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Frequency Domain Thickness Measurement
Approach for Microscale Multilayered Structures

Chen Li and Cetin Cetinkaya

Abstract—A frequency domain thickness measurement ap-
proach for multilayered structures consisting of micrometer-scale
viscoelastic thin layers is introduced. The technique presented
in present work is based on a transfer matrix formulation and
pulse/echo boundary conditions. The algorithms are developed
from a first-principle-based analysis of linear elastic wave prop-
agation in layered structures. An experimental procedure is in-
troduced for determining the natural frequencies of a multilayer
structure consisting of highly attenuative layers. Extraction of
layer thicknesses from a set of natural frequencies is also demon-
strated. One unique feature of the current technique is that it
requires acoustic equipment operating at relatively low frequency.
Specific challenges due to strong frequency-dependent attenuation
in viscoelastic materials are discussed and addressed.

Index Terms—Acoustic testing, multilayered structures, mul-
tilayers, nondestructive testing, thickness measurement, transfer
matrix formulation.

I. INTRODUCTION

NONDESTRUCTIVE measurement of thicknesses of a
layered structure is of great practical interest with many

applications from evaluation of biological structures to semi-
conductor products. If the layer thicknesses are large compared
to the temporal length of an input ultrasonic pulse, the problem
is straightforward to solve using time-of-flight data for nondis-
persive materials. Difficulties arise when the layers become
thinner (compared to the temporal length of the input pulse
around the central frequency of the transducer) and layer ma-
terials are dispersive and/or strongly attenuative. In case of thin
highly viscoelastic layered structures, high-frequency (short)
pulses are especially problematic due to severe dispersion at
these frequency ranges. Thus, the use of the time-of-flight
method becomes virtually impossible to utilize. In general,
a wavelet-based analysis is difficult to adopt since the echo
waveforms are substantially deformed due to dispersion. The
wavelet transform has been used for specific applications when
dispersion is weak [e.g., cf. [1] for a low signal-to-noise ratio
(SNR) application of wavelets]. The time–frequency analysis
used in [2] is also reported to be very sensitive to SNR (or pos-
sibly the manifestation of dispersion as noise in waveforms) [1].

In deconvolution-based resolving (impulse response) tech-
niques (e.g., [3]–[5]), the band-limited transducer and over-
lapping echo waveforms have been reported as main limiting
factors of this class of methods. In a model-based approach,
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the particular challenges have been listed as follows: 1) if the
echo waveform is a nonlinear function of parameters, parameter
estimation becomes a nonlinear problem for which existence
and uniqueness are serious issues; 2) the effect of noise on
the parameter estimation must be understood; and 3) the model
order selection, which is not always known, plays a role in the
estimation process [3]. The noise in data has also been noted
to be a major problem in deconvolution methods [3]. In [5] and
[6], a number of methods are introduced to address the noise
sensitivity problem, and their shortcomings are discussed.

In a recent study [3] by Demirli and Saniie, the waveform is
assumed invariant (e.g., nondispersive and nonattenuative), and
a model-based method is adopted to deconvolute overlapping
echo waveforms. A deconvolution method was developed for
slowly varying pulse waveforms and sparsely located inter-
faces. When sources of attenuation and dispersion are un-
known, the problem becomes probabilistic, and, consequently,
concerns over the uniqueness of a solution (i.e., a set of pa-
rameter estimations) arise. In addition, the computational task
in a blind convolution technique has been reported to be very
large [3].

In the current work, a scheme based on the wave propagation
formulation in layered structures is introduced. In generating a
transfer function formulation, a transfer matrix based on first
principles is used, and a two-step procedure for considering
boundary conditions is developed. The current technique, there-
fore, is physics based. The amplitude and phase data of the
transducer response and of the echo waveforms are considered
for determining the natural frequency values. Unlike [7], where
the method is based on reflection and transmission coefficients
using the chirp z-transform, the current shows that the transfer
function formulation can be used to determine thicknesses from
a set of natural frequencies. It is found that the phase plots pro-
vide more reliable natural frequency values when the frequency
resolution is increased by adopting a chirp z-transform. In the
case of nonmetallic structures where the layer materials are
highly attenuative, the current approach has, therefore, potential
advantages over waveform superposition and deconvolution.

