6.1 Detection of Same-Word 2PF2aa Faults . 42

6.1.1 Bi-Directional Serial March and Address-Sensitive Fault Detection 45
6.1.2 Fault Coverage Analysis for 2PF2aa Same-Word Faults 48

6.2 Detection of Same-Word 2PF2vv Faults . 51
6.2.1 Fault Coverage Analysis for 2PF2vv Same-Word Faults 51

6.3 Consistency of the Final SMarch 2PF2aa-vv Algorithm 52

7 Redundant Operations and Fault Coverage 55
7.1 BIST Architecture for Parallel Testing of Arrays with Multiple Ports 55
7.2 The RSMarch 2PF2aa-vv Algorithm . 56

7.2.1 Detection of 2PF1 Faults . 58
7.2.2 Detection of 2PFaa Faults . 58
7.2.3 Detection of 2PFvv Faults . 59
7.2.4 RSMarch 2PF2aa-vv Algorithm detects same-word faults 60

7.3 The RSMarch 2PF2av Algorithm . 60
7.3.1 Detection of 2PF2av Faults . 61

8 Conclusions and Future Work 62

ii

List of Figures

2.1 Serial interfacing technique . 6
2.2 SMarch algorithm . 6
2.3 RSMarch algorithm . 7
2.4 Testing of multiple buffers using redundant operations 8
2.5 Selective bit-pattern generation . 10
2.6 Complimentary bit-pattern generation . 11
2.7 Bi-directional serial interface architecture . 12

3.1 Taxonomy of 2PFs . 14

4.1 2PF1 serial interfacing memory state after (w0 : n, rx : n)3 21
4.2 2PF1 serial interfacing memory state (w1 : r0) - 1st time 23
4.3 2PF1 serial interfacing memory state (r0 : w1) - 1st time 23
4.4 2PF1 serial interfacing memory state (w1 : r0) - 2nd time 24
4.5 2PF1 serial interfacing memory state (r0 : w1) - 2nd time 24
4.6 2PF1 serial interfacing memory state (w1 : r0) - 3rd time 25
4.7 2PF1 serial interfacing memory state (r0 : w1) - 3rd time 25

5.1 Classification of 2PF2 . 27
5.2 2PF2aa aggressor-victim exhibit. 28
5.3 2PF2aa parallel interfacing memory state after w0:n. 29
5.4 2PF2aa parallel interfacing memory state after w1:r0. 29
5.5 2PF2aa parallel interfacing memory state after w0:r1. 30
5.6 2PF2aa illustration (i) - address(victim) < address(aggressor) 30
5.7 2PF2aa illustration (ii) - address(victim) < address(aggressor) 31
5.8 2PF2vv aggressor-victim exhibit. 31
5.9 2PF2av serial interfacing architecture . 36
5.10 2PF2av march order. 37
5.11 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 1st time 38
5.12 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 2nd time 39
5.13 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 3rd time 39

6.1 2PF2aa-vv serial interfacing memory state after (w0 : rx, rx, w1)3. 43
6.2 2PF2aa-vv serial interfacing memory state after (r0 : r0). 44
6.3 2PF2aa-vv serial interfacing memory state (r0 : w1) - 1st time (i) 45
6.4 2PF2aa-vv serial interfacing memory state (w1 : r0) - 1st time (i) 46
6.5 2PF2aa-vv serial interfacing memory state (r0 : w1) - 2nd time (i) 47
6.6 2PF2aa-vv serial interfacing memory state after (r0 : r0) with address(agressor)>

address(victim). 48

iii

6.7 2PF2aa-vv serial interfacing memory state (r0 : w1) - 1st time (ii) 49
6.8 2PF2aa-vv serial interfacing memory state (w1 : r0) - 2nd time (ii) 50
6.9 2PF2aa-vv Serial Interfacing memory state (r0 : w1) (iii) 53
6.10 2PF2aa-vv serial interfacing memory state (r1 : w0) (iii) 53

7.1 Bist architecture for multiple RAMs . 56

iv

List of Tables

1.1 Percentage of logic forecast in SoC design . 1

3.1 List of 2PFs; x=0,1 and d=don’t care . 15

4.1 List of 2PF1s . 17
4.2 Parallel march algorithm 2PF1 satisfies condition 2PF1 19

5.1 List of 2PF2s . 26
5.2 List of 2PF2aas . 27
5.3 List of 2PF2vvs . 30
5.4 List of 2PF2aa-vvs . 33
5.5 2PF1 detection by SMarch 2PF2aa-vv . 34
5.6 List of 2PF2avs - fault detection summary1 . 40

6.1 List of 2PF2 same-word faults. 42
6.2 Fault detection summary(i). 51
6.3 Fault detection summary(ii). 52

v

Chapter 1

Introduction

With the improvement of VLSI technologies, many components can now be fabricated into
a single chip. This is also referred to as system-on-chip design or SoC design. A system-on-chip
(SoC) integrated circuit generally contains processors, memories, and peripheral interface devices on
a single chip. For example, totally 32 millions of transistors are fabricated on the PNX8525 chip that
includes two programmable processor cores and 237 embedded memory arrays, some are large while
some are small [32]. This induces various testing problems due to the inaccessibility of components,
especially in memory modules, as all transistors are so densely packed that they are very vulnerable
to fabrication defects. While SoC designs have the advantages of higher performance, lower power
consumption, and smaller area when compared with system-on-board designs, test development is
now identified as a major bottleneck. An important part of a SoC is memory arrays which are used
in the form of small arrays or buffers (embedded memory arrays) between subsystems with different
data consumption rates. In the future, the percentage of memory logic in SoC’s is estimated to
be as high as 94%. From Table 1.1, it is estimated that the percentage of memory logic in SoC
will increase from 52% currently to as high as 94% by the year 2014 [9]. Further, we do not like to
throw the chip away if there exist faulty memory cells. Hence, the need of testing the memories on
chip is critical so that further repair can be performed.

Yr Node % Area New Logic % Area Reused Logic % Area Memory

1999 180nm 64 16 20

2002 130nm 32 16 52

2005 100nm 16 13 71

2008 70nm 8 9 83

2011 50nm 4 6 90

2014 35nm 2 4 94

Table 1.1: Percentage of logic forecast in SoC design

Memory is an integral part of parallel computers of today. Efficient parallel computers
are hard to manufacture because of difficult technical problems. The most important is: how
to arrange efficient communication between processors? Theoretically, this problem can be best
solved by using shared main memory between all processors [21][13][5]. The most obvious way to
implement shared memories is to use multiport RAM as building blocks of the true shared memory.
Multiport RAM is a memory that has multiple ports to access memory cells simultaneously and
independently of each other. In parallel computers, one processor is usually connected to one port.

1

From the processor point of view, there exists a uniform, shared memory connected to it. Other
processors do not affect the operation of the processor.

Multiport memories are also used in a wide variety of applications, including wireless,
wireline and storage area networking segments. In wireless infrastructure applications, multiport
memories are used to store and manipulate packet data between FPGA, ASIC, and/or DSP devices
operating in different clock domains on the baseband processing card. Wide area and storage
networks employing high-performance communication protocols (such as OC-48, Gigabit Ethernet,
or Fibre Channel) also use high-density multiported memories to buffer data packets, between
the backplane interconnect and the data port, to avoid loss of data and maintain efficient flow
control. The size of buffers is driven by the difference between input and output clocking speeds,
the buffering time required by the system, and the bus width. These requirements dictate the
need for a high-density multi-port memory in communication systems as system speeds continue
to increase.

Maxwell Technologies’ 7025E dual-port RAM, high-speed CMOS microcircuit features a
greater than 100 krad (Si) total dose tolerance, depending upon space mission. The 7025E RAM is
designed to be used as a stand-alone 128k-bit dual-port RAM or as a combined MASTER/SLAVE
dual-port RAM for 32-bit or more word systems. This design results in full-speed, error-free oper-
ations without the need for additional discrete logic. The 7025E RAM provides two independent
ports with separate control, address, and I/O pins that permit independent, asynchronous access
for reads or writes to any location in memory.

Analog Devices Super Harvard Architecture Computer (SHARC)(ADSP-2106x) 32-bit
floating-point DSP targets communications, speech, sound, graphics, and imaging applications.
The ADSP-2106x CPU actually executes using only on-chip memory for a range of application
codes. SHARC contains a 512-kbyte on-chip memory organized into two banks of dual-port RAM
that can be combined into 16-, 32-, or 40-bit data and 48-bit instructions. This RAM holds large
chunks of critical code and delivers sustained single-cycle memory accesses.

Cyprus the CY7C0853V dual-port RAM has been unveiled for wireless base station and
storage-area network designs. This device provides 9-Mb of synchronous, pipelined memory capable
of buffering large packets of data between two independent clock domains. The memory device
delivers a 256K x 36-b configuration and provides up to 9.6 Gbps of bandwidth. As a true dual-
port memory, the FLEx72 DP RAM provides simultaneous access to any location in the memory
- either port can write and read data into and out of any memory location at the same time. This
feature, combined with the ability to run both ports in two independent clock domains, enables the
buffering of large packets of data between two processing elements in a system. It also eliminates
bus contention issues by enabling system architects to create a distributed bus architecture. By
providing the market’s first product of its kind, Cypress has set the industry pinout for 18 Mbit x72
dual-port memories. Dual-port RAM is also finding a home in packet storage in SAN (Fiberchannel)
hardware and layer-3 switches to accommodate larger delays found in highly-distributed networks.

Motorola DSP561xx family’s 16-bit fixed-point DSP has a on-chip program RAM and a
dual-ported data RAM; each has its own address and data bus. The dual-ported data RAM allows
the address generator to deliver two addresses per pipeline cycle, yielding two data reads or one
read and one write.

Thus, multiport RAMs are very important in parallel computers, SoCs, telecommunication,
and various application-specific digital circuits [8]. In this thesis, we propose a mechanism for the
chip to detect multiport faults by itself. This means we include built-in self-test (BIST) circuitry

2

on the chip which is able to detect the faulty cells in multiple-port embedded memory arrays.
Based on the advanced fault models proposed by [6], the idea of serial interfacing technique which
has been widely used in embedded memory array testing [4][19] is extended to test multiple-port
defects. As in [12], the serial interface test method has the benefits of low hardware overhead, high
fault coverage, and tolerable test application time. Due to the use of serial scan, the routing area
for multiple-port test data can be highly reduced. Totally, only two data lines (one for each port)
are required to deliver test patterns to each multiple-port memory array. Each array requires only
two wires (one for each port) to route the test responses to the (common, global) multiple input
signature register (MISR). Without the use of serial scan testing, the wires used for test pattern and
response delivering will cause a severe routing problem, especially the memory arrays dealt with
are muitiported. Another important feature of the proposed method that only one BIST controller
is required. This also reduces a significant amount of hardware overhead for testing. High fault
coverage can be achieved since the most advanced fault modeling is used in this research. Test
patterns are designed to target faults which are related to multiple ports. Note that it is impossible
to detect multiport faults using a single-port fault model. Finally, test application time is tolerable
by the proposed serial scan test method, since all arrays are tested in parallel (as long as the power
consumption is allowed). Though the simulataneous testing of all arrays will incur the problem of
redundant (i.e, extra) test patterns, our results show that they do not cause any problem in fault
coverage. Thus, tolerance of redundant test patterns benefits both hardware overhead (to simplify
the BIST controller design), and test application time (virtually all arrays can be tested in parallel).

This thesis is organized as follows:

Chapter 2 describes the necessary background, the serial interfacing architecture, and parallel
multiport testing.

Chapter 3 mentions the two-port fault models. A basic classification of two-port faults is per-
formed on the basis of faults involved in a single or double cell.

Chapter 4 provides a detailed design of using the serial interfacing technique to test single-cell two-
port faults in embedded memories. The conditions to detect the faults and associated algorithms
(both parallel and serial) are discussed. The serial algorithm proposed is named SMarch 2PF1.

Chapter 5 discusses the application of the serial interfacing technique to detect coupling faults in
multiport memories. Two algorithms namely SMarch 2PF2aa-vv and SMarch 2PF2av are proposed
to detect different types of coupling faults.

Chapter 6 deals with multiport faults that can occur in the same word. Note that Chapters 4 and
5 only deal with multiport faults in different words. Thus, in Chapter 6, we extend and modify the
SMarch 2PF2aa-vv to detect faults in the same word also.

Chapter 7 is dedicated to the scenario that the algorithms proposed so far are not affected by
redundant operations. In SOCs with numerous small buffers, a common BIST circuit that uses
these algorithms can be designed. Thus, it is vital to prove that excessive march operations to
some smaller sized buffers (word length n′ < max word length n or bit length c′ < max bit length
c) do not affect the validity of testing all faults in all buffers.

Chapter 8 concludes the thesis with suggested future work in meeting the challenge of efficiently
detecting, diagnosing, and repairing multiple-port embedded memories distributed spatially in dif-
ferent areas of the SoC.

3

Chapter 2

Background

In this chapter, we review an efficient method to test spatially distributed small memory
arrays. We introduce the concepts of serial interfacing technique as applied for the SMarch and
RSMarch algorithms. We then describe the problem of selective bit-pattern generation associated
with serial interfacing technique and a solution in the form of a bi-directional serial interfacing
technique. The major portion of this chapter references the work in [10] as background material
for this thesis.

2.1 Introduction

With the improvement in VLSI technologies, many components can be fabricated into a
single chip. This induces various testing problems due to the inaccessibility of components. In
today’s era, we find more and more importance being given to systems-on-chip (SoC). We have
already considered the importance of testing and diagnosing faults in memory buffers, present in
these SoC’s in Chapter 1. Further, the possibility of having a large number of small memory
arrays spatially distributed on a chip/board is more common than having large memory arrays
concentrated in a particular area of the chip. Hence, this thesis concentrates on fault testing of
small memory arrays.

As we are dealing with small memory arrays, let us consider some of the problems in testing
these buffers as follows:

Small Size of Memory Arrays The small size of memory arrays does not justify the addition
of a built-in self testing (BIST), diagnosis (BISD), and repairing (BISR) controller to each
buffer. This too will induce much hardware overhead. Note that this solution can be ideal in
case of large memory arrays; but for small memory arrays, it just isn’t feasible.

Distributed Nature of Memory Arrays The trend nowadays is to have many small memory
arrays spatially distributed across different regions of the chip. Hence, because of the previous
point, if we settle for a single controller, then the routing overhead, in terms of wires for
sending the test patterns to test these spatially distributed memory arrays and wires for
getting the output responses from each of these arrays back to the single controller will be
very large. Hence, the distributed nature of these buffers poses a routing overhead constraint.

Embedded Memory Arrays Most buffers are deeply embedded inside the chip and are thus
hard to test using external testers [10].

4

In some applications, the buffer widths are very large. If the test patterns are routed
simultaneously from the BIST controller to memory modules, then the routing area overhead
might not be tolerable. Thus, the serial interfacing technique with a test algorithm called SMarch
was proposed as an access interface between the BIST controller and memory buffers [4]. The
routing area overhead can be dramatically reduced. However, the deficiency of the serial interfacing
technique is that testing might need to be performed sequentially (module by module) in some
cases. To further alleviate the difficulties, a test method called RSMarch has been proposed in
[12] with redundant test operations. The method has the advantages of high fault coverage, low
hardware overhead, and low test application time. However, it is still uneconomical if a chip must
be abandoned when only a small number of defects occur. Thus, it is beneficial if the defects in
memory buffers can be diagnosed and repaired. The concepts of the serial interfacing technique,
the SMarch algorithm and the RSMarch algorithm are covered in latter sections.

2.2 Serial Interfacing Technique and SMarch Algorithm

The serial interfacing technique shown in Figure 2.1 was proposed to test embedded memory
arrays using a BIST technique in which only two serial scan data signals are required for each
memory module to access the memory contents [4]. This saves considerable routing area. The
serial interfacing technique is extremely useful for memory testing when many small memory buffers
are spatially distributed on the entire chip. The basic idea of the serial interfacing technique is
to synthesize the I/O port of each buffer as a scan chain wherein the test patterns are provided
and memory contents are read. By fixing the addressing lines, successive read/write operations
on a given address and serial scan in of the test patterns can result in scanning out the contents
of the memory word. Based on this test architecture, the SMarch algorithm is used to generate
test patterns and to evaluate test responses for each memory array [4]. The SMarch algorithm is
represented in Figure 2.2. SMarch is a march-like test similar to algorithm C and has six march
elements. The notation ’c’ represents the number of bits for each word, and ⇑ (⇓) represents test
marching from low-order (high-order) words to high-order (low-order) words. For example , march
element 3 of Figure 2.2 contains two groups of input-output patterns, (r1w0)c and (r0w0)c, for
each memory address. By setting Si to be ’0’ during the entire march element 3, the first ’c’
operations would continuously read ’1’ from So and write a ’0’ to Si as shown in Figure 2.2. This
immediately fills the addressed word with ’0’. Then, the next ’c’ operations read ’0’ from So and
write ’0’ to Si. SMarch changes the contents of memory one bit at a time by a pair of read and
write operations [11]. Also, note that the SMarch algorithm observes one bit at a time. It is not
difficult to verify that the test patterns supported by SMarch are able to detect stuck-at, transition,
coupling, and sequential faults which occur in the memory array [4]. Since the addressing faults
have been successfully mapped to memory cell array faults, they are also detected by the same test
patterns [26].

