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Abstract—This paper presents a method for real-time hand
motion detection in two-dimensional (2-D) space. A new input
device for kinetically challenged persons that uses this method is
presented. The device consists of a solid-state accelerometer that
senses 2-D motion, a microcontroller that samples the data in real
time, and an embedded field-programmable gate array (FPGA)
device that distinguishes the types of motion from programmable
motion vocabularies. The system has a quadratic capability O(n2)
in detecting motions, while the hardware used has a linear-
complexity O(n). The motion-detection computational model is
presented, along with experimental results. The system adaptation
to individual requirements and the cost versus quality tradeoff can
be addressed through reconfiguration.

Index Terms—Acceleration, kinetically challenged, real time,
reconfigurable embedded system, two-dimensional (2-D) motion
detection.

I. INTRODUCTION

THE PROBLEM of motion detection and recognition has
been considered from a number of perspectives, ranging

from I/O for virtual reality environments [1] to gesture recog-
nition systems [2]. Various alternatives, regarding hand-motion
measurement, have been proposed. Among them, goniometric-,
optoelectric-, and accelerometric-movement monitoring sys-
tems exist. Similarly, the problem of I/O assistive devices for
kinetically challenged persons (i.e., persons who cannot control
voluntary movement of more than one part of their body due to
neurological disorders) has been addressed from a mechanical
design perspective [3]–[5] to a brain-activity-detection perspec-
tive [6]. Many of the assistive devices are related to motion
detection of disabled persons [7]. Specific movements of parts
of the human body generate commands that control external
devices (e.g., wheelchair, PC, and telephone).

A human–computer interface with emphasis on commands
expressed as hand gestures is presented in [2]. A camera tracks
hand motions and interprets them to user commands. Locomo-
tive variables are extracted in [8] by a pair of accelerometers
and a tilt sensor mounted in the sole of a shoe. A monitoring
system for elderly persons used for detection of fall uses

Manuscript received October 24, 2003; revised August 16, 2006. This work
was supported in part by the Greek Secretariat of Research and Technology
and the British Council, under the Britain Greece Joint Research Program and
the EPET II European Union program under the Second Framework of Support
to Greece.

The authors are with the Microprocessor and Hardware Laboratory, Elec-
tronic and Computer Engineering Department, Technical University of Crete,
Chania, Greece (e-mail: kpapadim@mhl.tuc.gr; dollas@mhl.tuc.gr; sotirop@
mhl.tuc.gr).

Digital Object Identifier 10.1109/TIM.2006.884280

accelerometers, as well [9], in combination with physiological
parameters, such as pulse, arterial pressure, breathing rate, or
temperature.

More recent systems utilize the potential provided by recon-
figurable computing [10] and target to assistance of kinetically
challenged persons. Field-programmable-gate array (FPGA)-
based systems are now widely used in almost any area of
application. Being custom-computing machines, FPGA-based
systems can offer high performance, outperforming any other
programmable solution [11]. Moreover, only few applications
deserve the expense of creating application-specific solutions.
An FPGA-based system, which can be reprogrammed like a
standard workstation, may offer the highest performance for
many different applications.

In [12], a wearable accelerometric-motion analysis system
was developed. The system consists of an Altera Flex10KE
FPGA, digital accelerometers, and an embedded computer sys-
tem with an adaptive-system Pentium-class processor module
for further processing. The system is used to assess balance and
mobility impairments for monitoring patients’ progress.

A computer-interface device for handicapped people, which
uses an FPGA, is presented in [13]. The movement of the head,
on which an optical sensor is mounted, is used as a positioning
signal of the computer cursor.

An adaptive integral system for assisted mobility has been
developed using various sensors, FPGAs, and DSPs [14].
A wheelchair is controlled by various electronic-guidance
alternatives, which include head movements, voice commands,
electro-oculography commanding, digital joystick, and breath
expulsion. FPGA and accelerometers are also used in a project
called “3D Eye Tracking Device” [15], which aims to measure
head and eye movements. The FPGA acquires real-time-sensor
data, which are then processed by a computer for medical
purposes.

In this paper, we present a low-cost FPGA-based embedded-
I/O device for kinetically challenged persons. We target to
shrink-wrapped hardware, which can be customized and
retrained to individual needs without a recompilation of the
design, but through reconfiguration, as needed. All of the above
projects use large/multiple-FPGAs, PC-class fixed-computer
resources, or expensive equipment to perform data acquisition
and calculations. In our system, such approaches would not
meet cost, size, and power consumption limits for an embedded
application.

