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Abstract—We analyze the performance of position-sensing de-
vices and of distance- or displacement-measuring instruments,
and we find that the ultimate uncertainty at the quantum limit
of detected signal is given by the same expression in all cases,
namely, a characteristic length Lc divided by

√
Nph, the square

root of the number of photons detected in the time interval of
the measurement. We derive the expression of the length Lc

for well-known position-sensing devices (the quadrant photodiode
and the position-sensing detector) and for several measuring in-
struments (pulsed and sine-wave-modulated rangefinders, trian-
gulation telemeter, laser interferometer, and the optical rule). We
also extend the analysis of the uncertainty results to the thermal
regime case of detection, i.e., when the detector dark current and
preamplifier noises are dominant with respect to quantum noise.

Index Terms—Instrumentation, interferometry, laser range
finder, measurement, metrological instrumentation, metrology,
optical instruments.

I. INTRODUCTION

A S IS well known, the uncertainty of position-sensing
devices, as well as that of dimensional measuring in-

struments, is a crucial parameter in a number of applications
ranging from industrial manufacturing and construction works
to avionics and space [1]–[4].

The ultimate uncertainty at the quantum limit of signal
detection has been analyzed by several authors [4]–[12], who
also treated the case of squeezed states [7] and extended the
results to the intervening atmospheric scintillation [8]. Thus, the
quantum-limited dependence on Lc/

√
Nph has already been

reported in a few special cases of interest [4], [7]–[9].
In this paper, we present a comprehensive analysis of the un-

certainty of both position-sensing and displacement-measuring
instruments. We also extend the results to the more realistic case
of a thermal noise and background or dark current noise added
to the quantum noise of detected photons.

In addition, we consider in detail several practical cases of
positioning or displacement measurements and derive for each
of them the applicable value of the characteristic length.
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This paper is organized as follows. In Section II, we derive
the uncertainty of position-sensing photodiodes, first at the
quantum limit, and then, we extend the result to the more realis-
tic case of intervening thermal noise. We bring the results into a
unified expression of the type Lc/

√
Nph by calculating in each

case the appropriate characteristic length Lc. In Section III,
we recall the results about the uncertainty of distance-
measuring instruments. Then, in Section IV, we draw
conclusions.

II. POSITION SENSING

The quadrant photodiode (or Q-PD) has been the forerunner
in position sensing [3], [4] along with rotating-reticle photode-
tectors [3] since the early times of the technique. It is still
widely used [8]–[12] because it is fast, accurate, and straight-
forward to use, although its linearity is not so good as the
one provided by the more modern position-sensing detectors
(PSDs) [4].

In the Q-PD, we use the sum of signals coming from left- and
right-side quadrants to generate the position-sensing deviations
relative to theX and Y coordinates of spot center. As illustrated
in Fig. 1, L = S1 + S3 and R = S2 + S4 are theX-coordinate
signals. When L is high, the spot is on the “left” (or X < 0),
and when R is high, it is on the “right” (orX > 0). Comparing
L and R, we can tailor an error signal suitable for the control
loop action of the servo system committed to the alignment
operation.

In particular, it is commonplace to subtract L and R to
generate a signal ξ = R− L, which passes through zero at
X = 0, is about linear around X ≈ 0 for a range on the order
of the optical spot size (Fig. 1) and saturates to ±1 when X is
far away from zero [4].

Analogously, two signals U = S1 + S2 and D = S3 + S4

define the Y -coordinate, and their difference ζ = U −D is the
signal for positioning along the y-axis.

Uncertainty of positioning is, of course, relative to both axes
X and Y . However, we may take advantage of the symmetry
of the problem and restrict ourselves to consider the monodi-
mensional case, the behavior along X , for example, avoiding
unnecessary complications in deriving the results.

In the next section, we first analyze the uncertainty of posi-
tioning of the Q-PD at the quantum limit. Following that, we
will extend the results to the PSD and to the case of electronic
noise.

0018-9456/$25.00 © 2007 IEEE
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Fig. 1. Front view (top) and cross section (middle) of a Q-PD receiving a light
spot for alignment; (bottom) graph of typical X-coordinate signals R and L
(in the case of a small gap compared to spot size d � w).