In order to support the SMarch algorithm, additional multiplexers are inserted to the I/O
port of the memory cell array for the purpose of serial scan as shown in Figure 2.1. The added
multiplexers and the memory I/O port thus from a serial scan chain, allows the BIST circuit to
provide one bit of scan-in data (Si) and to observe one bit of scan-out data (So) for each memory
read/write operation during testing. More details of the serial interfacing technique can be found
in [4]. The beauty of the serial interfacing technique lies in its small hardware overhead. It is
amazing to note that only two lines are required in test data application and observation (instead
of ’2c’ where ’c’ is the word width) for each memory buffer. This reduces the area required for
routing, especially if we have a worst case of a large number of memory buffers spatially distributed

5

Figure 2.1: Serial interfacing technique

over the entire chip. Further, the input data line can be shared by all buffers. Therefore, the
number of interconnections between the BIST controller and each memory cell array/buffer is
totally independent of the array size. This special feature of the serial interfacing technique results
in the greatest benefit for a circuit containing many buffers (especially when they are widely spread
on the chip) with different sizes. This will be considered in the next section. Although the test time
also increases due to the (serial) shift operation, this does not cause any trouble for our application
since most memory cell arrays do not contain a tremendous number of bits.

M1 ⇑ (rxw0)c(r0w0)c

M2 ⇑ (r0w1)c(r1w1)c

M3 ⇑ (r1w0)c(r0w0)c

M4 ⇑ (r0w1)c(r1w1)c

M5 ⇑ (r1w0)c(r0w0)c

M6 ⇑ (r0w1)c(r1w1)c

Figure 2.2: SMarch algorithm

The beauty of the serial interfacing technique therefore lies in its small hardware overhead,
as specially, only two lines are required for test data application and test output observation for
each memory buffer.

Next, we consider as to how we can use the serial interfacing technique for parallel testing
of memory buffers. We introduce the concept of RSMarch algorithm which will be used for parallel
testing of different sized memory buffers.

2.3 Redundant Operations and RSMarch Algorithm

In the previous section, we have seen several advantages of using the serial interfacing
technique for testing spatially distributed memory arrays. Considerable routing area can be saved
by using this technique. However, testing needs to be performed sequentially when using this
technique with the SMarch algorithm. This increases the test time considerable, especially if there
are a large number of such buffers. In this section, we consider the concept of introducing redundant
operations in SMarch algorithm in order to enable parallel testing of different sized memory arrays.

6

To test a set of spatially distributed memory modules with various sizes, an efficient parallel
BIST method called RSMarch was proposed in [12]. All memory modules receive a single test data
line, controlled by a single BIST controller, and are tested simultaneously. This BIST method,
taking advantages of the serial interfacing technique [4], has the benefits of high fault coverage,
low hardware overhead, and low test application time. It uses the RSMarch algorithm in order to
test the memory buffers in parallel. The RSMarch test algorithm, shown in Figure 2.3 includes six
march elements (M1- M6), and each march element is divided into two portions: the horizontal
operations and the vertical operations.

Figure 2.3: RSMarch algorithm

Let us compare the RSMarch algorithm with the SMarch algorithm introduced in the pre-
vious section. The RSMarch has additional redundant operations as compared to the SMarch
algorithm. Consider march element M2 as an example. As shown in Figure 2.3, the first row of M2
contains a series of (r0w1) and (r1w1) test operations used to test the entire memory array. The

7

notation of (rawb) means that data read from the scan chain (So) has logic value ’a’, while data
written to the scan chain (Si) has logic value ’b’, where ’a’ and ’b’ can be ’0’ or ’1’. The ”rx” in
march element M1 denotes that the read data is a ”don’t care” value. It can be found that two
horizontally redundant operations, each with (r1w1)c−c′ , will exist if the buffer width c ′ is smaller
than c. Here, c′ (n ′) is the word width (word number or capacity) of the memory buffer under
consideration, while c (n) is the largest word width (number) of all memory buffers. Let us consider
an example [10] to illustrate how the redundant operations enable parallel testing of different sized
memory buffers.

Figure 2.4: Testing of multiple buffers using redundant operations

For the example in Figure 2.4, we have the horizontal operations of (r0w1)7(r1w1)7−7

(r1w1)7(r1w1)7−7for BUFi. Note that the BUFi is the memory buffer with the maximum buffer
width (7). Similarly, we have the horizontal operations of (r0w1)4 (r1w1)7−4(r1w1)4 (r1w1)7−4 for
BUFj , where (r1w1)

7−4 is a horizontally redundant operation due to the smaller word width in
BUF j.

The second row of march element M2 represents the marching operations by which the
entire array is excessively scanned. These are the vertical redundant operations of the memory
buffers. For example in Figure 2.4, the BUFi has word number n

′ equal 4 and the deepest buffer
BUF j has (maximum) word number equal 10 (i.e., n=10), then the entire array of BUFi will be
superfluously scanned one more time. This depends on the relationship between n and n ′. Finally,
the third row of each march element as shown in Figure 2.3 gives the marching operations which

8

excessively scan part of the memory array when the march element finally terminates. Both the
second and the third row of M2 introduce what we term as vertically redundant operations. For
n=10 and n ′=4, the first two words of BUFi will be scanned three times when the entire march
element is finished. Thus, we have the vertically redundant operations of (⇑3

0(r1w1)
2∗7)1 for all

words of BUFi and (r1w1)
2∗7 for the first two words of BUFi (i.e., ⇑1

0(r1w1)
2∗7). However, the

vertically redundant operations will not be existent for BUFj . Again, the third test session of M2
may or may not exist depending on the relationship between n ′ and n. [10].

The redundant operations have been introduced so that parallel testing of memory buffers
of different sizes could be done. In this case all the memory buffers receive the same test patterns.
The memory buffers are implemented using SRAM. An appropriate memory cell array fault model
is discussed in Chapter 3. Next, we consider how only certain bit-patters are generated if we use the
serial interfacing technique and hence introduce the concept of the bi-directional serial interfacing
technique.

2.4 Selective Bit-Pattern Generation and Bi-Directional Serial In-

terface

Due to the serial scan circuit structure, in the serial interfacing technique, a special limi-
tation called selective bit-pattern generation can greatly affect the testing of certain faults. Let us
discuss the bit-patterns generated when data is written into the scan-in port S/i and read from the
scan-out port S/o as shown in Figure 2.5. Two cases have been depicted:

1. Write all cells with logic 1 in a memory that initially contains all 0’s (left side of Figure 2.5)

2. Write all cells with logic 0 in a memory that initially contains all 1’s (right side of Figure 2.5)

These bit-patterns can help detect certain faults, however not all faults. Hence, we need
a complementary set of bit-patterns which can sensitize and detect the remaining faults. The bi-
directional serial interfacing technique helps achieve our goal in this respect, since we can generate
a new set of bit-patterns shown in Figure 2.6. The bi-directional serial interface architecture is
shown in Figure 2.7.

In this new structure, additional hardware must be added to support the new test archi-
tecture. From Figure 2.7, we observe that the solid lines represent the right shift path while the
dashed lines denote the left-shift path. Each of both paths is enabled by the shift left/right signal.
Therefore, the data flow direction is controlled by selecting an appropriate input for the multiplex-
ers. It is important to note that the hardware overhead introduced due to this new architecture is
not much. Based on this bi-directional serial interface structure, we are able to read and write data
in a right-shift or left-shift way. When the multiplexers receive the shift right (left) command, then
the serial interface performs a right (left) shift operation. Note where the test patterns are applied
and from which end the test responses of the memory word are read. When the serial interface is
performing the right (left) shift operation, S/i feeds test patterns to the left-hand (right-hand) side
of the scan chain/memory word, while S/o receives test responses from the right-hand (left-hand)
side of the scan chain/memory word.

9

1 1 1

Next State

0 0 1

Next State

w0 r1

0 0 0

w0 r1

Initial State

0 1 1

Next State

w0 r1

0 0 0

Next State

1 1 0

Next State

w1 r0

1 1 1

w1 r0

Initial State

1 0 0

Next State

w1 r0

S/i S/o S/i S/o

Figure 2.5: Selective bit-pattern generation

2.5 Multiple-Port Memory Testing

Multi-port memories are widely used in multi-processor systems and special applications
such as telecommunications, etc. However, in spite of their increasing popularity, limited work on
their testability has been published. An ad-hoc test technique with no specific fault model was
described in [20]. Serial test algorithms for embedded multi-port memories were reported in [4].
However, the used fault models are very simplistic and restricted to shorts between ports. A new
fault model, the so-called complex coupling fault, and its test was developed by [1] and [2]. This
fault model is based on the traditional idempotent coupling fault (CFid). The individual CFids of
which the complex coupling fault is composed, are too weak to sensitize a fault; however, their fault
effects may be combined when the CFids are activated through different ports. This makes this
fault model unique for multi-port memories. However, this is just one way in which fault effects may
be combined; many fault models exist, such that many combined fault effects may result. In [28]
and [27], it has been shown theoretically that the conventional tests for single-port memories are
insufficient for multi-port memories. Moreover, theoretical fault models together with their tests
were developed. However, the introduced fault models are not based on any experimental/industrial
analysis. In addition, the proposed tests have a time complexity which is exponentially proportional
with the number of ports in the multi-port memory, that makes them not practical. In [29], port
interferences in 2P memories were experimentally analyzed, based on an industrial design and
SPICE simulation; however, the analysis was restricted only to the interference between two ports.
A similar but theoretical work has been reported in [34].

In [31], a complete analysis of all spot-defects in a p-port SRAM design has been performed
based on simulation. A transformation of electric faults caused by the defects into realistic func-
tional fault models (FFM) has been presented. It was understood that p-port faults cannot be

10

1 1 1

Next State

0

Next State

0 0 0

Initial State

1

Next State

0 0 0

Next State

1

Next State

1 1 1

Initial State

0

Next State

S/o S/i S/o S/i

0 1

0 1

r0 w1

r0 w1

r0 w1

r1 w0

r1 w0

r1 w0

1 0

1 0

Figure 2.6: Complimentary bit-pattern generation

sensitized using single-port operations and the authors came to a conclusion that special tests for
multi-port faults (i.e 2PF, 3PF etc.) are required. The time complexity of test algorithms was
explained in this paper, and it was shown that the worst-case time complexity to test a multi-port
memory is θ(n,p) where n is the max size of the memory and p is the number of ports. This was
found very much feasible by industrial standards. In [30], a parallel testing methodology was used
to test 2P faults involving single and double cells. Two reduced parallel algorithms namely March
S2PF- and March D2PF- shown below were proposed. March S2PF- can detect all 2PF1, 2PF2aa
and 2PF2vv faults, while March D2PF- can detect 2PF2av faults.

March S2PF-
{
⇑ (w0 : n) ;
⇑ (r0 : r0, r0 : , w1 : r0);
⇑ (r1 : r1, r1 : , w0 : r1);
⇓ (r0 : r0, r0 : , w1 : r0);
⇓ (r1 : r1, r1 : , w0 : r1);
⇓ (r0 :);
}
March D2PF-
{
⇑ (w0 : n) ;
⇑C−1

c=0 (⇑
R−1
r=0 (w1r,c : r0r+1,c, r1r,c : w1r + 1, c, w0r,c : r1r+1,c, r0r,c : w0r + 1, c));

⇑C−1
c=0 (⇑

R−1
r=0 (w1r,c : r0r,c+1, r1r,c : w1r, c+ 1, w0r,c : r1r,c+1, r0r,c : w0r, c+ 1));

}
The testing methodology used is

11

Si

Shift_left/right Mux Latch Mux Mux MuxLatch Latch

So(R) So(L)

So

Normal i/p Normal i/p Normal i/p

Memory Cells

Figure 2.7: Bi-directional serial interface architecture

1. To apply test patterns to detect single port faults on Port A and Port B.

2. For dies that pass step 1, apply March S2PF- and March D2PF- through both ports.

The parallel algorithm March S2PF- proposed in [30] can only detect faults which are
sensitized by a simultaneous write operation on Port A and read operation on Port B. However,
we can have a fault which is sensitized by a simultaneous read operation on Port A and a write
operation on Port B. This has not been accounted for. We fix the problem in this thesis by proposing
a new parallel algorithm which accounts for all four cases which sensitize faults namely - r0:w1,
r1:w0, w0:r1, w1:r0.

The parallel testing method is efficient for few long buffers which are not physically spaced
too far away from one another. However, when we consider the case of a vast number of distributed
small buffers, this technique introduces tremendous overhead in area and power. Hence, we propose
a serial testing scheme to test distributed small buffers. The fault models considered are discussed
in Chapter 3 in detail. March algorithms to detect the stated fault models are discussed in Chapters
4 and 5. Note that faults in the same word are also considered in Chapter 6, which have not been
covered in other research efforts in the past.

12

Chapter 3

Two-Port Fault Models

In this chapter, we will define fault models for two-port memories[28] to give readers enough
background information to understand many different faults. We follow the notation used in [31]
and [30].

Strong fault - A memory fault that can be fully sensitized by an operation, e.g., SP read
or write operation fails, two simultaneous read operations fail etc. This means that the state of the
v-cell is incorrectly changed, cannot be changed, or that sense amplifiers return incorrect results.

Weak fault - A memory fault which is partially sensitized by an operation, e.g., due to
a defect that creates a small disturbance of the voltage of a cell. A fault can be fully sensitized
(i.e. becomes strong) when two or more weak faults are sensitized simultaneously, since their fault
effects can be additive. This may occur when a 2P operation is applied.

In the presence of a weak fault, all SP(read and write) operations pass correctly and 2P
operations may pass correctly. Latter is the case where the weak fault effects of the weak faults are
not strong enough to fully sensitize the fault.

Notation for strong and weak faults

1. <fault1> & <fault2>: This denotes a 2PF consisting of two weak faults, and ”&” denotes
the fact that both faults occuring simultaneously form the 2PF.

2. F denotes a strong fault F, while wF denotes a weak fault. For example RDF denotes a strong
read destructive fault, while wRDF denotes a weak read destructive fault.

A two-port faults cannot be sensitized using SP operations, and it requires the use of two
ports simultaneously. A 2PF is a combination of two weak faults. Fault effects of two or more
weak faults may be additive, and hence can be fully sensitized when the weak faults are activated
simultaneously.Two-port faults can be divided into faults involving a single cell and faults involving
two cells as follows.:

• 2PF1 - combination of two single-cell weak faults.

• 2PF2 - combination of weak single-cell faults involving two cells.

– 2PF2aa

– 2PF2vv

– 2PF2av

A taxonomy of realistic 2PFs is given in Fig 3.1, and a detailed list of all 2PFs is given in Table
3.1.

13

2PFs

2PF1s

wDRDF & wDRDF

wCFds & wRDF
wCFds & wIRF
wCFds & wRRF

2PF2s

wRDF & wRDF
wRDF & wTF 2PF2vv 2PF2av2PF2aa

wCFdr & wDRDF
wCFrd & wRDF

wCFds & wCFds

Figure 3.1: Taxonomy of 2PFs

3.1 Single-Cell Two-Port Faults

This section describes two-port faults where only one cell is involved. The 2PF1s are based
on combination of two single-cell weak faults. Also, the two a-cells are the same as the v-cell. In
order to sensitize a 2PF1, the same cell has to be acted upon simultaneously via the two ports. To
denote a 2PF1 fault, the following notation can be used.

< S1 : S2/F/R > - It denotes a two-port fault involving a single victim cell. S1 and S2
describe the sensitizing operations or states of the cell, while ”:” denotes that S1 and S2 are applied
simultaneously through the two ports. F describes the faulty value of the v-cell. The sensitizing
operations are applied to the same cell as where the fault appears. R is the read result of S1 (and
S2) if it is a read operation.

1. wDRDF & wDRDF: Applying simultaneous read to a single cell causes the cell to flip, while
the sense amplifier returns the correct value. There are two 2FP’s (fault primitives): < r0 :
r0/ ↑ /0 > and < r1 : r1/ ↓ /1 >

2. wRDF & wRDF: Applying simultaneous read operations to a single cell causes the cell to flip,
and the sense amplifier returns an incorrect value. There are two 2FP’s: < r0 : r0/ ↑ /1 >
and < r1 : r1/ ↓ /0 >

3. wRDF & wTF: A cell fails to undergo a write transition if a read operation is applied to the
same cell simultaneously. There are two 2FP’s: < r0 : w ↑ /0/ > and < r1 : w ↓ /1/ >

3.2 Double-Cell Two-Port Faults

This section describes two-port faults where each one involves two cells. Depending on to
which cells the two simultaneous operations are applied (to the a-cell or the v-cell), the 2PF2s are
divided into three types which are explained below.