Previous publications on this project have focused on the
reconfigurable computing for real-time motion detection and
general system description [16], an improved model for motion
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Fig. 1. Architecture of the embedded system. The system can be connected
with a PC for evaluation and training.

detection [17], and an unsupervised training algorithm that
makes the system adaptive to individual needs [18]. The latest
version of the system as a whole improved in terms of cost,
and potential from the instrumentation perspective, including
issues of preprocessing and calibration, is presented in this
paper. More specifically, the contributions of this paper are:
1) presentation of the preprocessing of sampled data in a way
that optimizes the subsequent processing via reconfigurable
computing; 2) system calibration issues, including sensor data
variation and gravity compensation; 3) analysis of the two
motion-detection models, along with hardware complexity/cost
tradeoffs; and 4) the effect of system training in hardware
resources, complexity, and cost.

Section II presents the architecture and applications of the
system, and Section III has the real-time processing of the
sensor data. Section IV presents the tradeoff-space evaluation.
It also discusses the need of system adaptation to the user.
Section V presents the real-time motion-detection model and
compares two different versions of the model. Section VI
includes model validation and performance results from
persons with and without motor disabilities. Finally,
Section VII presents the conclusion from this work as
well as its future directions.

II. ARCHITECTURE AND APPLICATIONS OF THE SYSTEM

The architecture of the system is shown in Fig. 1. Briefly, the
system consists of

1) solid-state dual-axis accelerometer placed on the user’s
hand that sense motion in space;

2) an 8-bit microcontroller that samples the sensor data in
real time and converts them to acceleration values;

3) an embedded FPGA that receives accelerations from the
microcontroller and processes them to detect a motion
from a programmable vocabulary of motions;

4) a Programmable Read-Only Memory (PROM) for on-
board programming of the FPGA.

A key decision for the system was the usage of solid-state
accelerometers. The choice of accelerometers as input devices
opened a slew of design considerations. We chose two axes
accelerometer instead of three axes as we determined that the
inclusion of a third axis complicated unnecessarily the compu-
tational requirements [16]. Moreover, the digital nature of the

sensor output signal provided us the ability to handle it in an
easy and efficient way. Although other sensors were considered
(e.g., Hall-effect sensors), accelerometers were considered suf-
ficiently small in size, reliable, and low cost. However, the
system can be modified to accept different types of sensors.

Regarding the computational model, we showed in [16]
that a model of independently operating finite-state machines
(FSM) offers a good design tradeoff versus the usage of the
microcontrollers alone for free-space motion detection. Fur-
thermore, we showed that the sampling and conditioning of
real-time data are best performed by microcontrollers, and that
reconfigurable logic is advantageous as compared to very large-
scale integration.

The first generation of the embedded system was imple-
mented with an Atmel AVR 90S8515 microcontroller, an
Analog Devices ADXL210 2-axes accelerometer [19], and a
Xilinx XC4010 low-cost FPGA [16]. The next versions of
the embedded system were implemented with larger FPGAs
[17], [18]. The second version was implemented with a
Xilinx XC4028 FPGA, whereas the last version uses a
Xilinx XC2S100 SPARTANII FPGA. The final embedded
system has the ability of onboard programming. An external
PROM downloads the configuration file to the FPGA on power-
up. The cost of the system is less than $70, which is an arbitrary
limit that nonetheless precluded certain types of solutions to the
motion-detection problem.

The dual-axis accelerometer is positioned on user’s hand and
responds to hand’s accelerations. The microcontroller and the
FPGA were placed on a prototype board, and they communicate
through an 8-bit data bus and few control bits. All interfaces
were implemented at the TTL level (0–5 V). The SPARTANII
FPGA operates at the LVTTL level (0–3.3 V); however, its
I/O pins are 5-V tolerant. The few pins of the FPGA that are
connected to the microcontroller were pulled up in order to
operate at the latter’s voltage level. The ability to connect with
the PC through the RS-232 serial port was employed as a rapid
prototyping tool for algorithm evaluation and as a user interface
for system training (to adapt to individual needs), but not as
a necessary component in field deployment. In the standalone
operation of the system, the personal computer (PC) is not
connected.