A. Analysis at the Quantum Noise Limit

The positioning uncertainty of the sensor can be defined
as the rms uncertainty of first kind [4], which is associated with
the measurand (position), as the result of fluctuations affecting
the measurement process.

The ultimate uncertainty left over when we are able to elim-
inate all other causes of fluctuations is that associated with the
quantum nature (in the sense of first quantization) of the optical
field, and we call the associated uncertainty as the quantum-
noise limit.

The positioning uncertainty of the coordinateX is defined as
σx = 〈(x− 〈x〉)2〉1/2, where 〈. . .〉 is the ensemble averaging
operator.

The position signal supplied by the quadrant detector is
ξ = R− L (or ζ = U −D for the y-coordinate). On their turn,
signals R and L are those supplied by the quadrant sections
of the photodiode in the form of a photo-generated current
Iph = ςP following the detection of optical power P by the
quadrant, ς = eη/hν being the spectral sensitivity [5].

Now, in terms of the power density p(x) falling on the
quadrant active area, the total power P being photo-detected is
the integral of p(x) over the collecting aperture of the quadrant.

Assuming the Gaussian as a reasonably general model for the
power density distribution of the light spot and letting the light
spot centered at coordinate x0, we can write

p(x) =P0 gauss(x,w)

=P0(2π)−1/2w−1 exp−
[
(x− x0)2/2w2

]
(1)

wherew is the standard deviation (or rms value) of the Gaussian
distribution, and P0 is the total power carried by the spot. With
this notation and with reference to Fig. 1 (top), we can write the
photodiode signals as

R =

+∞∫

+d/2

p(x− x0)dx = P0 [1− erf(d/2− x0, w)]

L =

−d/2∫
−∞

p(x− x0)dx = P0erf(−d/2− x0, w) (2)

where d is the thickness of the dead band separating the
quadrants (Fig. 1), and erf is the standard error function
defined as

erf(x,w) = (2π)
−1/2

w−1

x∫
−∞

exp−(κ2/2w2)dκ.

The coordinate signal then follows as ξ = R− L. From the
above equations, we get for ξ the following equation:

ξ = P0 [1− erf(d/2− x0, w)− erf(−d/2− x0, w)] (3)

and, for small x0 and d/2(� w), developing (3) at the first
order in x0

ξ =P0(2π)
−1/2

w−1

×
{
exp−

[
(−x0 + d/2)2/2w2

]}
(x0 − d/2)

− P0(2π)−1/2w−1

×
{
exp−

[
(−x0 − d/2)2/2w2

]}
(−x0 − d/2)

≈P0(2π)−1/2w−1

×
[
exp−x2

0/2w
2
]
exp−(d2/8w2)2x0. (4)

Equation (4) tells us that for small x0, signal ξ is indeed
proportional to the deviation x0 of the light spot position from
the zero of the Q-PD sensor coordinate (x = 0) and also shows
the reduction factor due to the finite gap d.

We can now write the rms uncertainty in positioning, due to
the fluctuations of the detected power, as

σ2
x = σ

2
ξ/|∂ξ/∂x0|2. (5)

Here, we have used the principle of linear regression [13]
by which, at the first order, the deviations ∆x0 and ∆ξ are
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connected by their partial derivative (the linear regression hy-
pothesis is always satisfied if quantities are small). Assuming
that we are operating in fair experimental conditions, that is
with x0 small and d� w, so that the exponential terms in (4)
can be taken equal to 1, the derivative is calculated as

∂ξ/∂x0 = P0(2π)−1/2w−12. (6)

About variance σ2
ξ , we shall note that ξ is the difference of

signals R and L, each of which is affected by a shot-noise
fluctuation uncorrelated to that of the other term. Therefore,
their individual variances shall be added:

σ2
ξ = σ

2
L + σ

2
R. (7)

Now, each term σ2
L, σ2

R is written as the shot-noise variance
associated with the power detected in the section 2hνPLB
or 2hνPRB, where B is the bandwidth of observation (or
of measurement) of the fluctuation. As it is well known, the
shot-noise variance comes as a consequence of the Poisson
distribution in the number of detected photons, which is a good
approximation for most of the sources found in applications
(see [4, Sec. 8.6]).