3.2.1 2PF2aa

This fault is sensitized in victim cell Cv by applying two simultaneous operations to the
same aggressor cell Ca. In this case, the 2PF is combination of two weak faults involving two cells,

14

FFM Fault Primitives

wDRDF & wDRDF < r0 : r0/ ↑ /0 >,< r1 : r1/ ↓ /1 >
wRDF & wRDF < r0 : r0/ ↑ /1 >,< r1 : r1/ ↓ /0 >
wRDF & wTF < r0 : w ↑ /0/ >,< r1 : w ↓ /1/ >

wCFds & wCFds < w0 : rd; 0/ ↑ / >,< w0 : rd; 1/ ↓ / >
< w1 : rd; 0/ ↑ / >,< w1 : rd; 1/ ↓ / >
< rx : rx; 0/ ↑ / >,< rx : rx; 1/ ↓ / >

wCFdr & wDRDF < 0; r0 : r0/ ↑ /0 >,< 0; r1 : r1/ ↓ /1 >
< 1; r0 : r0/ ↑ /0 >,< 1; r1 : r1/ ↓ /1 >

wCFrd & wRDF < 0; r0 : r0/ ↑ /1 >,< 0; r1 : r1/ ↓ /0 >
< 1; r0 : r0/ ↑ /1 >,< 1; r1 : r1/ ↓ /0 >

wCFds & wRDF < w0 : r0/ ↑ /1 >,< w0 : r1/ ↓ /0 >
< w1 : r0/ ↑ /1 >,< w1 : r1/ ↓ /0 >

wCFds & wIRF < w0 : r0/0/1 >,< w0 : r1/1/0 >
< w1 : r0/0/1 >,< w1 : r1/1/0 >

wCFdS & wRRF < w0 : r0/0/? >,< w0 : r1/1/? >
< w1 : r0/0/? >,< w1 : r1/1/? >

Table 3.1: List of 2PFs; x=0,1 and d=don’t care

and both weak faults have the same a-cell and v-cell cell. We denote a 2PF2aa using the following
notation.

< Sa : Sa;Sv/F/R > - This denotes a fault primitive whereby both sensitizing operations
(Sa:Sa) are applied simultaneously to the a-cell. Sv denotes the state of the v-cell. F denotes the
value of the faulty cell Cv. R will be replaced by a ” ”, since Sv cannot be a read operation. The
2PF2aa consists of one functional fault model (FFM): wCFds & wCFds. Applying two simultaneous
operations to the same a-cell will sensitize a fault in the v-cell ; i.e. v-cell flips

< w0 : rd; 0/ ↑ / > , < w0 : rd; 1/ ↓ / >
< w1 : rd; 0/ ↑ / > , < w1 : rd; 1/ ↓ / >
< r0 : r0; 0/ ↑ / > , < r0 : r0; 1/ ↓ / >
< r1 : r1; 0/ ↑ / > , < r1 : r1; 1/ ↓ / >

3.2.2 2PF2vv

This fault is sensitized in cell Cv by applying two simultaneous operations to the same cell
Cv, while the a-cell has to be in a certain state. This fault is a combination of two weak faults
involving two cells whereby the operation has to be performed to the v-cell, while the a-cell is in a
certain state. We denote a 2PF2vv using the following notation.

< Sa;Sv : Sv/F/R > - It denotes a fault primitive whereby both sensitizing operations
(Sv:Sv) are applied simultaneously to the v-cell. Also, Sa describes the state of the a-cell. 2PF2vv
consists of two FFMs: wCFrd & wRDF with 4 FP’s and wCFdr & wDRDF with 4 FP’s. If the
a-cell is in a certain state and two simultaneous reads are performed to the v-cell, then the v-cell
flips with either correct or incorrect output.

1. wCFrd & wRDF

< 0; r0 : r0/ ↑ /1 > < 0; r1 : r1/ ↓ /0 >

15

< 1; r0 : r0/ ↑ /1 > < 1; r1 : r1/ ↓ /0 >

2. wCFdr & wDRDF

< 0; r0 : r0/ ↑ /0 > < 0; r1 : r1/ ↓ /1 >

< 1; r0 : r0/ ↑ /0 > < 1; r1 : r1/ ↓ /1 >

3.2.3 2PF2av

This fault is sensitized by applying two simultaneous operations: one to cell Ca and the
other to cell Cv, and can be represented by the following notation.

< Sa;Sv/F/R > - It denotes a fault primitive whereby the sensitizing operation Sa is
applied to the a-cell simultaneously with the sensitizing operation Sv applied to the v-cell. This
type of fault consists of three FFMs: wCFds & wRDF , wCFds & wIRF and wCFds & wRRF each
with 4 FP’s.

1. wCFds & wRDF: A read operation applied to cell Cv flips the cell and the sense amplifier
returns an incorrect value, if a write operation is applied to cell Ca simultaneously.

< w1 : r1/ ↓ /0 > < w1 : r0/ ↑ /1 >

< w0 : r1/ ↓ /0 > < w0 : r0/ ↑ /1 >

2. wCFds & wIRF: A read operation applied to cell Cv returns an incorrect value, if a write
operation is applied to cell Ca simultaneously. The state of Cv does not change.

< w1 : r1/1/0 > < w1 : r0/0/1 >

< w0 : r1/1/0 > < w0 : r0/0/1 >

3. wCFds & wRRF: A read operation applied to cell Cv returns a random value if a write
operation is applied to cell Ca simultaneously. The state of Cv does not change.

< w1 : r1/1/? > < w1 : r0/0/? >

< w0 : r1/1/? > < w0 : r0/0/? >

16

Chapter 4

Serial Interfacing Design for

Multiport Memory Testing

In this chapter we propose the idea of serial interfacing to sensitize and detect one particular
type of two-port faults - 2PF1. March algorithms to detect the other types of two-port faults can
be found in the next section. So, let us investigate the march algorithm to detect 2PF involving one
cell assuming a parallel architecture first, then transform the same algorithm to a serial scheme.
FFMs involved in 2PFs are discussed in Table 3.1. In this chapter, we consider only the FFMs for
2PF1 faults as shown in Table 4.1.

FFM Fault Primitives

wDRDF & wDRDF < r0 : r0/ ↑ /0 >,< r1 : r1/ ↓ /1 >
wRDF & wRDF < r0 : r0/ ↑ /1 >,< r1 : r1/ ↓ /0 >
wRDF & wTF < r0 : w ↑ /0/ >,< r1 : w ↓ /1/ >

Table 4.1: List of 2PF1s

In the following section, we will discuss some basic conditions which need to be satisfied
in a march algorithm to detect 2PF1s. We will investigate the conditions for all three types of
2PF1 faults, and derive a condition for 2PF1 faults as a whole. Then, we will present a parallel
march algorithm which satisfies the condition to detect 2PF1 faults. Finally, we shall derive a serial
scheme for the parallel march 2PF1 algorithm.

4.1 Conditions to Detect 2PF1

4.1.1 Conditions to Detect wDRDF & wDRDF

The wDRDF & wDRDF FFM consists of two fault primitives (FPs): < r0 : r0/ ↑ /0 > and
< r1 : r1/ ↓ /1 >. It has to be considered only for 2P memories which allow two simultaneous read
operations from the same location (i.e, address). Any wDRDF & wDRDF fault can be detected
by a march test which contains the two march elements of Case A and the two march elements of
Case B below.

1. Case A : detection of < r0 : r0/ ↑ /0 >

m (... , r0 : r0);m (r0 : , ...)

17

2. Case B : detection of < r1 : r1/ ↓ /0 >

m (... , r1 : r1);m (r1 : , ...)

The first pair of simultaneous read operations through both ports in each first march element
sensitizes the fault, and the fault effect will be detected by the single read operation of each second
march element. Note that ” ” denotes any allowed operation.

4.1.2 Conditions to Detect wRDF & wRDF

The wDRDF & wDRDF FFM consists of two FPs: < r0 : r0/ ↑ /1 > and < r1 : r1/ ↓ /0 >.
It has to be considered only for 2P memories which allow two simultaneous read operations of the
same location. Any wRDF & wRDF fault will be detected by a march test which contains the two
march elements of Case A and the two march elements of Case B below.

1. Case A : detection of < r0 : r0/ ↑ /1 >

m (... , r0 : r0, ...)

2. Case B : detection of < r1 : r1/ ↓ /0 >

m (... , r1 : r1, ...)

The pair of simultaneous read operations through the two ports in each march element
sensitize and detect the fault. It is easy to understand that the condition for wRDF & wRDF is a
subset of the condition for wDRDF & wDRDF . Hence any test detecting wDRDF & wDRDF will
also detect wRDF & wRDF .

4.1.3 Conditions to Detect wRDF & wTF

The wRDF & wTF FFM consists of two FPs: < r0 : w ↑ /0/ > and < r1 : w ↓ /1/ >. It
has to be considered only for 2P memories which allow two simultaneous read and write operations
at the same location, whereby the read data is discarded. Any wRDF & wTF fault will be detected
by a march test which contains the two march elements of Case A and the two march elements of
Case B.

1. Case A : detection of < w ↑: r0/0/ >

m (... , w1 : r0) ; m (r1 : , ...)

2. Case B : detection < w ↓: r1/1/ >

m (... , w0 : r1) ; m (r0 : , ...)

The pair of simultaneous operations through both ports in each march element sensitize
the fault, which will be detected by the second single read operation.

4.1.4 Conditions to Detect All 2PF1 Faults

Any 2PF1 fault will be detected by a march test which contains both pairs of march elements
of Case A (i.e. A(i) and A(ii)) or both pairs of march elements of Case B (i.e. B(i) and B(ii)).

18

1. Case A:

(i) To detect < r0 : r0/ ↑ /0 >, < r0 : r0/ ↑ /1 > and < w ↓: r1/1/ >

m (... , w0 : r1) ; m (... , r0 : r0) ; m (r0 : , ...)

(ii) To detect < r1 : r1/ ↓ /1 >, < r1 : r1/ ↓ /0 > and < w ↑: r0/0/ >

m (... , w1 : r0) ; m (... , r1 : r1) ; m (r1 : , ...)

2. Case B:

(i) To detect < r0 : r0/ ↑ /0 >, < r0 : r0/ ↑ /1 > and < w ↑: r0/0/ >

m (... , r0 : r0) ; m (... , r0 : , ...)

m (... , w1 : r0) ; m (... , r1 : , ...)

(ii) To detect < r1 : r1/ ↓ /1 >, < r1 : r1/ ↓ /0 > and < w ↓: r1/1/ >

m (... , r1 : r1) ; m (... , r1 : , ...)

m (... , w0 : r1) ; m (... , r0 : , ...)

This condition 2PF1 applies to a 2P memory supporting simultaneous read and write of
the same location. If this is not the case, then the FFM wRDF & wTF is not realistic, and hence
condition 2PF1 can be simplified to wRDF & wRDF .

4.2 Parallel March Algorithm 2PF1

Let us use the conditions described in the previous section to frame a parallel marching
algorithm that can detect all 2PF1 faults. The parallel march algorithm to detect all two port
faults involving a single cell is:

{ ⇑ M0
(w0:n) ;⇑

M1
(w1:r0,r1:r1,r1:w0,r0:w1) ;⇑

M2
(w0:r1,r0:r0,r0:w1,r1:n) ; }

There are three march operations M0, M1 and M2. M1 has four elements namely M1-1, M1-2,
M1-3, M1-4. Similarly, M2 has four elements namely M2-1, M2-1, M2-3, M2-4. We can observe on
close inspection that this algorithm satisfies the conditions to detect all 2PF1 faults. Refer Table.
4.2.

Condition Case March Operation

A(i) M2-1, M2-2, M2-3
A(ii) M1-1, M1-2, M1-3
B(i) M2-2, M2-3, M1-1, M1-2
B(ii) M1-2, M1-3, M2-1, M2-2

Table 4.2: Parallel march algorithm 2PF1 satisfies condition 2PF1

M0:
It has only one operation and initializes all memory cells to 0.

M1:

1. (w1 : r0) sensitizes the fault < w ↑: r0/0/ >. Here, by w ↑, the cell value must have changed
to logic 1. Instead, if it remains a 0, the fault can be detected by the next read operation in
M1.

19

2. (r1 : r1) sensitizes the fault < r1 : r1/ ↓ /1 >, and detects the fault < r1 : r1/ ↓ /0 >.
Further, it detects < w ↑: r0/0/ > sensitized by the (w1:r0) operation.

3. (r1 : w0) detects < r1 : r1/ ↓ /1 > and sensitizes < r1 : w ↓ /1/ >.

4. (r0 : w1) detects < r1 : w ↓ /1/ > and prepares for operation (w0 : r1) in M2 by writing
the memory with all 1’s.

M2:

1. (w0 : r1) sensitizes the fault < w ↓: r1/1/ >. Here, by w↓, the cell value must have changed
to a 0. Instead, if it remains a logic 1, the fault can be detected by the next read operation
in M2.

2. (r0 : r0) sensitizes the fault < r0 : r0/ ↑ /0 > and detects the fault < r0 : r0/ ↑ /1 >.
Further, it detects < w ↓: r1/1/ > sensitized by the (w0:r1) operation.

3. (r0 : w1) detects < r0 : r0/ ↑ /0 > and sensitizes < r0 : w ↑ /0/ >.

4. (r1 : n) detects < r0 : w ↑ /0/ >.

Thus, we see that with this march algorithm, all 2PF1 faults can be detected. Next, let us
implement this serially.

4.3 Serial March Algorithm 2PF1

We take a three-cell memory array to describe the serial implementation technique used
[Fig. 4.1]. C1, C2 and C3 are memory cells. LA-1(LB-1), LA-2(LB-2) and LA-3(LB-3) are latches
corresponding to port A(B).

M0:
This operation just writes 0’s to all cells. The corresponding serial implementation is

(w0 : n, rx : n)3. This writes logic 0 to all cells serially. Note that (w0 : n, rx : n)3 means doing a
(w0: n, rx : n) three times where ”n” denotes a no-operation, and port A is used to initialize all
cells to logic 0. After (w0 : n, rx : n)3, the current memory state would be as in Fig. 4.1. Note that
port A is depicted in this figure in bold lines and port B in normal lines. Dotted lines are used for
control read/write signals.

M1:
Next, we want to perform (w1:r0) simultaneously through both ports, w1 through port A

and r0 through port B. This can be implemented serially by (w1 : r0, r0 : w1)3. Operation (w1 : r0)
means that we perform w1 (r0) at input (output) port A (B) of the serial interface in Fig. 4.1.
Operation (r0 : w1) can be discussed similarly.

w1:r0,r0:w1 - 1st time
Here, the 1st cell C1 is written with 1, and 0 is read from C1 at the same time by (w1 : r0) as
shown in Fig. 4.2. Note that simultaneous write and read operations are performed to cells C2 and
C3 as well, though value 0 is written into both cells. In Fig. 4.3, logic 1 is written to latch LA-1 by
(r0 : w1), and the logic value will be propagated to C2 in the 2nd time operation discussed below.

w1:r0,r0:w1 - 2nd time

20

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

0 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 4.1: 2PF1 serial interfacing memory state after (w0 : n, rx : n)3

Now, logic 1 stored in LA-1 is propagated to C2 and then LA-2 as shown in Fig. 4.4 and Fig. 4.5.
The simultaneous write and read operations are performed to cells C1 and C3 as well with logic
values 1 and 0 respectively.

w1:r0,r0:w1 - 3rd time
Finally, logic 1 stored in LA-2 is propagated to C3 and the LA-3 as shown in Fig. 4.6 and Fig. 4.7.

Thus, we have successfully performed w1:r0 serially. Now, the memory contains all 1’s.
Note that if the 1st cell has a < w1 : r0/0/ > fault, then 2nd and 3rd cells will not be tested,
because no logic 1 will be propagated to C2 and C3. But, the fault effect at C1 will be propagated
to the serial scan output and observed. The discussion can be extended to defective C2 or C3
cells. Thus, < w1 : r0/0/ > fault is detected until now. This forms the basic idea of using serial
interfacing for two-port memories. We emphasize that the (w1:r0) sub-operation of the ith (w1:r0,
r0:w1) operation is used to sensitize the < w1 : r0/0/ > fault for cell Ci. The second sub-operation
(r0:w1) is just used to propagate fault effects as will be discussed in Theorem 4.1. The role of each
sub-operation for different fault types might change as will be discussed in Theorems 4.1 to 4.3.

Consequently, the serial equivalent of parallel operation (w0 : r0) would be (w0 : r0, r0 :
w0)n, while the serial equivalent of (w1 : r0) would be (w1 : r0, r0 : w1)n, where n is the width
of the array. The serial equivalents of other parallel march operations can be discussed similarly.
Proceeding in the same way using the parallel 2PF1 march algorithm as the base, we get an
equivalent serial march algorithm which uses only one test input and one test output to thoroughly
sensitize and detect all 2PF1 faults. However, we do not have to create a one-to-one correspondence
between parallel and serial testing algorithms. A little tweaking of the serial algorithm would help
us reduce more operations and decrease redundancy. We arrived at a concise serial march algorithm

21

to detect all 2PF1 faults as follows.
{ ⇑ M0

(w0:n) ; ⇑
M1−1

(w1:r0,r0:w1)3
, M1−2

(r1:r1) ,
M1−3

(r1:w0,w0:r1)3
, M1−4

(r0:r0) ,
M1−5

(r0:w1,w1:r0)3
, M1−6

(w0:r1,r1:w0)3
}

There are two march operations M0 and M1. The 6 elements of march operation M1 are labelled
from M1-1 to M1-6. M1-1(i) denotes the element M1-1 being performed the ith time in the algo-
rithm. For example, M1-3(2) denotes (r1 : w0 , w0 : r1) being performed the second time.

Theorem 4.1. All wRDF & wTF faults can be detected by the serial 2PF1 algorithm.
Proof : Without loss of generality, we use a 3-bit memory array with two ports as shown in Fig.
4.1. Assume bit C1 has fault < w1 : r0/ ↓ / >. By applying the first operation (i.e., w1:r0)
of M1-1(1), C1 contains a faulty logic value 0. The faulty value will be latched into LA-1 by the
second operation (i.e., r0:w1) of M1-1(1).