In terms of applications, the original requirement for direct
I/O was incorporated into the architecture with I/O lines, which
can take any desirable logical values. Through optocouplers,
direct interfacing to devices can then be accomplished (e.g.,
wheelchair control). Moreover, these I/O lines can be eas-
ily converted to infrared (IR) ports, so that remote devices
may be accessed (e.g., IR-controlled door locks, IR-controlled
telephone-device answer/dial, IR-controlled air conditioner).
Lastly, the I/O lines can be either decoded, leaving one line per
device, or encoded, allowing for larger numbers of devices to be
accessed at the expense of more complex per-device decoding
of multiple signals.

III. REAL-TIME PROCESSING OF SENSOR DATA

This section presents in detail 1) the calibration process;
2) the decoding of the X- and Y -axes outputs; 3) the conversion
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Fig. 2. Decoding technique for the ADXL210 accelerometer.

from duty cycle to acceleration, all performed by the micro-
controller; and 4) the transfer of the acceleration data from the
microcontroller to the FPGA.

The accelerometers used in this system have dual pulse
width modulated (PWM) output [19], with the duty cycle being
proportional to the acceleration in each of the two sensitive
axes. The X- and Y -axes output signals are connected to the
microcontroller’s external interrupts INT1 and INT0, respec-
tively. The use of interrupts provides the ability of immediate
response, which is superior to the polling method. The PWM
signals are measured with the microcontroller’s counter. A
system calibration process is performed by the microcontroller
and sets the level of zero acceleration.

Acceleration in g experienced by the ADXL210 may be
calculated by the following formula:

a =
DutyCycle − DutyCycle at 0 g

DutyCycle change per g
. (1)

By replacing with the nominal value of scale factor [19], the
equation takes the form

a =
T1/T2 − T1 at 0g/T2

0.04
(2)

where T1 is the pulsewidth, T2 is the period of the PWM
output, and T1 at 0 g is the pulsewidth at 0 g.

The T2 period may drift due to temperature, and 0-g output
varies slightly from device to device. The easiest way to
calibrate the ADXL210 is by using the earth’s gravity as a
reference input. A reading of the 0-g point can be determined
by orienting the device parallel to the earth’s surface. An easy
way to calibrate the accelerometer and decode the duty-cycle
output is shown in Fig. 2.

Since the duty-cycle modulation uses the same triangle wave
reference for the X- and Y -channels, the midpoints of the T1
of each period must be coincident. This is illustrated in Fig. 2.
A fast PWM-decoding technique that allows the best data-
acquisition time can be, therefore, used and meet the real-time
decoding requirements. In the following paragraphs, we present
in detail the calibration and the decoding processes.

On power up, the FPGA signals the microcontroller to enter
calibration mode. The accelerometer X- and Y -axes should be
parallel to the horizontal plane, so that both axes experience
0 g. The accelerometer should also be still for a short period of
time (less than 100 ms). The operation is performed with the
following steps.

1) INT1 is set to be triggered at the rising edge; INT0 is
disabled.

2) The counter starts at the rising edge of the X output
(TXris1).

3) The counter value at the next rising edge of the X output
(TXris2) is recorded.

4) The counter is cleared.
5) The recorded values of the counter are subtracted in order

to produce the T2 value.
6) The process is repeated ten times for producing the aver-

age value of T2.

Then, decoding of the X- and Y -axes outputs is performed
(we examine the scenario in which the rising edge of the X
channel occurs before the rising edge of the Y channel).

1) INT1 and INT0 are set to be triggered at the rising edge.
2) The counter starts at the rising edge of the X output

(TXris).
3) INT1 is set to be triggered at the falling edge.
4) The counter value at the rising edge of the Y output

(TYris) is recorded.
5) INT0 is set to be triggered at the falling edge.
6) The counter value at the falling edge of the Y output

(TYfall) is recorded.
7) INT0 is set to be triggered at the rising edge.
8) The counter value at the falling edge of the X output

(TXfall) is recorded.
9) INT1 is set to be triggered at the rising edge.

10) The counter is cleared.
11) The recorded values of the counter for each of the two

channels are subtracted to produce T1X and T1Y values.
12) The process is repeated for every new sample.

The first ten samples of T1 from each channel are used for
calibration purposes. These are used to produce the average
value of the pulsewidth at 0 g (T1 at 0g) for each axis. Exper-
iments suggested that averaging ten samples during calibration
is sufficient to avoid noise effects.