Considering that the sum of powers collected by quadrants
gives just the total beam power PL + PR = P0 and using this
result in (4)–(6), we get

σ2
x =2hνP0B/

[
P 2

0 (π/2)
−1w−2

]
=w2(π/2)2hνB/P0

=w2(π/2)/(S/N)2. (8)

The last expression, involving the signal-to-noise ratio associ-
ated with the measurement of a signal of amplitude P0, i.e.,

(S/N)2 = P0/2hνB (8a)

has been already reported [[8]].
In (8), we may note that P0/hν is the rate at which pho-

tons are collected by the sensor. If we multiply this quantity
by the observation time T , we get the number of photons
Nph = TP0/hν utilized in the measurement. Time T can be
expressed in terms of bandwidth as T = 1/2B in view of
Nyquist theorem. Rearranging (8) accordingly, we get, for the
rms uncertainty, the following equation:

σx = (π/2)1/2w/
√
Nph = mfLc/

√
Nph. (8b)

The result displays a dependence of length over square root
of number of photons. In this case, the characteristic length
Lc is equal to the rms width of the Gaussian distribution, and
the multiplication factor ismf = (π/2)1/2. Of course, we may
have got the multiplication factor equal to one, defining the
Gaussian rms width w(π/2)1/2 instead of w. However, we
prefer to avoid unnecessary burden in defining the character-
istic length and retain the multiplication factor as it turns out
from the calculation, which is a quantity never much different
from unity.

Let us also consider another refinement about S/N ratio and
Nph in the above expressions and in those to follow. Using

an ideal photodetector with unity quantum efficiency (η = 1),
these quantities are indifferently referred to collected photons
or to detected photoelectrons, whereas in a real photodetector
with η < 1, we get a signal Iph = ςP0 [ς = eη/hν being the
spectral sensitivity], and a shot noise σ2

I = 2eIphB, where the
signal-to-noise ratio in current (S/N)2I is found as

(S/N)2I =Iph/2eB

=(eη/hν)P0/2eB

=ηP0/2hνB

=η(S/N)2P

where definition (8a) has been used. Thus, the S/N ratio for
currents, which are the actual quantities available at the output
of the photodetector, is

√
η times that for optical powers.

Accordingly, in all expressions of uncertainty, we shall un-
derstand a factor η1/2 included in the multiplying factor mf .
For the same reason, Nph is the number of detected photons
(or photoelectrons) for η = 1, whereas we shall take ηNph as
the number of photoelectrons available for the measurement if
our detector has subunitary quantum efficiency.

Before proceeding, let us consider the uncertainty of PSD (or
PSD photodiode, [4]). In this device, light collected at the point
of coordinates x, y generates a photocurrent which is shared
between theX- and Y -electrode stripes. Reading these currents
with, e.g., an op-amp transimpedance stage allows a subsequent
subtraction of x- and y-pairs of signals. For example, currents
exiting the x-stripes Sx2 and Sx1 are subtracted to yield an
X-coordinate signal ξ = Sx2 − Sx1.

Due to the sharing mechanism, the obtained signal has a
linear dependence on the spot coordinate. If the spot has a finite
width, a distribution of coordinates will be obtained from each
detected photon, and therefore, the x and y distribution of pho-
tons will be replicated as an output distribution of coordinates.

As for the Q-PD, let us consider the problem as monodimen-
sional and assume that the power distribution p(x) is a Gaussian
of rms width (or standard deviation) w. Now, we can repeat
the same arguments as those developed to write (4)–(7). The
coordinate signal is generated as current difference; hence, it
can be written as

ξ = P0(2π)−1/2w−12x0 (9)

whereas (5) is still valid.
About amplitude variance, the difference of currents (in x or

y) has a variance given by the sum of the corresponding terms,
and the total is once again 2hνP0B. Thus, we can conclude that
(8a) and (8b) still hold for the quantum-noise limit of position
uncertainty measured by the PSD.

As a first-hand estimate of the quantum limit, let us consider
a w = 1-mm spot shedding 10 µW of power in the visible
(hν ≈ 10−19 J) on a Q-PD or a PSD. Let the measurement
time be 1 µs (or, bandwidth be 0.5 MHz). Then, (8) gives the
uncertainty as σx = 0.1 µm. Figures comparable to this have
been actually reported as experimental result [6].