By applying the first operation of M1-1(2), the fault effect stored in LA-1 will be written
into C2, and then propogated to LA-2 by the second operation of M1-1(2). Finally, the fault effect
stored in LA-2 will be written to C3 by the first operation of M1-1(3), and then propogated to LA-3
by the second operation of M1-1(3). Thus, the fault effect can be observed by the scan output.
Q.E.D

The detection of faults in other bits can be discussed similarly. Further, the detection of
other wRDF & wTF faults can be proved in the same manner.

Theorem 4.2. All wDRDF & wDRDF faults can be detected by the serial 2PF1 algorithm.
Proof : Assume bit C1 has fault < r0 : r0/ ↑ /0 >. By applying operation M1-4 (i.e., r0:r0), C1
contains a faulty logic value 1 but the value latched into LA-1 and LB-1 is still logic value 0 at this
time. This is the wDRDF & wDRDF fault. The faulty value, however, will be latched into LA-1
by the first operation (i.e., r0:w1) of M1-5(1).

By applying the second operation of M1-5(1), the fault effect stored in LA-1 will be written
into C2, and then propogated to LA-2 by the first operation of M1-5(2). Finally, the fault effect
stored in LA-2 will be written to C3 by the second operation of M1-5(2), and then propogated to
LA-3 by the first operation of M1-5(3). Thus, the fault effect can be observed by the scan output.
Q.E.D

The detection of faults in other bits can be discussed similarly. Further, the detection of
other wDRDF & wDRDF faults can be proved in the same manner.

Theorem 4.3. All wRDF & wRDF faults can be detected by the serial 2PF1 algorithm.
Proof : This proof can be performed similar to the proof of Theorem 4.2. Q.E.D

Thus, we conclude from Theorems 4.1, 4.2 and 4.3 that the serial march algorithm 2PF1
can sensitize and detect all two port faults involving a single cell.

22

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

1 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 4.2: 2PF1 serial interfacing memory state (w1 : r0) - 1st time

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

1 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 4.3: 2PF1 serial interfacing memory state (r0 : w1) - 1st time

23

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 0 (C3)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX
1 (LA−1)

Figure 4.4: 2PF1 serial interfacing memory state (w1 : r0) - 2nd time

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

1 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 0 (C3)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX
1 (LA−1)

Figure 4.5: 2PF1 serial interfacing memory state (r0 : w1) - 2nd time

24

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

1 (LA−2) 0 (LA−3)

1 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 1 (C3)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX
1 (LA−1)

Figure 4.6: 2PF1 serial interfacing memory state (w1 : r0) - 3rd time

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

1 (LA−2) 1 (LA−3)

1 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 1 (C3)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX
1 (LA−1)

Figure 4.7: 2PF1 serial interfacing memory state (r0 : w1) - 3rd time

25

Chapter 5

Serial March Algorithm for Coupling

Faults

In this chapter, we propose the idea of serial interfacing to sensitize and detect 2PF2 faults.
We investigate the march algorithm to detect each 2PF fault involving two cells assuming a parallel
architecture first, then transforming the same algorithm into a serial scheme as in Chapter 4.

FFM Fault Primitives

wCFds & wCFds < w0 : rd; 0/ ↑ / >,< w0 : rd; 1/ ↓ / >
< w1 : rd; 0/ ↑ / >,< w1 : rd; 1/ ↓ / >
< rx : rx; 0/ ↑ / >,< rx : rx; 1/ ↓ / >

wCFdr & wDRDF < 0; r0 : r0/ ↑ /0 >,< 0; r1 : r1/ ↓ /1 >
< 1; r0 : r0/ ↑ /0 >,< 1; r1 : r1/ ↓ /1 >

wCFrd & wRDF < 0; r0 : r0/ ↑ /1 >,< 0; r1 : r1/ ↓ /0 >
< 1; r0 : r0/ ↑ /1 >,< 1; r1 : r1/ ↓ /0 >

wCFds & wRDF < w0 : r0/ ↑ /1 >,< w0 : r1/ ↓ /0 >
< w1 : r0/ ↑ /1 >,< w1 : r1/ ↓ /0 >

wCFds & wIRF < w0 : r0/0/1 >,< w0 : r1/1/0 >
< w1 : r0/0/1 >,< w1 : r1/1/0 >

wCFdS & wRRF < w0 : r0/0/? >,< w0 : r1/1/? >
< w1 : r0/0/? >,< w1 : r1/1/? >

Table 5.1: List of 2PF2s

The FFMs involved in 2PFs have been discussed in Table 3.1. Let us consider the FFMs
for 2PF2s only as shown in Table 5.1. In the following section, we will discuss some basic condi-
tions which need to be satisfied in marching algorithms to detect 2PF2s. We will investigate the
conditions for all three types of 2PF2 faults, then derive the test condition for each of them. Then,
we will present the parallel march algorithm to detect each type of 2PF2. Finally, we shall derive
a serial scheme for the parallel march 2PF2 algorithm. Depending on which cells (to the a-cell
and/or to the v-cell) the two simultaneous operations are applied, the 2PF2 class is divided into
three types: 2PF2aa, 2PF2vv and 2PF2av as shown in Fig 5.1.

26

2PFs

2PF1s 2PF2s

2PF2vv 2PF2av2PF2aa
Cv

Cv CvCa Ca CaCv

Figure 5.1: Classification of 2PF2

5.1 Conditions to Detect 2PF2aa

The 2PF2aa consists of one FFM, i.e., wCFds & wCFds with eight FPs as shown in Table
5.2 where x ε 0, 1 and d is don’t care. In order to detect 2PF2aa, we have

1. to apply sensitizing operations to a cell Ca; a belongs to 0, 1, 2, ..., n− 2, n− 1 and

2. to detect the fault in cell Cv; v not equal to a.

FFM Fault Primitives

wCFds & wCFds < w0 : rd; 0/ ↑ / >,< w0 : rd; 1/ ↓ / >
< w1 : rd; 0/ ↑ / >,< w1 : rd; 1/ ↓ / >
< rx : rx; 0/ ↑ / >,< rx : rx; 1/ ↓ / >

Table 5.2: List of 2PF2aas

The order in which Ca is selected is not important. Therefore, address order mn−1
a=0 can be

specified. Any 2PF2aa is detectable by a march test which contains both march elements of Case
A and both march elements of Case B.

• Case A:

mn−1
a=0 (r0:r0 , ... , w1:rd , ... , r1:r1 , ... , w0:rd);

mn−1
a=0 (r0: , ...)

• Case B:

mn−1
a=0 (r1:r1 , ... , w0:rd , ... , r0:r0 , ... , w1:rd);

mn−1
a=0 (r1: , ...)

The operations in the first march element of Case A (order is not important) will sensitize
all 2PF2aa faults, when the fault effect is to drive the victim cell from logic 0 to logic 1, because
the march element contains all sensitizing operations. If the march addressing order is increasing

27

and the v-cell has a higher (lower) address than the a-cell, then the faults in case A will be detected
by the (r0:r0) ((r0:-)) operation of the first (second) march element in cass A. Similar explanation
holds true for Case B, when the fault effect is to drive the victim cell from logic 1 to logic 0.

In the above condition, simultaneous read and write of the same location is assumed to
be supported. If this is not the case, then the 2PF2aa will consist only of FPs sensitized by
simultaneous read operations; as a consequence, the operations ”wx:rd” in the condition should be
replaced with ”wx:n” where n denotes no operation and x ε 0,1.

5.2 Parallel March Algorithm 2PF2aa

Based on the conditions discussed above, the march algorithm for 2PF2aa can be presented
as below.

{
⇑ (w0 : n) ;
⇑ (w1 : r0, r1 : r1, w0 : r1, r0 : r0, r0 : w1, r1 : w0) ;
⇑ (r0 : n,w1 : n) ;
⇑ (w0 : r1, r0 : r0, w1 : r0, r1 : r1, r1 : w0, r0 : w1) ;
⇑ (r1 : n)
}

AGRESSOR

CELL

VICTIM

CELL FLIPS

Figure 5.2: 2PF2aa aggressor-victim exhibit.

The 1st march element M0 writes 0 into all memory locations as shown in Fig. 5.3. When we
proceed to M1, the 1st to 6th operations sensitize all wCFds & wCFds faults, if the background data
is logic 1. If the march address order is increasing, the fault will be detected by the 1st operation
of M1, when Address(v) > Address(a). But, the fault will be detected by the 1st operation of
M2, when Address(a) > Address(v). We try to apply (w1:r0) for the 1st address as an example
(Fig. 5.4). We see that faulty victim cells with address order higher than the aggressor cells flip
from 0 to 1 as shown in Fig. 5.4. Thus, < w1 : r0; 0/ ↑ / > is sensitized. We then sensitize the
< r1 : r1; 0/ ↑ / > fault by (r1: r1) . Next, we sensitize the < w0 : r1; 0/ ↑ / > fault by (w0: r1)
, and we find that another fault exists as indicated by one more ”0” to ”1” flip as shown in Fig.
5.5.

Similarly, < r0 : r0; 0/ ↑ / >, < r0 : w1; 0/ ↑ / > and < r1 : w0; 0/ ↑ / > faults are also
sensitized by the 4th, 5th and 6th operations in M1. The corresponding victim cells will change

28

0 0 0 0

0 0 0 0

0000

0 0 00

Figure 5.3: 2PF2aa parallel interfacing memory state after w0:n.

0 0 0

0 0 0

1 0 01

1 1 1 1

0

0

Figure 5.4: 2PF2aa parallel interfacing memory state after w1:r0.

to logic 1 if they are faulty. We now go to the next higher address and continue M1. When we
proceed , faults < w1 : r0; 0/ ↑ / >, < r1 : r1; 0/ ↑ / >, < w0 : r1; 0/ ↑ / >, < r0 : r0; 0/ ↑ / >,
< r0 : w1; 0/ ↑ / >, and < r1 : w0; 0/ ↑ / > are all detected. Now, this takes care of the fact
when the Address(v cell) > Address(a cell).

If Address(v cell) < Address(a cell), after all operations are over in M1 till the last address,
we must read again to make sure that there are no more victims on top because of aggressors at
the bottom. Hence the operation (r0:n) must be performed in M2 to detect the fault effect left
by M1. Thus, we see that < w1 : r0; 0/ ↑ / >, < r1 : r1; 0/ ↑ / >, < w0 : r1; 0/ ↑ / >,
< r0 : r0; 0/ ↑ / >, < r0 : w1; 0/ ↑ / >, and < r1 : w0; 0/ ↑ / > are all sensitized and detected
no matter whether the A(v) is > or < than A(a).

Finally, we rewrite the memory with 1’s, and similar argument holds true for M3 and M4
for victim cell transitioning from 1 to 0. That is to sensitize and detect < w0 : r1; 0/ ↑ / >,
< r0 : r0; 1/ ↓ / >, < w1 : r0; 1/ ↓ / >, < r1 : r1; 1/ ↓ / >, < r1 : w0; 1/ ↓ / >, and
< r0 : w1; 1/ ↓ / >. Thus all 2pf2aa faults are sensitized and detected no matter whether the
A(v) is > or < than A(a).

29

0 0 0

0 0 0

1 0 1

1 1 1 1

0

1

0

Figure 5.5: 2PF2aa parallel interfacing memory state after w0:r1.

0 0 0

1 1 0

0 0 0

0 0 0 0

0

0

0

Figure 5.6: 2PF2aa illustration (i) - address(victim) < address(aggressor)

5.3 Conditions to Detect 2PF2vv

The 2PF2vv consists of two FFMs, i.e., wCFdr & wDRDF and wCFrd & wRDF with four
FPs each as shown in Table 5.3.

FFM Fault Primitives

wCFdr & wDRDF < 0; r0 : r0/ ↑ /0 >,< 0; r1 : r1/ ↓ /1 >
< 1; r0 : r0/ ↑ /0 >,< 1; r1 : r1/ ↓ /1 >

wCFrd & wRDF < 0; r0 : r0/ ↑ /1 >,< 0; r1 : r1/ ↓ /0 >
< 1; r0 : r0/ ↑ /1 >,< 1; r1 : r1/ ↓ /0 >

Table 5.3: List of 2PF2vvs

Any one of wCFdr & wDRDF and wCFrd & wRDF is detectable by a march test, if the test
exercises all pairs of cells (Ca,Cv) whereby a ε 0,1,...,v-1,v+1,...,n-2,n-1 and each pair undergoes the
four states 00,01,10 and 11. In addition, in each state, two simultaneous read operations followed
by at least a single read operation have to be applied to the v-cell.

30

0 0 0

1 1 0

1 0 0

0 0 1 0

0

0

0

Figure 5.7: 2PF2aa illustration (ii) - address(victim) < address(aggressor)

5.4 Parallel March Algorithm 2PF2vv

AGRESSOR

CELL [0 / 1]

VICTIM

CELL FLIPS

Figure 5.8: 2PF2vv aggressor-victim exhibit.

The Parallel march algorithm for 2PF2vv is:
{
⇑ (w0 : n) ; ⇑ (r0 : r0, r0 : w1, r1 : r1, r1 : w0) ;
⇑ (w1 : n) ; ⇑ (r1 : r1, r1 : w0, r0 : r0, r0 : w1) ;
}
Here, M0 initializes all memory cells to 0. M1 sensitizes and detects faults when the a-cell

is in state - 0. For example, (r0 : r0) sensitizes and detects < 0; r0 : r0/ ↑ /1 > ; but only sensitizes
< 0; r0 : r0/ ↑ /0 >. Then, each cell is read again and logic 1 is written (simultaneously) to all
cells of the word. This detects < 0; r0 : r0/ ↑ /0 > . Operation (r1 : r1) sensitizes and detects
< 0; r1 : r1/ ↓ /0 > ; but only sensitizes < 0; r1 : r1/ ↓ /1 >. Then, each cell is read again and 0
is written (simultaneously) to all cells of the word. This detects < 0; r1 : r1/ ↓ /1 > and thereby
keeps the state of the aggressor 0 for the next sequence.

Similarly, M3 can detect < 1; r1 : r1/ ↓ /0 >, < 1; r1 : r1/ ↓ /1 >, < 1; r0 : r0/ ↑ /1 >,
and < 1; r0 : r0/ ↑ /0 >. Thus, the parallel algorithm for 2PF2aa and the parallel algorithm for

31

2PF2vv have been discussed so far.

5.5 Unified Parallel March Algorithm 2PF2aa-vv

Now let us create a unified parallel algorithm for 2PF2aa and 2PF2vv named as 2PF2aa-vv
which is given by

{
⇑ (w0 : n) ;
⇑ (r0 : r0, r0 : w1, r1 : r1, r1 : w0, w1 : r0, w0 : r1) ;
⇑ (r0 : n,w1 : n) ;
⇑ (r1 : r1, r1 : w0, r0 : r0, r0 : w1, w0 : r1, w1 : r0) ;
⇑ (r1 : n)
}

It can be observed that the 2PF2aa-vv algorithm is exactly the same as the 2PF2aa al-
gorithm except the fact that the order of elements in M1 and M3 are varied. On closer look, we
can definitely see that this order will not have an impact on fault coverage and that all 2PF2aa
faults will be successfully detected. Further, the 2PF2vv algorithm is a subset of the 2PF2aa-vv
algorithm, and we can easily prove that all faults detected by 2PF2vv can also be detected by
2PF2aa-vv.

5.6 Serial March Algorithm 2PF2aa-vv

The serial equivalent implementation to sensitize and detect all 2PF2vv and 2PF2aa faults
is:

{ ⇑ M0
((w0:rx)3:n)

;

⇑ M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:r1) ,

M1−4
(r1:w0,w0:r1)3

, M1−5
(w1:r0,r0:w1)3

, M1−6
(w0:r1,r1:w0)3

;

⇑ M2
((r0:w1)3:n)

;

⇑ M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:r0) ,

M3−4
(r0:w1,w1:r0)3

, M3−5
(w0:r1,r1:w0)3

, M3−6
(w1:r0,r0:w1)3

;

⇑ M4
((r1:w0)3:n)

}

Theorem 5.1. All 2PF2aa faults can be detected by the serial 2PF2aa-vv algorithm.
Proof : Without loss of generality, we use a 3-bit memory array with two ports as shown in Fig.
4.1. Assume bit C1 of address 2 has the fault < r0 : w1/0/ ↑ / > and bit C1 of address 1 is
the agressor cell which causes the fault. Let us apply the serial march operation M1 to address 1
to sensitize the fault in address 2. By applying the first operation (i.e., r0:w1) of M1-2(1), C1 of
address 2 contains a faulty logic value 1. Thus, the fault has been sensitized. The rest of the M1
operations are performed in sequence, in address 1. These operations do not carry much importance
to sensitize and detect this particular case we discuss here.

Now, when the march operation M1 is performed on address 2, the set of operations M1-1
and M1-2 will assist in detecting the faulty logic value 1. The detection of faults in other bits can
be discovered similarly. We have looked at the case when Address(agressor)<Address(victim). If
Address(agressor)>Address(victim), then the fault will be sensitized by march operation M1-2 as
in the previous case, but detected by operation M2. Q.E.D

Finally, the detection of other 2PF2aa faults can be proved in the same manner.

Theorem 5.2. All 2PF2vv faults can be detected by the serial 2PF2aa-vv algorithm.

32

Proof : Assume bit C1 of address 2 has fault < 0; r0 : r0/ ↑ /0 >. After operation M0, all agressor
cells (if any) take the logic value 0. By applying operation M1-1 (i.e., r0:r0) on address 2, C1 of
address 2 contains a faulty logic value 1. The faulty value will be latched into LA-1 by the first
operation (i.e., r0:w1) of M1-2(1).