II. TRANSFER MATRIX FORMULATION

In the study of elastic wave propagation in coating layers,
the governing equation of the first principle of motion and
the constitutive relation for an isotropic linear material are
employed

σij,j + ρfi = ρüi

σij =λεkkδij + 2µεij (1)
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Fig. 1. Echo waveform measured at the transducer coupled to a three-layer
structure (structure 3) and the imposed pulse/echo boundary conditions (inset).

where σij is the stress tensor, ρ is the density, fi is the body
force, εij is the strain tensor, λ and µ are the Lamé coefficients
of the material, δij is the Kronecker delta, and the umlaut
represents second derivative in time. Body forces are neglected
(fi = 0). Solving these governing equations in one dimension
by applying Laplace transform [8]–[11], and considering the
state variables of stress and displacement at each surface of
a layer, a transfer matrix formulation in frequency domain is
obtained as {

u

σ

}
b

= [T]
{

u

σ

}
t

(2)

where the transfer matrix [T] is given as
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where u is the displacement component in the axial direction,
σ is the axial stress component, H is the layer thickness, ω is
the angular frequency, cL is the longitudinal acoustic velocity
in the layer material, and the subscripts t and b denote the top
and bottom surfaces of the layer. Damping in viscoelastic mate-
rials can be considered by taking cL = co

L(1 + αj) a complex
number where α is related to the damping coefficient of the
layer material and j =

√
−1. The transfer matrix formulation

(2) describes, in frequency domain, the relationship of the stress
and displacement states between the top surface and the bottom
surface of the layer.

In the current study, a pulse/echo scheme is developed. In
general, only the top surface is accessible to the examiner. It is
imperative to model and relate the impulse originated from the
transducer with the echoes back from the layered structure. It is
demonstrated that a two-step approach for considering bound-
ary conditions is necessary in modeling multilayer structures.
In modeling the elastic wave traveling in the interior of the
multilayered structure, the boundary conditions are taken into
account in a two-step procedure (see the inset in Fig. 1). In the
first step, an elastic wave field initiated by the transducer and

transmitted into the structure is considered. The boundary
conditions consist of the known stress field at the top surface
and the zero-stress field at the free bottom surface as

σ1
t (t) = f(t) σb(t) = 0 (3)

where f(t) is the specified waveform. The input pulse gener-
ated by the piezoelectric element of the transducer is obtained
experimentally. The waveform in the multilayered structure
can be determined utilizing the transfer matrix formulation (2)
along with this boundary condition. Specifically, the transfer
function between the input impulse σ1

t (superscript 1 indicates
the stress generated by the piezoelectric transducer in the first
step) and ub is obtained by arranging the terms in (2) as

ub

σ1
t

=
−T11 × T22 + T12 × T21

T21
(4)

where Tij is the ij-entry of the transfer matrix [T]. In the se-
cond step, it is assumed that the same wave field as the one used
in the first step is created by now specifying ub. The same trans-
ducer now measures the echo back from the structure excited by
ub, which generates a stress waveform at the top surface. The
boundary condition includes the fixed displacement at the top
surface and the known displacement field at the bottom, which
is calculated in the first step. This boundary condition can,
therefore, be prescribed as

ub(t) = g(t) ut(t) = 0 (5)

where g(t) is the displacement field calculated in the first step at
the free bottom surface. Substituting these boundary conditions
into the transfer matrix formulation (2), the transfer function
between the output stress signal σ2

t (superscript 2 indicates the
stress measured at the piezoelectric element) and ub can be
obtained. The displacement ub can be determined from

σ2
t

ub
=

1
T12

. (6)

Eliminating ub in (4) and (6) and rearranging the resulting
equation, the transfer function between the initial stress wave-
form σ1

t and the final echo stress signal σ2
t measured at the

transducer is determined as

σ2
t

σ1
t

=
T11T22

T21T12
− 1. (7)

This formulation can easily be applied to a structure consist-
ing of multiple coating layers. For instance, the transfer matrix
for a structure consisting of three layers (1–2–3) is the matrix
product of [T] = [T]3 · [T]2 · [T]1, where [T]i is the transfer
matrix of the ith layer.

Equation (7) gives insight on how the echo generated by a
waveform σ1

t launched into the multilayer system is affected
by the structure. Experimentally, the input waveform σ1

t is
obtained by measuring the transducer response with no contact



208 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 1, FEBRUARY 2006

Fig. 2. Amplitude in logarithmic scale (a) and the phase (b) of the frequency
response of structure 2 under the pulse/echo boundary conditions using the FFT
(circles) and the chirp z-transform (solid line) algorithms.

with the specimen. Then the echo signal σ2
t is obtained directly

from the waveform data (e.g., Fig. 1) by multiplying a trans-
mission coefficient. Dividing σ2

t by σ1
t in the frequency domain

yields the transfer function between pulse and echo as in (7).
Zero division is avoided by using a Wiener filter. In Fig. 2, the
transfer function obtained from the experimental waveform on
a two-layer system structure 2 (Table I) is illustrated. Due to
high attenuation in layers, in the amplitude plots of the transfer
function, the peaks corresponding to the natural frequencies
are not distinctive [Fig. 2(a)]. However, the values of natural
frequencies corresponding to the phase angle of ±π/2 are
clearly visible in the phase plot presented in Fig. 2(b). This
way, the natural frequencies of structures with more than one
layer can be determined. Phase plots of the transfer function
are employed in determining natural frequencies of structure 2.