The conversion from duty cycle to acceleration data is
performed with (2). A more convenient form of (2) for the
implementation into the microcontroller’s code is

a = (T1 − T1 at 0 g) × 25
T2

(3)

with T1 being measured for every channel with the micro-
controller’s counter, T2 calculated as the average of ten suc-
cessive samples, and T1 at 0g calculated for every channel
as the average of ten successive samples. The values 25/T2,
T1X at 0g, and T1Y at 0g are calculated during calibration
process. They are stored into internal registers as calibration
constants and retained for use in calculating the accelerations
after calibration.
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Calculation of accelerations is followed by transferring
acceleration data to the FPGA. Data transfer is performed
synchronously. The information is sent to the FPGA via an
8-bit port. Every X- and Y -acceleration value is interpreted
as one 16-bit number. The first 8 bits transmitted to the FPGA
represent the LSB part of the acceleration value, and the re-
maining 8 bits represent the MSB part.

The result of (3) would be a number in the range of ±10 g
for the ADXL210 device. The accelerations are represented as
signed fixed point numbers with an integer and a fractional part.
In general, it is inconvenient to use this format of numbers
in calculations with a microcontroller or an FPGA [20]. In
the first implementation of the input subsystem, the micro-
controller converted the accelerometer outputs to the fixed-
point format described above [16]. In the latest implementation
of the system, in order to reduce the design complexity, all
primary inputs are level-shifted by a half range to result in
unsigned 16-bit numbers and simple unsigned integer arith-
metic. Given that the motion-detection model (described in the
following section) works equally well with unsigned numbers,
there is no compromise on the system accuracy or speed.

To illustrate why such a change, trivial as it may seem, can
have an effect on the system design, we present some results
from the actual system implementation: Many comparators are
needed in order to compare the values of incoming acceler-
ation data with predefined values/ranges of X–Y data. The
comparators are implemented with programmable resources
of the FPGA called configurable logic blocks (CLBs). For
detection of six motions (identical motions in both cases),
the initial system required 180 CLBs for the comparators,
whereas after the change is number representation only 120
CLBs were needed (out of the 400 CLBs of the XC4010). This
reduction illustrates how a low-cost embedded system can save
on resources with alternative approaches for some aspect of
the design.

IV. TRADEOFF SPACE EVALUATION

After sampling the input data, several strategies were con-
sidered for their processing, including direct processing of
accelerations or using indirect data calculated by integrating
accelerations (i.e., velocity and position). After considerable
experimentation, we came up to the same conclusion with
previous studies that suggest that the latter approaches lead
to excessive error [21]. The main reason for this error is that,
since integration is performed by multiplying the output of an
accelerometer by t (velocity) and t2 (position), any errors in the
output of the accelerometer are also multiplied by these factors.
Thus, we abandoned such approaches in favor of processing the
original data.

Two generations of the motion-detection model have been
developed, which are described below.

A. First Motion-Detection Model

The computational model of the first generation of the
system [16] is that of parallel FSMs, each of which consists
of states for detection of values/ranges of X–Y data, followed

Fig. 3. Initial vocabulary of motions, including four simple (forward, back,
left, and right) and two complex (circular) motions. One FSM is implemented
per detectable motion. N FSMs recognize N motions.

by states to wait for a predefined period of time (including
zero time). This way, each motion was represented in terms of
thresholds, that need to be exceeded for the state to be active,
followed by periods of “not examining the input,” which were
useful in avoiding local minima (from irregular motion or
noise). The model could detect simple motions, i.e., “forward,”
“back,” “right,” or “left” hand motions, as well as more
complex motions, such as circular ones. Circular motions were
represented by more thresholds of accelerations than simple
motions and they required more samples in order to be detected.
The six motions detected by the first-generation system are
shown in Fig. 3. In that system, detection of each motion was
independent of the detection of the remaining motions.

Even if the first generation of the system could detect fairly
complex motions (e.g., circular hand motions), preliminary
clinical evaluation showed that these motions were undesirable
to the user, regardless of system capability [17]. Circular, being
more complicated than simple motions, require more effort by
the user in order to be executed. Thus, a simpler vocabulary
of motions that can be used in succession can lead into more
options for the user, as described below.