By applying the second operation of M1-2(1), the fault effect stored in LA-1 will be written
into C2, and then propogated to LA-2 by the first operation of M1-2(2). Finally, the fault effect
stored in LA-2 will be written to C3 by the second operation of M1-2(2), and then propogated to
LA-3 by the first operation of M1-2(3). Thus, the fault effect can be observed by the scan output.
Q.E.D

The detection of faults in other bits can be discovered similarly. Further, the detection of
other 2PF2vv faults can be proved in the same manner.

Thus, we conclude from Theorems 5.1 and 5.2 that the serial march algorithm 2PF2aa-vv
can sensitize and detect all 2PF2aa and all 2PF2vv faults. We use Table 5.4 to summarize our
findings.

FFM Fault Primitives Sensitized by

wCFds & wCFds < w0 : r1; 0/ ↑ / > M1-6
< w0 : r1; 1/ ↓ / > M3-5
< w1 : r0; 0/ ↑ / > M1-5
< w1 : r0; 1/ ↓ / > M3-6
< r0 : r0; 0/ ↑ / > M1-1
< r0 : r0; 1/ ↓ / > M3-3
< r1 : r1; 0/ ↑ / > M1-3
< r1 : r1; 1/ ↓ / > M3-1

wCFdr & wDRDF < 0; r0 : r0/ ↑ /0 > M1-1
< 0; r1 : r1/ ↓ /1 > M1-3
< 1; r0 : r0/ ↑ /0 > M3-3
< 1; r1 : r1/ ↓ /1 > M3-1

wCFrd & wRDF < 0; r0 : r0/ ↑ /0 > M1-1
< 0; r1 : r1/ ↓ /1 > M1-3
< 1; r0 : r0/ ↑ /0 > M3-3
< 1; r1 : r1/ ↓ /1 > M3-1

Table 5.4: List of 2PF2aa-vvs

5.7 Detection of 2PF1 faults by SMarch 2PF2aa-vv Algorithm

We use Table 5.5 to show that SMarch 2PF2aa-vv can also sensitize and detect all 2PF1
faults.

5.8 Conditions to Detect 2PF2av

In order to detect the presence of such faults in cell Cv, we have to
1) Select all pairs (Ca,Cv) whereby a ε {0, 1, ...,v-1,v+1,...n-2,n-1},
2) Apply sensitizing operations to the two cells, and

33

FFM Fault Primitives Sensitized and Detected by

wDRDF & wDRDF < r0 : r0/ ↑ /0 > M1-1, M1-2

< r1 : r1/ ↓ /1 > M3-1, M3-2

wRDF & wRDF < r0 : r0/ ↑ /1 > M1-1, M1-2

< r1 : r1/ ↓ /0 > M3-1, M3-2

wRDF & wTF < r0 : w ↑ /0/ > M1-2

< r1 : w ↓ /1/ > M3-2

Table 5.5: 2PF1 detection by SMarch 2PF2aa-vv

3) read the cell Cv.

The order in which Cv is selected is not important if the march operations are well designed.
The only requirement is that v has to take on all values from the set 0, 1, 2, ..., n-2, n-1. The order
in which Ca is selected is not important either. The only requirement is that cell a has to take on
all values from the set 0, 1, ..., v-1, v+1, ..., n-2, n-1. In the above, it is assumed that the a-cell
and v-cell can be any cell of the memory array. However, this is not the case in real designs. In
small buffers, we only consider the a and v cells to be in different words and to be more specific, in
adjacent words. For example, the a-cell for address i, can only have v-cells in address i-1 or i+1.
This reduction in a-cell and v-cell locations has a significant impact on the condition to detect the
2PF2av faults and therefore on the test. It reduces time complexity from O(n2) to O(n).

Any wCFds &wRDF and wCFds&wIRF is detectable by a march test, if the test contains
all pairs of march elements of Case A, of Case B, of Case C, and of Case D. These four pairs of
march elements can be combined into one, two, three, four, five, six, or seven march elements. In
addition, a march test satisfying this condition can also probabilistically detect wCFds&wRRF.
That means that the detection of this fault cannot be guaranteed due to the fact that the read
operation produces a random value. Note that the letter ”i” denotes the ith address while ”n”
denotes the total number of addresses in all further discussions.

1) Case A (to detect < w1 : r1/ ↓ /0 > and < w1 : r1/1/0 >
(⇑n−1

i=0 (. . . , w1i : r1i+1, . . .));
(⇑n−1

i=0 (. . . , r1i : w1i+1, . . .));
2) Case B (to detect < w1 : r0/ ↑ /1 > and < w1 : r0/0/1 >
(⇑n−1

i=0 (. . . , w1i : r0i+1, . . .));
(⇑n−1

i=0 (. . . , r0i : w1i+1, . . .));
3) Case C (to detect < w0 : r1/ ↓ /0 > and < w0 : r1/1/0 >
(⇑n−1

i=0 (. . . , w0i : r1i+1, . . .));
(⇑n−1

i=0 (. . . , r1i : w0i+1, . . .));
4) Case D (to detect < w0 : r0/ ↑ /1 > and < w0 : r0/0/1 >
(⇑n−1

i=0 (. . . , w0i : r0i+1, . . .));
(⇑n−1

i=0 (. . . , r0i : w0i+1, . . .));

The operation (w1i : r1i+1) in Case A (denoted as A.1) will sensitize and detect < w1 :
r1/ ↓ /0 > , < w1 : r1/1/0 > and may detect < w1 : r1/1/? > in which the v-cell and a-cell
are in adjacent words, and the address of a-cell is smaller than that of the v-cell. The operation
(r1i : w1i+1) in Case A (denoted as A.2) will sensitize and detect the same faults in which the
v-cell and a-cell are in adjacent words, and the address of a-cell is larger than that of the v-cell.

34

Both these operations are ”necessary” for complete fault coverage. The same rule holds true for
cases B, C, and D.

5.9 Parallel March Algorithm 2PF2av

The parallel march algorithm for 2PF2av shown below contains two march operations where
M2 satisfies all conditioned mentioned above. The test length is 9n where n is the number of memory
words.

m (w0 : n);
⇑n−1

i=0

(
w1i : r0i+1, r1i : w1i+1, w0i : r1i+1, r0i : w0i+1,
w0i : r0i+1, r0i : w1i+1, w1i : r1i+1, r1i : w0i+1

);

5.10 Serial March Algorithm 2PF2av

The architecture we use to test 2PF2av faults will slightly differ from our earlier architecture
of testing 2PF1, 2PF2aa and 2PF2vv faults. In the earlier architecture, both ports were used to
operate at the same address; but in this new architecture, each port will operate at a different
address. The reason for this is because we are dealing with aggressor-victim faults at different
addresses. Therefore, the serial implementation is:

⇑n−2
i=0 (w0, r0)

3
addi : (w0, r0)

3
addi+1;

⇑n−2
i=0

(
(w0, r0)3addi : (r0, w0)

3
addi+1,

(r0, w1)3addi : (w1, r0)
3
addi+1,

(w1, r1)3addi : (r1, w1)
3
addi+1,

(r1, w0)3addi : (w0, r1)
3
addi+1

)

Let us now look into the details of using a single port for a single address. The architecture
is shown in Fig. 5.9 for two ports being operated at two addresses i and i+1. Port A is currently
operating on cells 1, 2 and 3 of address 1, while port B is operating on cells 4, 5 and 6 of address 2.

The previous logic can also be depicted in a simplified manner as in Fig. 5.10. Steps 1, 2
and 3 occur in consecutive fashion.

Step 1: Port A → Address 1 , Port B → Address 2
Step 2: Port A → Address 2 , Port B → Address 3
Step 3: Port A → Address 3 , Port B → Address 4

It can be easily verified that M0 is used to initialize all memory cells to logic 0. Now, we
move to the next march operation which is

⇑n−2
i=0

(
(w0, r0)3addi : (r0, w0)

3
addi+1,

(r0, w1)3addi : (w1, r0)
3
addi+1,

35

MUXMUXMUX

CELL 1 CELL 2 CELL 3

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

LATCH 1 LATCH 2 LATCH 3

SERIAL TEST INPUT (PORT A)

MUXMUXMUX

CELL 4 CELL 5 CELL 6

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

LATCH 4 LATCH 5 LATCH 6

SERIAL TEST INPUT (PORT B)

Figure 5.9: 2PF2av serial interfacing architecture

(w1, r1)3addi : (r1, w1)
3
addi+1,

(r1, w0)3addi : (w0, r1)
3
addi+1

)

First, let us look at the operation (w0, r0)3addi : (r0, w0)
3
addi+1.

On the ith address and (i+1)th address, we perform a (w0,r0) and a (r0,w0) respectively for
the first time. Here, port A (B) is assigned to address i (i+1) and the w0 (r0) operation is performed
first to the left-hand (right-hand) side of the serial interface, and then r0 (w0) is performed to the
right-hand (left-hand) side of the serial interface. Thus, it can be found that operations w0 and r0
are performed to ports A and B simultaneously. Then, operations r0 and w0 are performed to ports
A and B simultaneously. This causes logic 0 to be written into the 1st cell and 1st latch of address
i, and the 1st cell of address i+1 to be read and written correspondingly as shown in Fig. 5.11. We
emphasize that the read/write operations are performed to all cells of both addresses. The same
operations are repeated to both words two more times as shown in Figures 5.12 and 5.13. It can
be easily proved that this march sub-element will detect < w0 : r0/ ↑ /1 > and < w0 : r0/0/1 >
defects. In fact, operation (w0:r0) to ports A and B respectively is used to sensitize this kind of
faults when the victim cell has larger address than the aggresor cell. Similarly, operation (r0:w0) to
ports A and B respectively is used to sensitize this kind of faults when the victim cell has smaller
address than the aggresor cell. We illustrate similar findings in Table 5.6.

Theorem 5.3. All wCFds & wRDF 2PF2av faults can be detected by the SMarch2PF2av algorithm.
Proof : Without loss of generality, we use a 6-bit memory array with two ports as shown in Fig.
5.9. Assume bit C4 of address 2 has the fault < w0 : r0/ ↑ /1 > and bit C1 of address 1 is the
agressor cell which causes the fault. Let us apply the march operation M1 to addresses 1 and 2 to
sensitize the fault in address 2. By applying the first half of M1-1(1) (i.e., w0addi : r0addi+1), C4 of

36

PORT A

PORT B

CELL 1 CELL 2 CELL 3

CELL 6CELL 5CELL 4

CELL 7 CELL 8 CELL 9

1) 2)

CELL 1 CELL 2 CELL 3

CELL 4 CELL 5 CELL 6
PORT A

CELL 7 CELL 8 CELL 9
PORT B

Address 1

Address 2

Address 3

Address 1

Address 2

Address 3

CELL 10 CELL 11 CELL 12 CELL 10 CELL 11 CELL 12

Address 4 Address 4

3)

CELL 10 CELL 11 CELL 12

CELL 7 CELL 8 CELL 9

CELL 4 CELL 5 CELL 6

CELL 1 CELL 2 CELL 3

Address 1

Address 2

Address 3

Address 4

PORT A

PORT B

Figure 5.10: 2PF2av march order.

address 2 contains a faulty logic value 1 which is also written to latch L4. Thus, the fault has been
sensitized.

Now, when the second half of the first operation (i.e., r0addi : w0addi+1) M1-1(1) is per-
formed, the faulty logic value 1 in L4 is written to cell C5. Similarly, the complete operation of
M1-1(2) succeeds in writing the faulty logic value 1 to cell C6. By performing the first half of
operation M1-1(3), the faulty logic value 1 is available at latch L6 and ready to be read by the
serial output. The detection of faults in other bits can be discussed similarly. We have looked
at the case when Address(agressor)<Address(victim). If the Address(agressor)>Address(victim),
then the fault will be sensitized by the second half of M1-1(1) (i.e., r0addi : w0addi+1) and detected
by the second half of M1-1(3). Q.E.D

Finally, the detection of other wCFds & wRDF 2PF2av faults can be proved in the same
manner.
Theorem 5.4. All wCFds & wIRF 2PF2av faults can be detected by the SMarch2PF2av algorithm.

37

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT A)

0 0

0 0

0

0

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT B)

0 0

000

0

Figure 5.11: 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 1st time

Proof : The only difference between the wCFds & wRDF FP and the wCFds & wIRF FP is that,
in the latter case, the victim cell is not flipped. In both cases, the output of the victim cell is
the incorrect value. Hence, the sequence of sensitization and detection of the faults for the wCFds
& wIRF FP, is the same as the sequence for the wCFds & wRDF FP explained in Theorem 5.3.
Q.E.D

Thus, we conclude from Theorems 5.3 and 5.4 that the serial march algorithm SMarch2PF2av
can sensitize and detect all deterministic 2PF2av faults.

38

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT A)

0 0 0

0 0 0

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT B)

0 0

000

0

Figure 5.12: 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 2nd time

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT A)

0 0

0 0 0

0

MUXMUXMUX

READ

WRITE

 o 1 o 1 o 1

/NORMAL
TEST’

NORMAL INPUT SERIAL OUTPUT

SERIAL TEST INPUT (PORT B)

0 0

000

0

Figure 5.13: 2PF2av serial interfacing memory state (w0, r0)i : (r0, w0)i+1 - 3rd time

39

FFM Fault Primitives Sensitized and Detected by

wCFds & wRDF < w0 : r0/ ↑ /1 >,< r0 : w0/ ↑ /1 > M1-1

< w1 : r0/ ↑ /1 >,< r0 : w1/ ↑ /1 > M1-2

< w1 : r1/ ↓ /0 >,< r1 : w1/ ↓ /0 > M1-3

< w0 : r1/ ↓ /0 >,< r1 : w0/ ↓ /0 > M1-4

wCFds & wIRF < w0 : r0/0/1 >,< r0 : w0/0/1 > M1-1

< w1 : r0/0/1 >,< r0 : w1/0/1 > M1-2

< w1 : r1/1/0 >,< r1 : w1/1/0 > M1-3

< w0 : r1/1/0 >,< r1 : w0/1/0 > M1-4

wCFdS & wRRF < w0 : r0/0/? >,< r0 : w0/0/? > M1-1 (probablistically)

< w1 : r0/0/? >,< r0 : w1/0/? > M1-2 (probablistically)

< w1 : r1/1/? >,< r1 : w1/1/? > M1-3 (probablistically)

< w0 : r1/1/? >,< r1 : w0/1/? > M1-4 (probablistically)

Table 5.6: List of 2PF2avs - fault detection summary1

40

Chapter 6

Testing for Same-Word Faults

So far, we have discussed different types of two port fault models and ways to detect them, if
they exist in different words (addresses). In this chapter, we shall prove that the march algorithm we
proposed earlier also detect faults at the same word. Note that we only need to consider 2PF2aa
and 2PF2vv faults, since 2PF2av faults cannot occur at the same word. We use the SMarch
2PF2aa-vv algorithm with slight modification to detect the same word faults.

Consider the serial march algorithm 2pf2aa-vv.

{
⇑ M0

((w0,rx)3:n)
;

⇑ M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:r1) ,

M1−4
(r1:w0,w0:r1)3

, M1−5
(w1:r0,r0:w1)3

, M1−6
(w0:r1,r1:w0)3

;

⇑ M2
((r0,w1)3:n)

;

⇑ M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:r0) ,

M3−4
(r0:w1,w1:r0)3

, M3−5
(w0:r1,r1:w0)3

, M3−6
(w1:r0,r0:w1)3

;

⇑ M4
((r1,w0)3:n)

}

We alter the algorithm to

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1)3:n)

;

⇑R
L

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0)3:n)

}
The reason why we add extra march operations (for example) will be explained later. Note that, by
doing this, we do not endanger the detection of the 2PF2aa or 2PF2vv faults which were discussed
in the previous chapter. We shall introduce faults to explain how our algorithm can successfully
detect these FPs. In the following discussion, for the easiness of discussion, we show the detection
of same-word faults by assuming a memory with 3 bits in each word. The general case can be easily
extended.

41

6.1 Detection of Same-Word 2PF2aa Faults

Before we proceed, let us look at each case of 2PF2aa faults at the same word in the form
of a table shown in Table. 6.1. We use the following two faults to illustrate how 2PF2aa-vv can
sensitize and detect 2PF2aa faults in the same word.

1. < r0 : r0; 0/ ↑ / >,

2. < r0 : w1; 0/ ↑ / >.

Sensitizing operation on ”a” cell Fault Effect on ”v” cell

r0:r0 0 ↑ 1 or 1 ↓ 0
r1:r1 0 ↑ 1 or 1 ↓ 0
r0:w1 0 ↑ 1 or 1 ↓ 0
r1:w0 0 ↑ 1 or 1 ↓ 0
w1:r0 0 ↑ 1 or 1 ↓ 0
w0:r1 0 ↑ 1 or 1 ↓ 0

Table 6.1: List of 2PF2 same-word faults.

Consider the memory array after all cells in the memory have logic 0 by applying M0 (Fig.
6.1). Next, we apply (r0:r0) to both ports simultaneously. On performing (r0:r0), we have a
memory state as shown in Fig. 6.2 where ”A” represents the agressor cell and ”V” represents the
victim cell. When we apply a (r0:r0) operation on cell C1 which is the agressor, cell C2 flips from
0 to 1. Now, this sensitizes the same-word fault < r0 : r0; 0/ ↑ / >.