In determining the natural frequencies of a multilayer struc-
ture, a chirp z-transform, instead of the fast Fourier transform
(FFT), is used to improve the frequency resolution. Due to the
presence of strong attenuation, the echo in the time domain lasts
no longer than a few microseconds, which limits the frequency
resolution in FFT data. However, the chirp z-transform has
the capability to focus on a certain interval of the frequency

spectrum with a user-specified higher resolution at a computa-
tional cost. In Fig. 2(a) and (b), the resolution of the FFT algo-
rithm and the chirp z-transform are compared for structure 2.
The resolution of the chirp z-transform is reduced to 500 Hz
by performing the transform in the frequency interval of
(0, 30 MHz). The frequency resolution of the FFT that is lower
bounded by the observable signal period is 500 kHz in the data
reported in Fig. 2. The sampling rate of the data used in the FFT
analysis is 2.5 GHz.

The pulse/echo transfer function and the structure of the
multilayer system are related by (7). With the natural frequen-
cies of the pulse/echo transfer function determined from the
experiment, a method utilizing these locations to characterize
the layer thicknesses is devised. At a certain natural frequency
f1, the pulse/echo transfer function for the layer thicknesses
H1,H2,H3, . . . has a phase angle of π/2 or −π/2 when the
following condition is satisfied:

Re (F (f1;H1,H2,H3, . . .)) = 0 (8)

where F is the pulse/echo transfer function (7) and Re()
indicates the real part of its complex argument. For example,
in a two-layer structure, two equations at two different natural
frequencies (f1 and f2) are required in order to determine the
values of H1 and H2

Re (F (f1;H1,H2)) = 0

Re (F (f2;H1,H2)) = 0. (9)

A Fortran routines library [12] employing a modified Pow-
ell hybrid algorithm and a finite-difference approximation to
the Jacobian of the linearized equations is adopted to solve
the nonlinear algebraic equations (9) simultaneously for the
layers’ thicknesses, for instance, H1 and H2 in this two-layer
structure.

III. APPLICATIONS

Current approach is applied to three structures as examples.
Structure 1 is a single layer structure (layer1). Structure 3
consists of three coating layers on a substrate (layer 1, layer 2,
and layer 3), while structure 2 is made up of layer 2 on layer 3
(see Table I for the layer material properties). Experiments are
conducted using the pulse/echo scheme to obtain the pulse/echo
transfer functions of the two structures. From the values of
the natural frequencies determined from the pulse/echo transfer
function plot, the thickness of each layer can be determined by
solving (9) using an algebraic equation solver [12].

Structure 1: This is the simplest case. Substituting the
entries of the transfer matrix in (2) into the denominator of
(7), the characteristic equation of the pulse/echo transfer func-
tion for a single-layer system is obtained as sin2(ωH/cL) =
0. Setting the characteristic equation equal to zero, the nat-
ural frequencies (in hertz) are obtained as follows: fn =
(cL/2H)n for n = 1, 2, 3, . . .. From an A-scan, a sequential
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TABLE I
MATERIAL PROPERTIES AND COMPOSITIONS OF THE SHIMS USED IN MANUFACTURING THE STRUCTURES

Fig. 3. Pulse/echo transfer function (solid line) of a two-layer structure (structure 2) with H2 = 101.45 µm and H3 = 683.54 µm. The transfer function
obtained by satisfying only two natural frequencies (f1 and f2) (dotted line) results in the thicknesses of H2 = 75.76 µm and H3 = 706.70 µm. These
predictions are incorrect, although the two natural frequency values appear to provide a good approximation for the transfer function.

set of the natural frequencies for structure 1 is experimen-
tally obtained as follows: f = 2.3444, 4.7136, 7.1313, 9.5360,
11.9552, 14.4552, . . . MHz. From this data set, H is deter-
mined by linear regression as 481.73 µm, ranging from 469.8 to
481.5 µm. The result is within the range of the actual thickness
value (Table I).