B. Second Motion-Detection Model

The second model [17], which we eventually used, is based
on the concept that sequences of the four simple motions
(forward, back, left, and right) are used to produce a complex
vocabulary. Thus, a sequence of two simple motions with n
possibilities each produces n2 distinct motions versus n (more
complex) motions of the first model. In both cases, n is the
number of FSMs. The hardware cost is O(n) because the same
FSMs are reused for each segment of the motion. In the new
model, the parallel operation of independent FSMs as well as
the modularity of the design is retained from the first model.
The FSMs that are kept in the design are only those that led to
the detection of the four simple motions. The complex motions
are segmented into two simpler motions, and the four FSMs are
reused for each segment as is shown in the vocabulary of Fig. 4.

In order to avoid false positives by successions of the
same motion (e.g., “forward–forward”), these cases are not
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Fig. 4. Second vocabulary of motions, including four simple (forward, back,
left, and right)—denoted by “X”—and 12 complex (sequences of simple)
motions. N FSMs recognize N2 motions.

considered as complex motions, leading to n2 − n well-defined
complex motions. The maximum number of complex motions
that the system can detect is 42 − 4 = 12. In addition, it
recognizes the four simple motions leading to 16 well-defined
motions.

C. System Adaptation to Individual Needs

It can be said that the general form of each simple motion
is the same, regardless of the specific user. For example, a
forward movement consists of a set of accelerations, followed
by samples of stable velocity, which are then followed by a
set of decelerations (hand starts moving, moves instantaneously
without accelerating, and then stops). However, even if this
procedure is similar for all users, it is not exactly the same.
Clinical tests (of limited scope) have shown that the motions of
a kinetically challenged person are not as even as the respective
motions of a healthy one. The speed of execution may vary
even during the same motion. Thereby, a motion can be too fast
in the beginning of the execution and too slow at the end and
vice versa. The above observations led to the conclusion that
the system must have the capability to adapt to the different
executions of the same motion by different users.

The idea of adaptation primarily affects the FSMs that
are responsible for motion recognition. FSMs operation is
based on the excess of thresholds by acceleration samples
collected during motion execution. Thus, adaptation concerns
determination of thresholds that must change according to
each user. The procedure that has been implemented for
threshold calculation is an unsupervised-learning method and
is presented in detail in [18].

Briefly, by using a PC as the user interface, we collect data
for each simple motion from individuals. These data are the
patterns on which the adaptation procedure is based. After
calculating the appropriate thresholds for each simple motion,
we download them to a nonvolatile memory, i.e., ROM, in
order to be available for further use. The microcontroller loads

the thresholds from the ROM on power-up and sends them to
the FPGA, where they are stored in registers. The FSMs have
access to these registers and can read the respective thresholds.
This way, they can recognize the motions that are similar to the
initial patterns, which the user provided. This procedure leads
to a reconfigurable system with capability to adapt to individual
needs, but without recompilation of the design.

V. MOTION-DETECTION MODELS

The flowcharts for the two models are shown in Fig. 5. The
first implementation contains six FSMs, whereas the second
one contains four FSMs. The difference in the control logic
between the two models is represented with bold lines. As
shown in the figure, operation flow up to the first dotted line,
where the “MotionCounter” value is recorded, is identical for
both schemes. In the first model, “MotionCounter” is then
checked to determine whether it exceeds the “Recognition
value” threshold, whereas in the second model, an interme-
diate transition state takes place. “MotionCounter” is used to
measure the elapsed time after the trigger of an FSM, whereas
“Recognition value” is a predefined value that corresponds to
the maximum time interval that is allowed for the completion
of a motion. Once an FSM detects a motion within that time
frame, the value of “MotionCounter” is recorded. A register per
FSM is available in order to record the elapsed time that is
required for the recognition of the corresponding motion.

The difference between the two models after the update of
“MotionCounter” is that in the second one, the completion of an
FSM resets all other FSMs. This is necessary due to the partial
overlap of different motions which is illustrated in Fig. 6. A por-
tion of acceleration values that represents the “forward” motion
is similar to a portion of acceleration values that represents the
“back” motion. Thus, detection of “forward” includes partial
detection of “back” motion. In the first model, if, e.g., during
the execution of “forward” motion, “MotionCounter” has not
exceeded “Recognition value,” and both FSMs are activated,
a small hand deviation during motion detection could lead to
completion of “back” motion. The second model avoids this
undesirable result with a state that resets all other FSMs.