After (r0:r0), according to our algorithm we apply (r0 : w1, w1 : r0)3, (r1 : w1, w1 : r1)
serially. Note that in all the figures, each fault effect is marked with a circle. Let us notice the circle
transgress across the memory from one side to another, where we will be reading it. On performing
(r0 : w1, w1 : r0) the first time, we get the memory states as shown in Fig. 6.3 and Fig. 6.4.
Watch the circle (victim cell) being shifted by one memory position from left to right at the end of
(r0 : w1, w1 : r0) - one time. Now, let us apply (r0 : w1, w1 : r0) the second time. On performing
(r0:w1), we get the memory state as shown in Fig. 6.5. Thus, we see that the same-word fault
< r0 : r0; 0/ ↑ / > has been sensitized and detected. The operation (r1 : w1, w1 : r1) is performed
now for reasons which will be explained later. We have discussed the case when the address of the
agressor is smaller than the address of victim. What happens if the aggressor address is greater
than the victim address? We have a memory set-up as shown in Fig. 6.6. It is not difficult to
understand that, even with Address(victim) < Address(agressor), the fault can also be detected
in the similar fashion. Thus we conclude that the same-word fault < r0 : r0; 0/ ↑ / > can be
sensitized and detected regardless of the relative addresses of the victim and aggressor cells. This
is also summarized in Table 6.2 (the 1st group of double-read faults).

Assume that a < r0 : w1; 0/ ↑ / > fault exists in our memory array. After applying the
(r0:r0) operation, we get the memory array and latches to be filled with zeros. On performing
(r0 : w1) the first time, we get the memory state as shown in Fig. 6.7. Note that the 1st cell C1
is the agressor and the 2nd cell C2 is the victim. When a (r0:w1) operation is applied to C1, it
overwrites the cell C2 (which should contain a 0 at this stage) with a 1. Here, we assume that the
victim cell is coupling-dominant, i.e., the coupling effect caused by the agressor on the victim is

42

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

0 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 6.1: 2PF2aa-vv serial interfacing memory state after (w0 : rx, rx, w1)3.

stronger than the write operation which is happening on the victim, at the same point of time. If
the victim cell is write-dominant, however, then such a coupling fault will not occur. We continue
the march operations as in our algorithm and reach (w1:r0) - second time.

After performing (w1:r0) the second time, this fault is detected as shown in Fig. 6.8. Thus,
we observe that the same-word fault < r0 : w1; 0/ ↑ / > can be sensitized and detected when
Address(agressor) < Address(victim). We can sensitize and detect other such same-word faults
when Address(agressor) < Address(victim) in the similar fashion. This covers some of the faults
in the same word as shown in Table 6.2 (the 1st group of read/write faults).

Next, we shift our attention to the other undetected faults. Let us look at our serial
marching algorithm once again.

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1)3:n)

;

⇑R
L

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0)3:n)

}

43

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

0 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

VA

Figure 6.2: 2PF2aa-vv serial interfacing memory state after (r0 : r0).

As we see clearly, after operation M0, the memory state is logic 0 in all cells. Assuming there is
no < r0 : r0; 0/ ↑ / > or < r0 : r0; 1/ ↓ / > faults, we still have an all-zero memory state after
applying the (r0:r0) operation in M1. The next operation we perform is (r0 : w1, w1 : r0)3, (r1 :
w1, w1 : r1). This element starts writing logic 1 serially into the memory step by step as shown in
Fig. 6.9. Consider step 3 where we have an agressor cell which happens to be the second cell, while
the victim which happens to be the first cell. Thus, a (r0:w1) operation on the 2nd cell is able to
check if a flip occurs from 1 down to 0 in the first cell. This precisely tests the < r0 : w1; 1/ ↓ / >
fault. Note that the agressor cell has a bitwise address location greater than the victim cell. In a
similar fashion, step 4 tests the occurence of the same fault with C2 as the victim and C3 as the
agressor, and so on. Remember that M1-2(1) produces (1 0 0) in the memory array. Operation
(r0:w1) of M1-2(2) sensitizes the fault in C1 (victim) caused by C2 (aggressor). Operation (r0:w1)
of M1-2(3) shifts the fault to C2, and (r1:w1) of M1-3 shifts the fault to C3. Operation (w1:r1)
of M1-3 finally detects the fault. Therefore, we need an additional operation M1-3 for succesful
detection.

Thus, the same word fault < r0 : w1; 1/ ↓ / > can be sensitized and detected when
Address(agressor) Â than Address(victim). We can prove in a similar fashion that faults < r1 :
w0; 0/ ↑ / >, < w1 : r0; 1/ ↓ / > and < w0 : r1; 0/ ↑ / > can be sensitized and detected using
elements 5, 6, 7, 8, 9 and 10 of M1 as shown in Table 6.2 (the 2nd group of read/write faults).
Refer Fig. 6.10 to understand more.

44

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

1 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

1 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 6.3: 2PF2aa-vv serial interfacing memory state (r0 : w1) - 1st time (i)

6.1.1 Bi-Directional Serial March and Address-Sensitive Fault Detection

As shown in Table 6.2, we still need to detect the following read/write faults.
< r0 : w1; 0/ ↑ / >
< r1 : w0; 1/ ↓ / >
< w1 : r0; 0/ ↑ / >
< w0 : r1; 1/ ↓ / >
when A>V and
< r0 : w1; 1/ ↓ / >
< r1 : w0; 0/ ↑ / >
< w1 : r0; 1/ ↓ / >
< w0 : r1; 0/ ↑ / >
when A<V

We introduced the concept of bi-directional serial interfacing in Chapter 2. Here, we use
its power to detect the remaining faults. We know that march element M1 is symmetric to march
element M3. If we make these two operations march in opposite directions, then our problem will
be solved and the remaining read/write faults can be detected. This is easy to understand because
our data background would be

step 1) 0 0 0
step 2) 1 0 0
step 3) 1 1 0
step 4) 1 1 1

45

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

1 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 1 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 6.4: 2PF2aa-vv serial interfacing memory state (w1 : r0) - 1st time (i)

if the memory is populated from 0’s to 1’s by a serial input at the left side. However, with the
serial input at the right side, it is populated in the following fashion.

step 1) 0 0 0
step 2) 0 0 1
step 3) 0 1 1
step 4) 1 1 1

The remaining read/write faults are detected by M3 as shown in Table 6.3. Thus, our serial march
algorithm which can detect all same-word faults except < r0 : r0; 1/ ↓ / > and < r1 : r1; 0/ ↑ / >
is

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1)3:n)

;

⇑L
R

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0)3:n)

}

Finally, we modify our serial march algorithm to detect the last two faults < r0 : r0; 1/ ↓
/ > and < r1 : r1; 0/ ↑ / >. We change the M2 and M4 operations to achieve the following

46

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

0 (LA−2) 1 (LA−3)

0 (LB−2) 0 (LB−3)1 (LB−1)

1 (C1) 0 (C3)

1 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 6.5: 2PF2aa-vv serial interfacing memory state (r0 : w1) - 2nd time (i)

algorithm.

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1),(r0:r0))3

;

⇑L
R

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0),(r1:r1))3

}

M2 first uses the (r0,w1) operation on port A to start injecting 1’s in the memory array. Thus
at the end of (r0,w1) of M2(1), we have the memory state as 1 0 0. Assume a < r0 : r0; 1/ ↓ / >
fault in cell C1. Now, performing a (r0:r0) operation to ports A and B sensitizes this fault when
Address(A)>Address(V) where C1 is the victim and C2 is the agressor. Thus, C1 flips from 1 to 0.
On performing (r0,w1) of M2(2) through port A, we have the memory state as 1 0 (faulty) 0. Note
that we expected a 1 1 0 but obtained a 1 0 0. Thus, the fault has been transmitted from C1 to C2.
Proceeding on the same lines, the < r0 : r0; 1/ ↓ / > is detected when Address(A)>Address(V).
Faults in other bits can be detected in a similar fashion. On close inspection, we can also understand
that M2 can also detect all < r1 : r1; 0/ ↑ / > faults where Address(A)<Address(V). M4 is exactly
complementary to M2 and serves to detect < r0 : r0; 1/ ↓ / > when Address(A)<Address(V), and
< r1 : r1; 0/ ↑ / > when Address(A)>Address(V). We illustrate the summary of faults detected

47

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

0 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

1 (C1)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

V A
0 (C3)

Figure 6.6: 2PF2aa-vv serial interfacing memory state after (r0 : r0) with address(agressor)>
address(victim).

and the operations which detect the fault in Table 6.3. Consequently, the modified SMarch2PF2aa-
vv can detect all same-word 2PF2aa faults.

6.1.2 Fault Coverage Analysis for 2PF2aa Same-Word Faults

Theorem 6.1. All same-word group I read/write faults (Table 6.3) can be detected by the SMarch2PF2aa-
vv algorithm.
Proof : Without loss of generality, we use a 3-bit memory array with two ports as shown in Fig. 4.1.
Assume bit C2 has the fault < r0 : w1; 0/ ↑ / > and bit C1 is the agressor cell which is causing
the fault. Let us apply march element M1 to detect the fault. By applying the first operation
(i.e., r0:r0) of M1-1, C1, LA-1 and LB-1 contain logic 0. The next operation is (r0:w1) of M1-2(1)
which sensitizes the fault and causes C2 to flip from 0 to the faulty logic value 1, which is in turn
transmitted from C2 to LB-2 by (w1:r0) of M1-2(1) Now, (r0:w1) of M1-2(2) is performed which
writes the faulty value 1 from LB-2 to C3, which is transmitted to LB-3 by (w1:r0) of M1-2(2).
Thus, the faulty logic value 1 is available at the serial output to be read. Q.E.D

Further, the detection of other same word faults namely
< r1 : w0; 1/ ↓ / >
< w1 : r0; 0/ ↑ / >
< w0 : r1; 1/ ↓ / >

can be proved in the same manner. Here, we proved the detection of such faults when Address(A)
< Address(V). We can also prove that the detection of such faults holds true when Address(A) >

48

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

0 (LA−2) 0 (LA−3)

0 (LB−2) 0 (LB−3)0 (LB−1)

1 (C1) 0 (C3)

0 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

VA

Figure 6.7: 2PF2aa-vv serial interfacing memory state (r0 : w1) - 1st time (ii)

Address(V) because we use bi-directional serial marching and march operation M3 can detect such
faults in a similar way.

Theorem 6.2. All same-word group II read/write faults (Table 6.3) can be detected by the
SMarch2PF2aa-vv algorithm.
Proof : Assume bit C1 has fault < r0 : w1; 1/ ↓ / > and bit C2 is the agressor cell which causes
the fault. By applying the first operation (i.e., r0:r0) of M1-1, C1, LA-1 and LB-1 contain a 0. The
next operation is (r0:w1) of M1-2(1) which writes logic 1 into C1 and (w1:r0) of M1-2(1) transmits
the 1 to LB-1. The next operation is (r0:w1) of M1-2(2) which basically reads a 0 from C2 and
writes a 1 on C2. This sensitises the < r0 : w1; 1/ ↓ / > fault present in C1 and flips the state of
C1 from logic 1 to logic 0. The fault effect is in-turn transmitted by (w1:r0) of M1-2(2) from C1
to LB-1. On performing (r0:w1) of M1-2(3), the faulty 0 is written to cell C2 and transmitted to
LB-2 by (w1:r0) of M1-2(3). Finally, (r1:w1) of M1-3 moves the faulty 0 to cell C3. The fault effect
is in-turn transmitted to LB-3 by (w1:r1) of M1-3 where it can be read through the serial-out and
detected. Q.E.D

Further, the detection of other same word faults namely
< r1 : w0; 0/ ↑ / >
< w1 : r0; 1/ ↓ / >
< w0 : r1; 0/ ↑ / >

can be proved in the same manner. Here, we proved the detection of such faults when Address(A)
> Address(V). We can also prove that the detection of such faults holds true when Address(A)
< Address(V). This is because we use bi-directional serial marching, and march element M3 can
detect such faults in a similar way.

49

MUXMUX

READ A

WRITE A

/ NORMAL
TEST’

NORMAL INPUT

READ B

WRITE B

 o 1 o 1

1 (C2)

0 (LA−2) 0 (LA−3)

1 (LB−2) 1 (LB−3)1 (LB−1)

1 (C1) 0 (C3)

1 (LA−1)

 o 1

OUTPUT PORT B

OUTPUT PORT A
INPUT PORT B

INPUT PORT A

MUX

Figure 6.8: 2PF2aa-vv serial interfacing memory state (w1 : r0) - 2nd time (ii)

It is straightforward to trace that < r0 : r0; 0/ ↑ / > can be sensitized by M1-1 and
detected by M1-2. Similarly, < r1 : r1; 1/ ↓ / > can be sensitized by M1-4 and detected by M1-5.
Therefore, theorems for group I double-read faults (Table 6.3) are not discussed.

Theorem 6.3. All same-word group II double-read faults (Table 6.3) can be detected by the
SMarch2PF2aa-vv algorithm.
Proof : Assume bit C1 has fault < r0 : r0; 1/ ↓ / > and, bit C2 is the agressor cell which causes
this fault. Let us apply march element M2 which is [(r0, w1), (r0 : r0)]3 to sensitize the fault. This
operation basically means that we apply a (r0,w1) operation through port A constantly, and at
every step, we perform a double-read (ro:r0) through both ports. That is

step 1: (1 0 0) and perform (r0:r0)
step 2: (1 1 0) and perform (r0:r0)
step 3: (1 1 1) and perform (r0:r0)

Operation (r0,w1) through port A of M2(1) achieves writing a 1 to cell C1. Operation (r0:r0) of
M2(1) activates the aggressor C2 to sensitize the fault < r0 : r0; 1/ ↓ / > present in C1, and flips
the state of C1 to a faulty logic value 0. Operation (r0,w1) of M2(2) achieves writing the faulty
0 to cell C2. Operation (r0:r0) of M2(2) is not of much importance at this point, since the fault
has been activated. Operation (r0,w1) of M2(3) achieves writing the faulty 0 to cell C3. (r0:r0)
of M2(3) reads the faulty 0 through the serial out, so the < r0 : r0; 1/ ↓ / > fault in cell C1 is
detected where Address(A)>Address(V). Q.E.D

Further, the detection of another same-word faults namely < r1 : r1; 0/ ↑ / > where
Address(A)<Address(V) can be proved in the same manner using M2. We can also prove that
the detection of < r0 : r0; 1/ ↓ / > [Address(A)<Address(V)] and < r1 : r1; 0/ ↑ / >

50

Fault Primitives (A)<(V) Operation (A)>(V) Operation

< r0 : r0; 0/ ↑ / > X M1-1, M1-2 X M1-1, M1-2

< r1 : r1; 1/ ↓ / > X M1-4, M1-5 X M1-4, M1-5

< r0 : r0; 1/ ↓ / >

< r1 : r1; 0/ ↑ / >

< r0 : w1; 0/ ↑ / > X M1-2

< r1 : w0; 1/ ↓ / > X M1-5

< w1 : r0; 0/ ↑ / > X M1-7

< w0 : r1; 1/ ↓ / > X M1-9

< r0 : w1; 1/ ↓ / > X M1-2, M1-3

< r1 : w0; 0/ ↑ / > X M1-5, M1-6

< w1 : r0; 1/ ↓ / > X M1-7, M1-8

< w0 : r1; 0/ ↑ / > X M1-9, M1-10

Table 6.2: Fault detection summary(i).

[Address(A)>Address(V)] holds true because march operation M4 can detect such faults in a similar
way.

Thus, from Theorems 6.1, 6.2 and 6.3, we can conclude that all 2PF2aa same word faults
can be detected by the modified SMarch2PF2aa-vv algorithm.

6.2 Detection of Same-Word 2PF2vv Faults

The 2PF2vv faults consist of two FFMs: wCFrd & wRDF with 4 FP’s and wCFdr & wDRDF
with 4 FP’s. If the a-cell is in a certain state and two simultaneous reads are performed to the
v-cell, then the v-cell flips with either correct or incorrect output.

1. wCFrd & wRDF (Group I)

< 0; r0 : r0/ ↑ /1 > < 0; r1 : r1/ ↓ /0 >

< 1; r0 : r0/ ↑ /1 > < 1; r1 : r1/ ↓ /0 >

2. wCFdr & wDRDF (Group II)

< 0; r0 : r0/ ↑ /0 > < 0; r1 : r1/ ↓ /1 >

< 1; r0 : r0/ ↑ /0 > < 1; r1 : r1/ ↓ /1 >

We shall give one theorem to prove the detection of wCFdr & wDRDF2PF2vv faults by
SMarch 2PF2aa-vv. The detection of wCFrd & wRDF is easier compared to the detection of wCFdr
& wDRDF, and can be easily proved in a similar manner.

6.2.1 Fault Coverage Analysis for 2PF2vv Same-Word Faults

Theorem 6.4. All same-word group II double-read faults can be detected by the SMarch2PF2aa-vv
algorithm.

51

Fault Group Fault Primitives (A)<(V) Operation (A)>(V) Operation

Group I R/R < r0 : r0; 0/ ↑ / > X M1-1, M1-2 X M1-1, M1-2

< r1 : r1; 1/ ↓ / > X M1-4, M1-5 X M1-4, M1-5

Group II R/R < r0 : r0; 1/ ↓ / > X M4 X M2

< r1 : r1; 0/ ↑ / > X M2 X M4

Group I R/W < r0 : w1; 0/ ↑ / > X M1-2 X M3-5

< r1 : w0; 1/ ↓ / > X M1-5 X M3-2

< w1 : r0; 0/ ↑ / > X M1-7 X M3-9

< w0 : r1; 1/ ↓ / > X M1-9 X M3-7

Group II R/W < r0 : w1; 1/ ↓ / > X M3-5, M3-6 X M1-2, M1-3

< r1 : w0; 0/ ↑ / > X M3-2, M3-3 X M1-5, M1-6

< w1 : r0; 1/ ↓ / > X M3-9, M3-10 X M1-7, M1-8

< w0 : r1; 0/ ↑ / > X M3-7, M3-8 X M1-9, M1-10

Table 6.3: Fault detection summary(ii).