A final comment is about the possibility of improving the
quantum-limited uncertainty through the use of squeezed-state
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radiation. The hint is that the squeezing factor F may improve
the S/N ratio and, hence, position uncertainty. However, as
noted in [7] for the Q-PD, since the mechanism involved in
both the Q-PD and the PSD is current (or photon) sharing, the
squeezing factor becomes spoiled by the partitioning statistics
[16], and no appreciable improvement is actually obtained.

B. Effect of Dark Current and Thermal Noises

Usually, in a real experiment or measurement apparatus, the
quantum limit is not easy to approach because of the many
sources of nonidealities that are unintentionally superposed,
often yielding noises or disturbances on the order of magnitude
larger than the quantum limit.

However, when we carefully control and eliminate the extra
incidental disturbances, we are left with two basic contributions
additional to the quantum noise, which determines the total
position variance. They are the following:

1) dark (or equivalent dark) current Id of the photodiode;
2) resistance (or equivalent resistance)R of the preamplifier.

The first contribution summarizes in a single term Id all the
dc currents added to the useful signal, due to the following:
1) actual dark current of the detector; 2) current due to back-
ground radiation reaching the detector; and 3) any other bias
current added to detector signal. The noise contribution associ-
ated to Id can be described by a shot-noise [5] current variance
given by

σ2
i = 2eIdB (10)

where B is the bandwidth of measurement.
The second contribution summarizes in a resistance value

R all the dissipative effects found in parallel to the signal
line and due, e.g., to the following: 1) the input resistance of
the preamplifier; 2) the differential resistance across detector
terminals; and 3) the excess noise of the preamplifier. Thus, as
associated with R, we shall consider the well-known Johnson
noise [5] term. Expressed as a current-noise generator at the
input node, the current variance of the noise is written as

σ2
R = 4kTB/R (10a)

where k is Boltzmann constant, and T is the absolute
temperature.

To include the variances of (10) and (10a) into the quantum
noise result, we shall go back to the signal at the level of
photo-detected currents, where they can be added as statistically
independent terms. The detected current following power P0 is
I0 = (ηe/hν)P0, and the shot noise associated with I0 is

σ2
Io
= 2eI0B. (11)

Adding the new terms (10) and (10a) yields for the total noise

σ2
tot = σ

2
Io
+ σ2

i + σ
2
R = 2eI0B + 2eIdB + 4kTB/R. (12)

Now, we can introduce an equivalent current Ieq to summarize
in a single parameter both dark current and preamplifier noise,
which is defined as

Ieq = Id + (2kT/e)/R. (13)

Noting that 2kT/e ≈ 50 mV at ambient temperature (T =
300 K), the second term is normally the larger (except for
unusually large values of resistance). Current Ieq is also called
the break-point current between quantum and thermal regimes
of photo detection (see [5, Ch. 3]).

With the position of (13), the current variance is written as

σ2
tot = 2eI0B(1 + Ieq/I0). (14)

Now, we can go back to (5) and rewrite the uncertainty of
position sorting with the photodetector as

σ2
x = σ

2
tot/|∂I0/∂x|2. (15)

Here, as I0 = (ηe/hν)P0 and I(x) ≈ (ηe/hν)P0(2π)−1/2

w−12x0, we get

σ2
x =2eI0B(1 + Ieq/I0)/I

2
0 (π/2)

−1w−2

=w2(π/2)2eB(1 + Ieq/I0)/I0. (16)

Again, we note that I0/e is the rate at which photoelectrons
are generated following photon detection. If we multiply this
quantity by the observation time T , we get the number of
electrons Nel = TI0/e utilized in the measurement (or the
number of actually detected photons Nph). Rearranging (16),
we get in the general case the following equation:

σx = (π/2)1/2 [w/
√
Nph]

√
(1 + Ieq/I0). (17)

This result tells us that dark current and amplifier noise
do not change the basic dependence of uncertainty from a
characteristic length and the square root of detected photons.
The contributed excess noise is summarized by a multiplying
factor equal to

√
(1 + Ieq/I0).

Going to specific devices, we may remark that the dark
currents in the Q-PD and the PSD may be on the same order
of magnitude if structure, geometry, and doping are the same.
However, the PSD has an additional resistance to be accounted
for: the series resistance Rs (Fig. 2) used for current sharing
between electrodes. Considering typical values of the dark
current (e.g., 1 nA) and Rs (e.g., 100 kΩ), the latter may be
the major contribution to Ieq.