Another difference is that in the first model, the motion,
which was recognized first, terminated the processing. This
assumption was based on the fact that there is one FSM per
detectable motion. This is not the case in the second model
because two different motions that are detected sequentially
constitute a complex motion. Thus, the combination of comple-
tion of two FSMs leads to the detection of a complex motion.
This can, however, cause other problems. For example, the
system could potentially detect the complex “forward–back”
motion, instead of the simple “forward” motion. A solution to
this is to initialize the FSMs every time an FSM sequence is
successfully completed.

The next two states are identical for both models. If the
“MotionCounter” exceeds “Recognition value,” the FSMs are
led to an “inactive” state (which is not the initial state), other-
wise, the above process is repeated.

When the FSMs enter an inactive state, the system checks
whether a complex motion has been detected by comparing
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Fig. 5. (a) Initial model of parallel FSMs. (b) Optimized model of parallel FSMs.

the register values. If none of the complex motions has been
recognized, the process is identical for both models.

1) The controller checks if the motion is a simple one.
2) If this is true, it checks which of the four registers carries

the smallest value, and the algorithm outputs the type of
motion, which was recognized in less time.

3) If this is false, the output of the system will not corre-
spond to any of the vocabulary motions, i.e., nonrecog-
nizable motion.

If one of the complex motions has been recognized, the
process is different for each model, as described below.

1) The first-generation system [Fig. 6(a)] is as follows.
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Fig. 6. Partial overlaps between “forward” and “back” motions, indicated by black and gray circles. The vertical axis represents the value of the X and Y
acceleration samples, expressed in g, whereas the horizontal axis represents the sample number.

a) The controller checks which of the two registers
carries the smallest value, and the algorithm outputs
the type of the corresponding motion that was
successfully recognized first.

2) The second-generation system [Fig. 6(b)] is as
follows.

a) The controller checks which two motions have been
detected.

b) The controller checks if some motion was “rough” in
order to avoid false positives from tremble. This check
is performed in order to avoid local minima (from
irregular motions, tremble, etc.), and it is based on the
comparison of the value of the corresponding register
with a constant that represents the minimum value that
is allowed for a motion to be detected (correspond to
a time interval of ∼220 ms).

c) If it is true (i.e., the motion was “rough”), the motion
is ignored, and the next step of the algorithm is to
execute the process that is identical for the two models
and has been reported above.

d) If it is false (i.e., the motion is valid), the values of
registers are compared to find which simple motion
was triggered first. The register that carries the small-
est value indicates the motion that was successfully
completed first.

e) The algorithm outputs the type of motion, which is
synthesized by the two simple motions that have been
recognized.

The model also allows for priorities to be set as needed
for multiple detection (leading to predefined resolution of
conflicts). The priority order can change with respect to the
user’s demands. Furthermore, following successful detection of
a motion, the process will freeze with the insertion of a delay.
Thus, the user has in his/her service a little time to stabilize
his/her hand to a rest state.

VI. EXPERIMENTAL RESULTS AND MODEL VALIDATION

Many experiments have been performed in order to evaluate
the behavior and performance of the system. Over 400 experi-
ments were performed with healthy and kinetically challenged
subjects. Four healthy subjects tested both generations of the
system by performing the respective motions (simple and com-
plex ones). The accelerometer was mounted on the subjects’
right hand, and the system’s ability to detect the performed mo-
tion was assessed. Furthermore, the acceleration traces acquired

during these experiments were used to determine average user
behavior as well as thresholds and delays for the motion-
detection model. The implementation of FSMs in reconfig-
urable software allowed for substantial experimentation with
computational models, thresholds, and delays. All experiments
were recorded in a benchmark, which can be reused every time
a design change is made in the system. The graphs in Figs. 6
and 7 have been generated from the collected data. The vertical
axis represents the acceleration value along the X- and Y -axes,
expressed in g, whereas the horizontal axis represents the num-
ber of samples. The graphs in Fig. 7 show why the change from
the first generation of the system to the second generation was
needed. As illustrated, the sequence of acceleration values of
the four simple motions is similar to the acceleration values that
represent a circular motion (movement no. 5 of the vocabulary
in Fig. 3). This shows not only the complexity of the circular
motion in terms of user effort, but also the increased complexity
in terms of hardware control needed to detect the motion and
distinguish it from the simpler ones.

After designing and implementing the model, based
on experiments with healthy subjects, we tested it with a
kinetically challenged subject with diagnosed paraplegia. One
of the significant results of these experiments was that the four
simple motions were the preferred motions for this subject.
These results led to the second-generation computational
model, which uses only the simple motions and their sequential
combinations. The results of the experiments were also
valuable in more ways. The latest motion-detection model was
verified to be independent for each motion. Besides, it worked
very well for the motions that the kinetically challenged subject
could easily perform.