Proof : Assume bit C1 has the fault < 0; r0 : r0/ ↑ /0 > and bit C2 is the agressor cell which
causes the fault. Let us apply march sub-element M1-1 which is (r0 : r0) to sensitize the fault.
This operation flips C1 from logic state 0 to logic state 1, but the latches LA-1 and LB-1 still read
logic 0. This is the deceptive read destructive fault. Thus, the faulty logic value resides in cell C1
now. The next operation (r0:w1) of M1-2(1) transmits the fault effect to LA-1, which is in-turn
written to cell C2 by (w1:r0) of M1-2(1). Operation (r0:w1) of M1-2(2) reads the faulty logic 1
from cell C2 to LA-2, while (w1:r0) of M1-2(2) writes the fault effect to C3. Operation (r0:w1)
of M1-2(3) reads the faulty 1 from cell C3 to LA-3, where it is available to be read at the serial
output. We have proved the detection of < 0; r0 : r0/ ↑ /0 > when Address(A) > Address(V). In a
similar way, we can use the same march operation M1-1 to sensitize the fault, and M1-2 to detect
the fault even when Address(A) < Address(V). Q.E.D

Further, the detection of the other similar same-word fault namely < 1; r1 : r1/ ↓ /1 > can
be proved in the same manner using operation M1-4 to sensitize and M1-5 to detect the fault.

Theorem 6.5. All same-word group I double-read faults can be detected by the SMarch2PF2aa-vv
algorithm.
Proof : This theorem can be proved as in Theorem 6.4, and is thus omitted. Q.E.D

Thus, from theorems 6.4 and 6.5, we can conclude that all 2PF2vv same word faults can
be detected by the modified SMarch2PF2aa-vv algorithm.

6.3 Consistency of the Final SMarch 2PF2aa-vv Algorithm

The final SMarch 2PF2aa-vv which can detect all same-word faults is

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

52

0 0 0

0 01

1 1 0

1 1 1

1

V A

V

0

1

1 1 1
A

0

V

Figure 6.9: 2PF2aa-vv Serial Interfacing memory state (r0 : w1) (iii)
1 1 1

1 10

0 0 1

0 0 0

1 0

AV

V A

0 0 0

1 0

V

Figure 6.10: 2PF2aa-vv serial interfacing memory state (r1 : w0) (iii)

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1),(r0:r0))3

;

⇑L
R

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0),(r1:r1))3

}

Due to the vast changes imposed on SMarch2PF2aa-vv from Chapter 5, it is possible that
the final algorithm may not detect the 2PF2aa and 2PF2vv faults in different words. To validate
our algorithm, we use two theorems to prove that the modified SMarch 2PF2aa-vv can still sensitize
and detect all 2PF2aa and 2PF2vv faults in different words.

Theorem 6.6. All 2PF2aa faults in different words can be detected by the final serial 2PF2aa-vv
algorithm.
Proof : Without loss of generality, we use a 3-bit memory array with two ports as shown in Fig.
4.1. Assume bit C2 of address 2 has the fault < r0 : w1/0/ ↑ / >, and bit C1 of address 1 is
the agressor cell which causes the fault. Let us apply the serial march operation M1 to address 1
to sensitize the fault in address 2. By applying the first operation (i.e., r0:w1) of M1-2(1), C2 of
address 2 contains a faulty logic value 1. Thus, the fault has been sensitized. The rest of the M1
operations are performed in sequence, in address 1. These operations do not carry much importance
to sensitize and detect this particular case we discuss here.

Now, when march element M1 is performed on address 2, the set of operations M1-1 and
M1-2 will assist in detecting the faulty logic value 1. The detection of faults in other bits can
be discovered similarly. We have proved the case when Address(agressor)<Address(victim). If
Address(agressor)>Address(victim), then the fault will be sensitized by march operation M1-2 as
in the previous case, but detected by operation M2. Q.E.D

53

Finally, the detection of other 2PF2aa faults can be proved in the same manner.

Theorem 6.7. All 2PF2vv faults in different words can be detected by the final serial 2PF2aa-vv
algorithm.
Proof : Assume bit C2 of address 2 has fault < 0; r0 : r0/ ↑ /0 >. By applying operation M1-1
(i.e., r0:r0) on address 2, C2 of address 2 contains a faulty logic value 1. The faulty value will be
latched into LA-1 by the first operation (i.e., r0:w1) of M1-2(1).

By applying the second operation of M1-2(1), the fault effect stored in LA-1 will be written
into C2, and then propogated to LA-2 by the first operation of M1-2(2). Finally, the fault effect
stored in LA-2 will be written to C3 by the second operation of M1-2(2), and then propogated to
LA-3 by the first operation of M1-2(3). Thus, the fault effect can be observed by the scan output.
The detection of faults in other bits can be discovered similarly. Q.E.D

Further, the detection of other 2PF2vv faults can be proved in the same manner.

Thus, we conclude from Theorems 6.6 and 6.7 that the serial march algorithm 2PF2aa-vv
can still sensitize and detect all 2PF2aa and all 2PF2vv faults in different words. Finally, from
Theorems 6.1-6.7, we conclude that all 2PF2aa, 2PF2vv faults (same-word and different words)
can be detected by the SMarch2PF2aa-vv algorithm.

54

Chapter 7

Redundant Operations and Fault

Coverage

7.1 BIST Architecture for Parallel Testing of Arrays with Multi-

ple Ports

Most parallel memory test methods deal with single large memory array testing by vir-
tually or physically partitioning a large array into several blocks that are then tested simultane-
ously [16][22][18][15]. Only few research works concentrate on testing separate memory arrays in
parallel[24][4]. In [4] daisy chain connection is used to share the BIST control circuit among dif-
ferent memory modules. But test time is too high and all RAMs under test need to have the same
number of words (not practical). In [24] each memory module receives separate control signals
from the BIST controller which increases routing and design overhead. In this thesis, we develop
an efficient BIST architecture that can test multiple dual-port memory modules with different sizes
concurrently. Two algorithms namely RSMarch 2PF2aa-vv and RSMarch 2PF2av are derived cor-
respondingly from SMarch 2PF2aa-vv and SMarch 2PF2av , which were discussed in the previous
chapters. It is proposed that these algorithms tolerate some redundant (thus useless) march op-
erations to obtain successful sharing of data and control signals (from the BIST controller to the
buffers of different sizes). The advantages are

1. Low hardware overhead because of serial interfacing.

2. Small test time due to parallel testing of multiple memory modules.

3. High fault coverage since redundant operations do not mask fault detections.

Fig. 7.1 represents a BIST methodology to test three buffers simultaneously. The maximum
word width (number) of all buffers is used to determine the word width (number) of the BIST
controller. Thus, the large-size buffers dominate the entire test process, and all buffers receive the
same number of input test patterns as well as generate the same number of output responses. That
is, all buffers receive the same control and data signals from the BIST controller. Note that since
we test dual-port memories, we have two serial interfaces for each buffer. Based on this concept,
the small-size buffers might receive extra test patterns and generate redundant output responses.
For example, if the first (second) buffer has word width and word number equal 5 and 3 (4 and
6), then the BIST controller will determine the word width as 5 and the word number as 6. Thus,
the second buffer will have one bit test that is not really useful for each word testing (horizontal

55

BUFFER 1

SERIAL 1 − B

SERIAL 1 − A

CONTROL DATA

BUFFER 2

SERIAL 2 − B

SERIAL 2 − A

BUFFER 3

SERIAL 3 − B

SERIAL 3 − A

ADDRESS

Port A Port B Port B Port A Port BPort A

MULTIPLE INPUT SIGNATURE REGISTER (MISR)

Figure 7.1: Bist architecture for multiple RAMs

redundancy), while all words of the first buffer will be tested twice for each march element (vertical
redundancy). If these two types of over-testing do not result in any side-effect, then the hardware
overhead can be minimized, the fault coverage can be maintained, and the goal of parallel testing
can be successfully accomplished.

7.2 The RSMarch 2PF2aa-vv Algorithm

As discussed in the previous chapter, the SMarch2PF2aa-vv algorithm which can detect all
2PF1, 2PF2aa and 2PF2vv faults is

{
⇑R

L
M0

((w0,rx)3:n)
;

⇑R
L

M1−1
(r0:r0) ,

M1−2
(r0:w1,w1:r0)3

, M1−3
(r1:w1,w1:r1) ,

M1−4
(r1:r1) ,

M1−5
(r1:w0,w0:r1)3

, M1−6
(r0:w0,w0:r0) ,

M1−7
(w1:r0,r0:w1)3

, M1−8
(w1:r1,r1:w1) ,

M1−9
(w0:r1,r1:w0)3

, M1−10
(w0:r0,r0:w0) ;

⇑R
L

M2
((r0,w1),(r0:r0))3

;

⇑L
R

M3−1
(r1:r1) ,

M3−2
(r1:w0,w0:r1)3

, M3−3
(r0:w0,w0:r0) ,

M3−4
(r0:r0) ,

M3−5
(r0:w1,w1:r0)3

, M3−6
(r1:w1,w1:r1) ,

M3−7
(w0:r1,r1:w0)3

, M3−8
(w0:r0,r0:w0) ,

M3−9
(w1:r0,r0:w1)3

, M3−10
(w1:r1,r1:w1) ;

⇑R
L

M4
((r1,w0),(r1:r1))3

}

Let α =
((r0, r0) : n)((r0 : w1, w1 : r0)c

′

)((r1 : w1, w1 : r1)c−c′)(r1 : w1, w1 : r1)
((r1, r1) : n)((r1 : w0, w0 : r1)c

′

)((r0 : w0, w0 : r0)c−c′)(r0 : w0, w0 : r0)
((w1 : r0, r0 : w1)c

′

)((w1 : r1, r1 : w1)c−c′)(w1 : r1, r1 : w1)
((w0 : r1, r1 : w0)c

′

)((w0 : r0, r0 : w0)c−c′)(w0 : r0, r0 : w0)
and β =

56

((r1, r1) : n)((r1 : w0, w0 : r1)c
′

)((r0 : w0, w0 : r0)c−c′)(r0 : w0, w0 : r0)
((r0, r0) : n)((r0 : w1, w1 : r0)c

′

)((r1 : w1, w1 : r1)c−c′)(r1 : w1, w1 : r1)
((w0 : r1, r1 : w0)c

′

)((w0 : r0, r0 : w0)c−c′)(w0 : r0, r0 : w0)
((w1 : r0, r0 : w1)c

′

)((w1 : r1, r1 : w1)c−c′)(w1 : r1, r1 : w1)

The RSMarch 2PF2aa-vv algorithm, derived from the SMarch 2PF2aa-vv, which takes redundant
operations into account is

M0:
{R

L ⇑
n′−1
0 ((w0, rx)c

′

: n)((w0, r0)c−c′ : n)};

{R
L ⇑

n′−1
0 ((w0, r0)c : n)}[n/n′]−1;

{R
L ⇑

n mod n′−1
0 ((w0, r0)c : n)}

M1:
{R

L ⇑
n′−1
0 α };

{R
L ⇑

n′−1
0 α }[n/n′]−1;

{R
L ⇑

n mod n′−1
0 α };

M2:
{R

L ⇑
n′−1
0 ((r0, w1), (r0 : r0))c

′

((r1, w1), (r1 : r1))c−c′ };

{R
L ⇑

n′−1
0 ((r1, w1), (r1 : r1))c }[n/n′]−1;

{R
L ⇑

n mod n′−1
0 ((r1, w1), (r1 : r1))c };

M3:
{L

R ⇑
n′−1
0 β };

{L
R ⇑

n′−1
0 β }[n/n′]−1;

{L
R ⇑

n mod n′−1
0 β };

M4:
{R

L ⇑
n′−1
0 ((r1, w0), (r1 : r1))c

′

((r0, w0), (r0 : r0))c−c′ };

{R
L ⇑

n′−1
0 ((r0, w0), (r0 : r0))c }[n/n′]−1;

{R
L ⇑

n mod n′−1
0 ((r0, w0), (r0 : r0))c };

The structure of RSMarch 2PF2aa-vv is slightly different from SMarch 2PF2aa-vv in that
redundant operations induced by smaller buffers are existent. In RSMarch 2PF2aa-vv, the first row
of each march element gives the marching operations for the first-run scan of the entire memory
array. It can be found that horizontally redundant operations (for example in M1(α): (r1 : w1, w1 :
r1)c−c′) might exist if buffer width c′ is smaller than c. The second row of each march element
gives the marching operations by which the entire memory array will be excessively scanned. For
example, if BUF i has word number n

′ equal 4 and there exists a buffer with maximum word number
equal 10 (i.e., n=10), then the entire buffer array of BUF i will be superfluously scanned one more
time. Note that this test session might or might not be existent depending on the relationship
between n and n′. Finally, the third row of each march element gives the marching operations which
excessively scan part of the memory array when the march element finally terminates. Following
the same example (i.e., n=10, n ′=4), the first two words of BUF i will be scanned three times
when the entire march element is finished. Again, this test session may or may not exist depending
on the relationship between n ′ and n. Next, we will show that RSMarch 2PF2aa-vv is able to
accomplish the same fault coverage as SMarch 2PF2aa-vv, even in the presence of horizontal and
vertical redundant operations.

57

7.2.1 Detection of 2PF1 Faults

Theorem 7.1. All 2PF1 faults can be detected by the RSMarch2PF2aa-vv algorithm, if horizontal
redundant operations are existent.
Proof : Without loss of generality, we use < w1 : r0/ ↓ / > to describe the scenario for fault
detection with horizontal redundant operations, and the general case can be easily implied. Assume
the word under test contains c′ bits while the maximum word width of all arrays under test is c.
If the word contains a < w1 : r0/ ↓ / > fault, it will be detected by (w1 : r0, r0 : w1)c

′

operations of M1 and observed by the MISR. After non-redundant operations (w1 : r0, r0 : w1)c
′

are applied to the word, the content of the word is filled with logic 1. Thus, redundant operations
((w1 : r1, r1 : w1)c−c′) will not change the state of the word. In fact, only more logic 1 is fed into
the MISR. Thus, the detection of < w1 : r0/ ↓ / > fault is not affected at all. Further, the content
of the word under test is not affected by the redundant operations either, and this gives the same
condition of the word for the following march operations. Q.E.D

Theorem 7.2. All 2PF1 faults can be detected by the RSMarch2PF2aa-vv algorithm, if vertical
redundant operations are existent.
Proof : Again, without loss of generality, we use < w1 : r0/ ↓ / > to describe the scenario for
fault detection with vertical redundant operations, while the general case can be easily extended.
Assume the array under test contains n′ words where n′ is smaller than n. For each word containing
the < w1 : r0/ ↓ / > fault, the fault will definitely be detected [n/ n′]-1 extra times, and the
fault effects will be fed into the MISR. Depending on n and n′, the last vertical operation may or
may not detect the fault again. If the address of the word containing < w1 : r0/ ↓ / > fault is ≤
(n mod n′)− 1, then the fault will be additionally detected one more time. Thus, the fault effects
are fed into the MISR more than once, and this will not affect the detection of the fault. After the
vertical redundant operations terminate, the entire array contains logic 0 and this indicates that
the vertically redundant operations will not change the content of the memory. This secures that
the test conditions of the following march elements(if any) will not be changed. Q.E.D

7.2.2 Detection of 2PFaa Faults

Theorem 7.3. All 2PF2aa faults can be detected by the RSMarch2PF2aa-vv algorithm, if horizontal
redundant operations are existent.
Proof : Without loss of generality, we use < w1 : r0; 0/ ↑ / > to describe the scenario for fault
detection with horizontal redundant operations, and the general case can be easily implied. Consider
2 words x and y in the memory array under test, where x holds the agressor cell and y holds the
victim cell. Assume the word-width of the array under test (i.e width of x, y etc) is c′ bits while
the maximum word width of all arrays under test is c. Take a close look at α (of march operation
M1) which is applied to each address location in increasing order.

α =
((r0, r0) : n)((r0 : w1, w1 : r0)c

′

)((r1 : w1, w1 : r1)c−c′)(r1 : w1, w1 : r1)
((r1, r1) : n)((r1 : w0, w0 : r1)c

′

)((r0 : w0, w0 : r0)c−c′)(r0 : w0, w0 : r0)
((w1 : r0, r0 : w1)c

′

)((w1 : r1, r1 : w1)c−c′)(w1 : r1, r1 : w1)
((w0 : r1, r1 : w0)c

′

)((w0 : r0, r0 : w0)c−c′)(w0 : r0, r0 : w0)
Consider non-redundant march operations, i.e., ((w1 : r0, r0 : w1)c

′

), to be applied to x.
This flips the faulty cell in y to logic 1 and sensitizes the fault. Now, consecutive operations, i.e.,
((w1 : r1, r1 : w1)c−c′)(w1 : r1, r1 : w1)((w0 : r1, r1 : w0)c

′

)((w0 : r0, r0 : w0)c−c′)(w0 : r0, r0 : w0)
are applied to x. However, this has no impact on the faulty cell which is present at y (no linked
faults). Moreover, after the non-redundant operations ((w1 : r0, r0 : w1)c

′

) are applied to x, the

58

content of the word is filled with logic 1. Thus, the redundant operations ((w1 : r1, r1 : w1)c−c′)
will not change the state of the word. In fact, only more logic 1 is fed into the MISR.