III. DISTANCE- OR DISPLACEMENT-
MEASURING INSTRUMENTS

We can classify these instruments as follows: 1) incoher-
ent or amplitude modulated and 2) coherent or phase mea-
suring [4].

In the incoherent class, we find the well-known pulsed range-
finder (or laser telemeter) and the sine-wave modulated (or laser
topograph) as well as the optical rule [5] and the triangulation
telemeter [4].
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Fig. 2. Typical structure of a PSD (top left) detecting a light spot w. Light received at point x, y generates a photocurrent Iph that is shared between the X
and Y electrodes (top right and bottom left). Coordinate signals are obtained as the differences between the currents exiting from the electrodes Sx2 − Sx1 and
Sy2 − Sy1. To ensure good linearity and a negligible dependence from series resistance Rs, currents are sunk by the virtual ground of an op-amp stage.

In the first two instruments, a suitable waveform is impressed
as an amplitude modulation onto the optical power carrier, for
example, s(t), and the measurement is performed by looking
at the returning waveform s(t− T ), which is delayed from the
propagation time T = 2L/c to the remote target at the distance
L and back.

A. Pulsed Telemeter

Here, we summarize the derivation developed in [4]. In the
pulsed telemeter, the photo-detected current is parameterized by
writing it as i = ς(Er/τ)s(t/τ), where Er is the total energy
(Joule) contained in the pulse, ς being the spectral sensitivity
of the detector (in amperes per watt), and τ (in seconds) is
the time-scale factor of the waveform. We further assume that
τ−1s(t/τ) is normalized to unit area, and we let κ represent
the time-bandwidth product [or, equivalently, where κ/τ is the
3-dB frequency cutoff of the Fourier transform of s(t/τ)].

Then, we can write the amplitude variance associated with
the shot (or quantum) noise of the detected photoelectrons as

σ2
i (t) = 2eςErτ

−1s(t/τ)B. (18)

Now, the most obvious way to perform the timing measure-
ment is threshold crossing (see Fig. 3) of the pulse at a suitable
level S0. With this method, the time variance σ2

t is readily given
by (5), particularized to the case at hand, by changing x and ξ
into t and I , so that

σ2
t = σ

2
I/ |∂I/∂t|2 . (19)

By computing the slope ∂I/∂t and inserting in (19) with B =
κ/τ , we readily get the following equation:

σ2
t = (τ

2/Er)2eκS0/ςs
′2 (20)

where, explicitly, the time derivative s′ = ds/dt is calculated
at time t0 of crossing, where s(t0/τ) = S0. Now, we may note
that the spectral sensitivity can be expressed as ς = eη/hν, η
being the quantum efficiency of the detector, and that Er/hν

Fig. 3. Timing of the pulsed telemeter by threshold crossing with an amplitude
discriminator placed at a level S0. Time t0 is affected by fluctuations ±σt due
to the fluctuations in amplitude ±σS .

is the number of photoelectrons Nph made available in the
measurement process. By using these values in (20), we easily
get the following equation:

σt = mf (τ/
√
Nph) (21)

wheremf =
√
(2κS0/s

′2) is a number of the order of unity that
summarizes the details of threshold crossing (see [4] for further
details about optimum timing).

Another equivalent expression follows from (21), recalling
that

√
Nph is also the signal-to-noise ratio of an amplitude

measurement at the crossing time, i.e., S/N = Iph/2eB, where

σt = mf τ/(S/N). (21a)

Finally, we can write the uncertainty σL of distance in a time-
of-flight measurement with a pulse of duration τ on a round-trip
time T = 2L/c as

σL = (c/2)σt = mf (c/2)τ/
√
Nph = mf1Lc/

√
Nph (22)
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Fig. 4. Waveforms of the transmitted and received powers in a sine-wave-
modulated telemeter.

where Lc = cτ/2 is the characteristic length describing the
light pulse envelope, and the multiplicative factor is given by
mf1 = (2κS0)1/2/s′.