Structure 2: The transfer matrix of a two-layer structure
(the thin film layer 2 on layer 1) is obtained by multiplying
the transfer matrix of each layer: [T] = [T]2 · [T]1. Using the
transfer matrix of the structure with (2) and (7), the pulse/echo
transfer function for a two-layer system can easily be obtained.
A sequential set of the natural frequencies for structure 2 is
experimentally obtained as follows: f1 = 3.0278 MHz; f2 =
4.0944 MHz; f3 = 4.4361 MHz; and f4 = 5.6154 MHz. At
any pair of these measured natural frequency values, (9) is
required to be solved for H1 and H2. However, since these
equations consist of periodic functions, multiple solutions exist.
In Fig. 3(a), it is demonstrated that an erroneous thickness
solution can be in agreement with one frequency pair (f1, f2),
while it does not satisfy other frequency values (f3 and f4).
The solid line in these two plots corresponds to the actual
transfer function for structure 2. To eliminate the erroneous so-
lutions, more frequency pairs must be used in solving it for H2

and H3. Only the common solution among all the solutions
must be the correct solution. By perturbing the natural fre-
quency values, it can be shown that the natural frequen-
cies converge to the following set: f1 = 2.9929 MHz; f2 =
4.0586 MHz; f3 = 4.4484 MHz; f4 = 5.4311 MHz. This cor-
responds to the thickness solution of H2 = 101.45 µm and
H3 = 683.54 µm. The results are in good agreement with the
thicknesses for structure 2 (Table I).

Structure 3: For the three-layer structure 3 with the top-
to-bottom layering arrangement of layer 1–layer 2–layer 3,
the transfer matrix is determined by [T] = [T]3 · [T]2 · [T]1.

The pulse/echo transfer function for an arbitrary three-layer
structure is obtained as

σecho

σpulse

= −cL1ρ1c
2
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Fig. 4. Thickness predictions (H1, H2, and H3) for structure 3 for various error levels. (a) 25 kHz. (b) 5 kHz. (c) Exact natural frequency values. The symbols
�, �, �, and � correspond to the thickness solutions of the natural frequency triplets (f1, f2, f3), (f1, f2, f4), (f1, f2, f5), and (f1, f2, f6), respectively. The
crossing point of the vertical and horizontal lines represents the actual thickness values.

where ρi, cLi, and Hi are the layer density, the longitudinal
wave speed, and the layer thickness of the material of layer
i, respectively, ω is the angular frequency, and the subscripts
1, 2, and 3 denote the layer number in the structure (Table I).
A sequential set of the natural frequency locations for struc-
ture 3 is experimentally obtained using a broadband 10-MHz
transducer (unfocused, 6.25 mm in diameter) and the chirp z-
transformed phase data as follows: f1 = 2.4758 MHz; f2 =
2.8453 MHz; f3 = 3.3472 MHz; f4 = 3.8211 MHz; f5 =
4.3251 MHz; and f6 = 4.6427 MHz. The natural frequencies
obtained above are not exact. Thus, a simple error analysis is
performed. In Fig. 4(a), the thickness calculations for various
frequency triplets are presented for a perturbation of 25 kHz.
Fig. 4(b) and (c) depicts the calculated thickness results for the
same frequency triplets at the perturbation levels of 5 kHz and
0 Hz. As the artificial error is reduced, the natural frequency
locations converge to the following set: f1 = 2.5038 MHz;
f2 = 2.7341 MHz; f3 = 3.3523 MHz; f4 = 3.6427 MHz;
f5 = 4.2029 MHz; and f6 = 4.5505 MHz. This yields the
thickness values of H1 = 481.67 µm, H2 = 100.93 µm, and
H3 = 683.91 µm from (9). These results are in good agreement
with the specimen layering data in Table I.

IV. CONCLUSION AND REMARKS

A pulse/echo scheme based on a transfer matrix formulation
for a generic multilayered structure is developed for layer

thickness measurements. In determining the transfer function
between the pulse and echo measured by an ultrasonic
transducer, both the transfer matrix formulation and two-step
boundary condition scheme are used. A sequential set of
natural frequency values are related to the thicknesses of the
layered structure. In the scheme introduced in this work, the use
of the phase information, rather than the amplitude plots from
the pulse/echo transfer function, has been proposed; its use and
advantages are demonstrated. By analyzing the experimentally
obtained A-scans, it is shown that the phase data are more
useful in determining the values of natural frequencies even
when the layer materials are highly attenuative. Attenuation
is the major problem in deconvolution methods. The current
approach is particularly useful for viscoelastic materials at
megahertz-level excitations required for the measurement
of submillimeter thicknesses. The frequency resolution is
increased by adopting a chirp z-transform to overcome the
resolution limitation inherent in the FFT algorithm. The
techniques based on the current approach have the potential to
eliminate the need for high-frequency excitation requirements
for thin-layered structures made of attenuative materials such
as polymers and biological tissues.
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