Now, the address increments and the faulty cell in y is detected by the non-redundant
operations, i.e., ((r0, r0) : n)((r0 : w1, w1 : r0)c

′

), and observed by the MISR . Thus, the detection
of < w1 : r0/0/ ↑ / > fault is not affected by redundant operations at all. Further, the content
of the word under test is not affected by the redundant operations either, and this gives the same
condition of the word for the following march operations. Q.E.D

Theorem 7.4. All 2PF2aa faults can be detected by the RSMarch2PF2aa-vv algorithm, if vertical
redundant operations are existent.
Proof : Without loss of generality, we use < w1 : r0; 0/ ↑ / > to describe the scenario for fault
detection with vertical redundant operations, and the general case can be easily implied. We had
proved in Theorem 7.3 that the non-redundant operation {⇑n′−1

0 α } can sensitize and detect a
< w1 : r0/0/ ↑ / > fault one time in each word containing the fault.

Assume the array under test contains n′ words where n′ is smaller than n. For each word
containing the < w1 : r0/ ↓ / > fault, the fault will definitely be detected [n/n′]-1 extra times
due to the redundant operations {⇑n′−1

0 α }[n/n′]−1, and the fault effects will be fed into the

MISR. Depending on n and n′, the last vertical operation {⇑n mod n′−1
0 α } may or may not

detect the fault again. If the address of the word containing < w1 : r0/ ↓ / > fault is ≤
(n mod n′)− 1, then the fault will be additionally detected one more time. Thus, the fault effects
are fed into the MISR more than once, and this will not affect the detection of the fault. After the
vertical redundant operations terminate, the entire array contains logic 0 and this indicates that
the vertically redundant operations will not change the content of the memory. This secures that
the test conditions of the following march elements(if any) will not be changed. Q.E.D

7.2.3 Detection of 2PFvv Faults

Theorem 7.5. All 2PF2vv faults can be detected by the RSMarch2PF2aa-vv algorithm, if horizontal
redundant operations are existent.
Proof : Without loss of generality, we use < 0; r0 : r0/ ↑ /1 > to describe the scenario for fault
detection with horizontal redundant operations, and the general case can be easily implied. Assume
the word under test contains c′ bits, while the maximum word width of all arrays under test is
c. Take a close look at α (of march operation M1) which is applied to each address location in
increasing order. If the word contains a < 0; r0 : r0/ ↑ /1 > fault, it will be sensitized by non-
redundant operation ((r0, r0) : n) and detected by non-redundant operation ((r0 : w1, w1 : r0)c

′

),
and observed by the MISR . After non-redundant operations ((r0 : w1, w1 : r0)c

′

) are applied to
the word, the content of the word is filled with logic 1. Thus, redundant operations ((r1 : w1, w1 :
r1)c−c′) will not change the state of the word. In fact, only more logic 1 is fed into the MISR.
Thus, the detection of < 0; r0 : r0/ ↑ /1 > fault is not affected by redundant operations at all.
Further, the content of the word under test is not affected by the redundant operations either, and
this gives the same condition of the word for the following march operations. Q.E.D

Theorem 7.6. All 2PF2vv faults can be detected by the RSMarch2PF2aa-vv algorithm, if vertical
redundant operations are existent.
Proof : The proof for this theorem is similar to the proof of Theorem 7.4, and hence is not discussed
in detail. Q.E.D

59

7.2.4 RSMarch 2PF2aa-vv Algorithm detects same-word faults

Theorem 7.7. All same-word faults can be detected by the RSMarch2PF2aa-vv algorithm, if
horizontal redundant operations are existent.
Proof : Without loss of generality, we use < r0 : r0; 0/ ↑ / > to describe the scenario for fault
detection with horizontal redundant operations, and the general case can be easily implied. Assume
the word under test contains c′ bits while the maximum word width of all arrays under test is
c. Take a close look at α (of march operation M1) which is applied to each address location
in increasing order. Assume word x contains an agressor at cell a and a victim at cell v. If
x contains a < r0 : r0; 0/ ↑ / > fault, it will be sensitized by the non-redundant operation
((r0, r0) : n) applied to cell a thereby causing cell v to flip. This will be detected by non-redundant
operations ((r0 : w1, w1 : r0)c

′

), and observed by the MISR. After the non-redundant operations
((r0 : w1, w1 : r0)c

′

) are applied to the word, the content of the word is filled with logic 1. Thus,
redundant operations ((r1 : w1, w1 : r1)c−c′) will not change the state of the word. In fact, only
more logic 1 is fed into the MISR. Thus, the detection of < r0 : r0; 0/ ↑ / > fault is not affected at
all. Further, the content of the word under test is not affected by the redundant operations either,
and this gives the same condition of the word for the following march operations. Q.E.D

Theorem 7.8. All same-word faults can be detected by the RSMarch2PF2aa-vv algorithm, if
vertical redundant operations are existent.
Proof : The proof for this theorem is similar to the proof of Theorem 7.4 and hence is not discussed
in detail. Q.E.D

7.3 The RSMarch 2PF2av Algorithm

We know that the SMarch 2PF2av algorithm which can detect all 2PF2av faults is
⇑n−2

i=0 (w0, rx)
3
addi : (w0, rx)

3
addi+1;

⇑n−2
i=0

(
(w0, r0)3addi : (r0, w0)

3
addi+1,

(r0, w1)3addi : (w1, r0)
3
addi+1,

(w1, r1)3addi : (r1, w1)
3
addi+1,

(r1, w0)3addi : (w0, r1)
3
addi+1

)

Let γ =
((w0, r0)c

′

addi : (r0, w0)
c′

addi+1)((w0, r0)
c−c′

addi : (r0, w0)
c−c′

addi+1)

((r0, w1)c
′

addi : (w1, r0)
c′

addi+1)((r1, w1)
c−c′

addi : (w1, r1)
c−c′

addi+1)

((w1, r1)c
′

addi : (r1, w1)
c′

addi+1)((w1, r1)
c−c′

addi : (r1, w1)
c−c′

addi+1)

((r1, w0)c
′

addi : (w0, r1)
c′

addi+1)((r0, w0)
c−c′

addi : (w0, r0)
c−c′

addi+1)

The RSMarch 2PF2av , derived from the SMarch 2PF2av algorithm, which takes redundant oper-
ations into account is

{
M0:
{⇑n′−2

i=0 ((w0, rx)c
′

addi : (w0, rx)
c′

addi+1)((w0, r0)
c−c′

addi : (w0, r0)
c−c′

addi+1)};

{⇑n′−2
i=0 ((w0, r0)caddi : (w0, r0)

c
addi+1)}

[n/n′]−1;

{⇑n mod n′−2
i=0 ((w0, r0)caddi : (w0, r0)

c
addi+1)}

60

M1:
{⇑n′−2

i=0 γ };

{⇑n′−2
i=0 γ }[n/n′]−1;

{⇑n mod n′−2
i=0 γ }

}

7.3.1 Detection of 2PF2av Faults

Theorem 7.9. All 2PF2av faults can be detected by the RSMarch 2PF2av algorithm, if horizontal
redundant operations are existent.
Proof : Without loss of generality, we use < w1 : r0/ ↑ /1 > to describe the scenario for fault
detection with horizontal redundant operations, and the general case can be easily implied. Assume
the victim word under test(y) contains c′ bits while the maximum word width of all arrays under
test is c. If the word contains a < w1 : r0/ ↑ /1 > fault (i.e. write 1 to word x and read 0 for y
causing the victim cell in y to flip), it will be detected by ((r0, w1)c

′

y : (w1, r0)
c′

x) non-redundant

operations and observed by the MISR. After non-redundant operations ((r0, w1)c
′

y : (w1, r0)
c′

x)
are applied to the word, the content of the word is filled with logic 1. Thus, redundant operations
((r1, w1)c−c′

y : (w1, r1)
c−c′

x) will not change the state of the word. In fact, only more logic 1 is fed
into the MISR. Thus, the detection of < w1 : r0/ ↑ /1 > fault is not affected at all. Further, the
content of the word under test is not affected by the redundant operations either, and this gives
the same condition of the word for the following march operations. Q.E.D

Theorem 7.10. All 2PF2av faults can be detected by the RSMarch 2PF2av algorithm, if vertical
redundant operations are existent.
Proof : The proof for this theorem is similar to the proof of Theorem 7.4, and hence is not discussed
in detail. Q.E.D

61

Chapter 8

Conclusions and Future Work

In this thesis, we have proposed a new BIST method to detect faults in dual-port memories
using the serial interfacing technique. We have given a complete analysis of two-port faults covered,
and we have proposed serial marching algorithms to detect these faults. But, why do we need to
test dual-port faults in memories? Inductive fault analysis (IFA) was used at Intel to determine
that 94% of the faults that occur in memory dies are 1PFs and only 6% are 2PFs[6]. However,
6% is a really a huge percentage considering the drive towards shipping products with a near-zero
defect level. This is the first time that serial interfacing is applied to detect advanced fault models
of dual-port embedded memory arrays for SoC circuits. The proposed test architecture and BIST
technique has the advantages of high fault coverage, low hardware overhead and tolerable test
application time for memory arrays with short word-count. For memory arrays with large word-
count, split memory testing was proposed in [12]. The basic idea is to split a large memory array
into small sections and test each section using serial interfacing simultaneously.

Since we use the serial interfacing technique, dataflow is scheduled in a very organized
manner as it moves through the memory and a test pattern is applied every clock cycle. One
immediate conclusion that can be reached is that, based on the proposed BIST technique, built-in
self diagnosis (BISD)[25] can be achieved. Instead of using a global MISR for test reponse analysis,
a comparator can be used for each individual dual-port array to monitor the faulty bit number. The
comparator is nothing but a simple finite state machine. Since the memory address is implemented
by a global counter during testing, the word address and bit number of a faulty cell can be easily
determined. We can also foresee that redundant operation will not cause any problem for the BISD
technique based on serial interfacing. Thus, the BISD circuits can be designed in a very elegant
test architecture.

After we perform BISD on the array, we can remove faulty cells and replace them with
good ones. Thus, another area of research which stems from this thesis is in the area of built-in
self repair (BISR)[14][3][23][17]. We have embedded memory arrays distributed in different places
around the chip, rather than in a single centralized location. These small arrays need to have some
percentage of memory cells set aside as spare/redundant cells which can be possible replacements
for cells identified faulty by the dual-port march algorithms. The percentage of redundancies
required is mainly based on array size and fault distribution. The replacement mechanism (cell
replacement, column replacement, or row replacement) is required to be determined considering
the area overhead to be of primary importance, especially because we are dealing with embedded
memory arrays. Ideally, after such a procedure is determined, we have the BIST, BISD and BISR
circuitry to be integrated in the form of a single controller performing all the test, diagnosis and
repairs for memory arrays on a SoC circuit. Also, one more feasible and important extension needs

62

to be discussed. In this thesis, we have focussed on BIST for two-port memories because the usage
of two-port memories in the industry exceeds that of multiport memories with number of ports(p)
> 2. But, what if some specific applications need the use of memories with p > 2. How do we test
them by serial interfacing efficiently? Some march tests which use parallel interfacing technique for
p-port memories have been proposed in [7][33], but no research has been done on serial interfacing.
This must be investigated and solved as more and more applications do require embedded memories
with a large number of ports to enhance the circuit performance.

63

Bibliography

[1] V.C. Alves and M. Nicolaidis. Detecting complex coupling fault in multi-port rams. In IMAG
Research Report No RR978, 1991.

[2] V.C. Alves, M. Nicolaidis, and H. Bederr. Testing complex couplings in multi-port memories.
In IEEE Transactions on VLSI Systems, pages 59–71, 1995.

[3] T. Chen and G. Sunada. A self-testing and self-repairing structure for ultra-large capacity
memories. In Proceedings of International Test Conference, pages 623–631, 1992.

[4] B. Nadeau Dostie, A. Silburt, and V. K. Agarawal. Serial interfacing technique for embedded
memory testing. In IEEE Design and Test of Computers, pages 52–63, April 1990.

[5] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of 10th ACM
STOC, pages 114–118, 1978.

[6] S. Hamdioui, M. Rodgers, A.J. van de Goor, and D Eastwick. March tests for realistic faults
in two-port memories. In Memory Technology, Design and Testing, pages 73 – 78, 2000.

[7] S. Hamdioui, M. Rodgers, A.J. van de Goor, and D Eastwick. Detecting unique faults in
multi-port srams. In Test Symposium 2001. - Proceedings. 10th Asian, pages 37 – 42, 2001.

[8] Technical Article http://www.cypress.com/. Understanding specialty memories: Dual-port
rams. In Cypress Semiconductor, 2000.

[9] ITRS-01. International technology roadmap for semiconductors, 2001.

[10] W. B. Jone and D. C. Huang. A parallel built-in self-diagnostic method for embedded memory
arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(4):449–465, April 2002.

[11] W.B. Jone, D.C. Huang, and S.R. Das. An efficient bist method for non-traditional faults of
embedded memory arrays. In Proceedings of the 19th IEEE Instrumentation and Measurement
Technology Conference, volume 1, pages 601–606, 2002.

[12] W.B. Jone, D.C. Huang, S.C. Wu, and K.J. Lee. An efficient bist method for small buffers. In
VLSI Test Symposium, pages 246 – 251, 1999.

[13] R. M. Karp and R. E Miller. Parallel program schemata. In Journal of Computer and System
Sciences, pages 147–195, 1969.

[14] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. Higgins, and J. Lewandowski. Built-in self-repair
for embedded high density sram. In Proceedings of International Test Conference, pages 1112–
1119, 1998.

64

[15] J. C. Lee, Y. S. Kang, and S. Kang. A parallel test algorithm for pattern sensitive faults in
semiconductor random access memories. In Proc. Int’l Symp. on Circuit and Systems, pages
2721–2724, 1997.

[16] P. Mazumder and J. K. Patel. Parallel testing for pattern-sensitive faults in semiconductor
random-access memories. In IEEE Trans. on Computers C-38, pages 394–407, 1989.

[17] P. Mazumder and J. S. Yih. A novel built-in self-repair approach to vlsi memory yield en-
hancement. In Proceedings of International Test Conference, pages 833–841, 1990.

[18] Y. Morooka, S. Mori, M.Miyamoto, and M. Yamada. An address maskable parallel testing for
ultra high density drams. In Proc. Int’l Test Conf, pages 556–563, 1991.

[19] B. Nadeau-Dostie, A. Silburt, and V.K Agarwal. A serial interfacing technique for built-in
and external testing of embedded memories. In Custom Integrated Circuits Conference, pages
22.2/1 – 22.2/5, 1989.

[20] M.J. Raposa. Dual port static ram testing. In In Proc. IEEE International Test Conference,
pages 362–368, 1998.

[21] J. T Schwarz. Large parallel computers. In Journal of the ACM, pages 25–32, 1966.

[22] T. Shridhar. A new parallel test approach for large memories. In IEEE Design and Test of
Computers, pages 15–22, 1986.

[23] A. Tanabe. A 30ns 64-mb dram with built-in self-test and self-repair function. In IEEE J.
Solid-State Circuits, volume 27, pages 1525–1531, November 1992.

[24] L. Ternullo, R. Dean Adams, J. Connor, and G. S. Koch. Deterministic self-test of a high-speed
embedded memory and logic processor subsystem. In Proc. Int’l Test Conf., pages 33–44, 1995.

[25] R. Treuer and V. K. Agrawal. Built-in self-diagnosis for repairable embedded ram’s. In IEEE
Design and Test of Computers, pages 24–33, June 1993.

[26] A.J. van de Goor. Testing Semiconductor Memories:Theory and Practice. John Wiley and
Sons, 1991.

[27] A.J. van de Goor and S. Hamdioui. Consequences of port restrictions on testing two-port
memories. In Proc. Int’l Test Conf., pages 63–72, 1998.

[28] A.J. van de Goor and S. Hamdioui. Fault models and tests for two-port memories. In Proc.
16th IEEE VLSI Test Symp, pages 401–410, 1998.

[29] A.J. van de Goor and S. Hamdioui. Port interference faults in two-port memories. In Proc.
Int’l Test Conf, pages 1001–1010, 1999.

[30] A.J. van de Goor and S. Hamdioui. Efficient tests for realistic faults in dual-port srams. In
Proc. VLSI Test Symp., pages 395 – 400, 2002.

[31] A.J. van de Goor and S. Hamdioui. Thorough testing of any multiport memory with linear
tests. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 21 of 2, pages 217 – 231, 2002.

65

[32] B. Vermeulen, S. Oostdijk, and F. Bouwman. Test and debug strategy of the pnx8525 nexperia
digital video platform system chip. In Proceedings of International Test Conference, pages 121–
130, 2001.

[33] Chi-Feng Wu, Chih-Tsun Huang, Kuo-Liang Cheng, and Cheng-WenWu. Fault simulation and
test algorithm generation for random access memories. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pages 480–490, 2002.

[34] J. Zhao, S.Irrinki, M. Puri, and F. Lombardi. Detection of inter-port faults in multi-port static
rams. In Proc. VLSI Test Symp., pages 297–302, 2000.

66