As an illustration, we may consider a pulsed range
finder with a Gaussian pulse of the type s(t/τ) =
(2π)−1/2τ−1 exp−(s2/2τ2). By looking for the minimum σ2

t

with respect to the threshold level S0, we can find [4] that the
optimum level for placement of the threshold is S0 = 0.147.
Furthermore, for η = 1, we obtain also (see [4] for details)
mf1 = 0.937.

Finally, the optimum filter handling of the Gaussian pulse
is found [4] to give a substantial improvement, with σt =
τ/

√
Nph as per (21), and mf1 = 0.506, which is a value about

half that of the fixed-threshold crossing.

B. Sine-Wave-Modulated Telemeter

In this telemeter, we transmit a signal of the form Pt =
Pt0(1 +m cos 2πfmt), where m is the modulation index, and
receive a delayed replica Pr = Pr0[1 +m cos 2πfm(t− T )]
(see Fig. 4), T = 2L/c being the go-and-return time of prop-
agation to the target.

The phase shift between the two waveforms 2πfmT =
2πfm2L/c is the term containing the desired distance infor-
mation.

Once again, by applying the above concepts and, in particu-
lar, (18) and (19), we can easily arrive at the following result
describing the timing variance of the measurement process
(see [4] for details):

σ2
t = (2πfm)−2(Erm/hν)−1

or

σt =mf (2πfm)−1(S/N)−1

=mf (2πfm)−1/
√
Nph (23)

wheremf = m−1/2 is the multiplicative factor that is not much
different from unity.

Equation (23) tells us that, other quantities being equal, the
sine-wave and the pulsed telemeters have the same uncertainty
if τ and (2πfm)−1 are the same.

Fig. 5. Readout of position in an optical rule: The mobile grating, sliding over
the fixed grating, generates a periodic variation of transmission sensed by the
source and photodetector combination.

We can also put (23) in the format of (22) by letting
Lc = c/2fm so that the characteristic length is the period of
amplitude modulation of the sine wave impressed on the beam
intensity, and the distance uncertainty can be written as

σL = mf2Lc(S/N)−1 = mf2Lc/
√
Nph (24)

wheremf2 = π−1m−1/2.

C. Extension to Thermal Regime

The quantum-noise limits expressed by (21)–(24) can be
now extended to the case of nonnegligible dark current and
termination noise, as outlined in Section II-B. In the same way,
by repeating the same reasoning, we can easily see that when
the thermal and dark current noises are summarized by the
equivalent current Ieq defined as in (13); we then have for the
time uncertainty of the pulsed and sine-wave telemeters

σt =mf (τ/
√
Nph)

√
(1 + Ieq/I0) (pulsed)

σt =mf (2πfm
√
Nph)−1√(1 + Ieq/I0) (sine-wave) (25)

and similarly for the distance uncertainty given by (22)
and (24).

D. Optical Rule

The optical rule [5] is a displacement-measuring apparatus
exploiting the Moire’ (also called undersampling) effect, which
is generated when we look through two finely photoengraved
grating with alternate transparent and opaque lines (Fig. 5).
When we move, transversally, the mobile grating with respect
to the fixed one, the transmitted signal obtained at the photode-
tector is a periodic signal of the form:

Iph = I0(1 + sin 2πs/p) (26)

where p is the period of the grating, and I0 = ςP0 is the pho-
tocurrent supplied by the LED/detector combination mounted
in front of the grating for readout [5].

In (26), for simplicity, we assume the periodic dependence
on displacement a sine function, but of course, this function
might as well be a triangular or a distorted sinusoid, depending
on the engraving profile of each line in the grating. The actual
function is not critical, as we usually count the semiperiods of
the signal. About the ultimate limit of uncertainty, it can be
accounted for by an appropriate multiplying factor mf in the
equations to follow.
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Fig. 6. In a triangulation telemeter, a one-axis PSD is used to sense the
parallax angle α of a base D on the distance under measurement L.

The quantum noise current associated to the detected signal
is, as usual, i2n = 2eI0B, whereas the minimum measurable
displacement ∆s is obtained from (26) as that corresponding
to a current variation ∆Iph = I02π∆s/p.