Table I presents the effectiveness of the two computational
models in detecting a motion. These results were determined
through experiments with healthy subjects. No motion detec-
tion or wrong motion detection, when a hand movement was
executed, was considered unsuccessful system performance.
We can observe in Table I that both models can recognize
simple motions with better than 95% success. The circular mo-
tions, being the most complex, are the less identifiable motions.
The complex motions of the second model are not as complex
as the circular ones and therefore have much higher recognition
rates. This material improvement corresponds to better system
performance. We should point out that slow motions do not
produce any response in this version of the system due to
the chosen sensitivity of the accelerometer. A slow motion is
perceived by the system as zero-acceleration activity. If more

Authorized licensed use limited to: TECHNICAL UNIVERSITY OF CRETE. Downloaded on April 27, 2009 at 21:18 from IEEE Xplore.  Restrictions apply.



PAPADIMITRIOU et al.: REAL-TIME 2-D MOTION DETECTION BASED ON RECONFIGURABLE COMPUTING 2241

Fig. 7. Sets of acceleration samples that represent simple motions can be synthesized to produce a circular motion. The movement “circle_right” comprises
(a) F. part of movement “forward,” (b) R. part of movement “right,” (c) L. part of movement “left,” and (d) B. part of movement “back.” The vertical axis
represents the value of the X and Y acceleration samples, expressed in g, whereas the horizontal axis represents the sample number.

TABLE I
RECOGNITION EFFECTIVENESS (PERCENTAGE OF

CORRECTLY IDENTIFIED MOTIONS)

TABLE II
COMPARISON BETWEEN THE FEATURES OF THE TWO HARDWARE

IMPLEMENTATION IN XC4010 FPGA (FIRST AND

SECOND MODELS WITHOUT ADAPTATION)

sensitive accelerometers are used, a system that recognizes
slower motions and even minor variations in the accelerations
can be implemented. Nevertheless, there are tradeoffs between
choosing the smallest detectable acceleration, the highest
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TABLE III
COMPARISON BETWEEN THE FEATURES OF THE TWO HARDWARE

IMPLEMENTATION IN SPARTANII XC2S100 FPGA (SECOND

MODEL WITH AND WITHOUT ADAPTATION)

Fig. 8. PCB of the system.

detectable motion frequency, an acceptable noise level, and the
sampling rate that need to be considered [19].

Table II compares hardware-system complexity for the two
motion-detection models mapped in the first FPGA that was
used. The FPGA CLB usage is the number of CLBs that the
design occupies when downloaded to the FPGA as a ratio of
the total available CLBs to the FPGA. The FPGA total usage
gives the same number expressed as a percentage. For both
models, the maximum operating frequency is substantially
beyond what may be needed in practice. However, the identical
FPGA usage and the increased number of detected motions
for the second model directly correspond to an overall better
system performance for the second model.

Table III compares hardware system complexity for the
second model, with and without adaptation of the system to the
user, as described in [18]. The device used was a SPARTANII
FPGA. The FPGA usage is much bigger when the adaptation
process is integrated into the design.

VII. PRESENT STATUS AND FUTURE WORK

In conclusion, we have presented a two-dimensional (2-D)
motion-detection model, which can be readily implemented in
reconfigurable hardware for a low-cost solution. The improved
detection model decreases processing complexity. Therefore,
the system has diminished demands in reconfigurable re-
sources, which contributes to the low cost of the whole design.
Furthermore, a simple vocabulary of motions can be used to
form more complex motions. The system can be trained to
individual users’ needs, and the vocabulary of the motions can
be easily extended.

A photograph of the printed-circuit board (PCB) of the sys-
tem is shown in Fig. 8. The small board with the accelerometer
is mounted on the user’s hand. However, if a person does not
prefer to use his/her hand, the accelerometer can be placed on
another limb of the body. This selection highly depends on the
accuracy with which the person controls the corresponding limb
to execute the desirable motion. The accelerometer is calibrated
when it is powered on. This way, the system can be adjusted
to different orientations and to different accelerometers. More-
over, the system can operate in different temperature conditions.

Clinical trials have to be expanded, and as this technology
matures and does prove to be valuable, we are considering
commercial development of this system. Certain aspects of this
system have been filed for a U.S. patent.
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