By squaring ∆s, averaging, and equating to σ2
s , we obtain

the positioning variance as

σ2
s = 2eI0B(p/2πI0)

2 = (p/2π)2(S/N)−2 (27)

where, the uncertainty is proportional to the period P of the
grating and inversely to the S/N ratio or the square root of
photoelectrons:

σs = (p/2π)(S/N)−1 = mfLc/
√
Nph (28)

with Lc = p and mf = 1/2π. The extension corresponding to
(25) is readily seen, also in this case, to be obtained as

σs =mfP (S/N)−1√(1 + Ieq/I0)
=mf (Lc/

√
Nph)

√
(1 + Ieq/I0). (29)

E. Triangulation Telemeter

This simple telemeter (Fig. 6) is based on the measurement
of the parallax angle that a base D present at the distance to
be measured. A simple analysis (see [4, Ch. 3]) shows that the
uncertainty of the distance is related to the uncertainty of the
angle by the relation

σL = (L2/D)σα. (30)

On its turn, the angle (and its uncertainty) is connected to the
position (and its uncertainty) of the optical spot focused by the
objective lens onto the PSD entrance surface as

σx = σαF (31)

under the tacit assumption of small parallax (tanα ≈ α). Using
(8) or (8b) for the uncertainty of the coordinate measured by the
PSD, and (30), readily yields the distance uncertainty as

σL =(L2/DF )σx

=(π/2)1/2(wL2/DF )
√
Nph

=mf (Lc/
√
Nph) (32)

where the last expression of the line tells us that, once again, the
dependence is from length divided by square root of photons
and that, in this case, Lc = wL2/DF , andmf = (π/2)1/2.

F. Coherent Measurements

Coherent displacement measurements are exemplified by
the well-known laser interferometers [4]. In these instruments,
irrespective of the optical configuration used for defining the
optical arms and the splitting and recombining arrangement, the
interference signal generated at the photodetector can be written
in the form

Iph = I0 [1 + V cos(Rks+Φ)] . (33)

Here, k = 2π/λ is the wavenumber, s is the imbalance of
interferometer arms or the displacement to be measured, I0
is the average current at the photodetector, V is fringe visi-
bility (or coherence factor), and R is the responsivity of the
optical interferometer (= 2 for a Fabry–Pérot and = 1 for the
Mach–Zehnder, etc.; see [4]).

Current Iph is affected by the shot noise with a quadratic
mean value i2n = 2eI0B, and the distance or displacement s
is best measured when the interferometer signal is biased at
half-fringe or for φ = π/2. By substituting in (30) and with the
approximation sinΨ ≈ Ψ, we readily get for the variance σ2

s of
the displacement the following equation:

σ2
s = (2eB/I0)(V Rk)

−2 = (λ/2πV R)2(S/N)−2

or

σs = mf (Lc/
√
Nph) (34)

where Lc = λ, and mf = (2πV R)−1. Once again, we find the
dependence of uncertainty as a length divided by the number
of photons used in the measurement. It is worth noting that
this time for Lc, we get λ, that is, the smallest length that is
physically allowed by the experiment and a quantity that is by
far much smaller than in all other cases considered above. Yet,
the consequent much increased sensitivity is paid by the feature
of interferometric measurement being incremental—different
from a laser telemeter measurement, which is absolute. As it
is well known, this is why we call the measurements performed
with the laser interferometer a displacement measurement op-
posed to the distance measurement of a telemeter.

Recently [14], [15], it has been reported that an interfero-
metric scheme can also be employed in an absolute distance
measurement, taking advantage of the synthetic wavelength
λsyn, which comes about when the optical wavelength is swept
from an initial value λ0 to a final value λ0 +∆λ. An analysis of
the problem [4] reveals that (34) still holds in this case, provided
that we use in it the synthetic wavelength λsyn = λ2

0/∆λ in
place of λ.

The coherent measurement has the special interesting feature
of being practically unaffected by thermal and dark current
noises. Indeed, as the coherent superposition of the reference
and measurement field at the photodetector is just the process
of coherent detection [4], [5], as opposed to direct detection of
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TABLE I
CHARACTERISTIC LENGTH OF POSITION AND DISPLACEMENT-OR

DISTANCE-MEASURING DEVICES

other schemes, we should theoretically multiply again the dis-
placement uncertainty by a factor of the form

√
(1 + Ieq/I0),

but now, I0 is no more the average signal; rather, it is the local
oscillator average current [4], [5]. By working at a sufficiently
high level, or I0 � Ieq, we can make the thermal and dark
current noise contributions negligible at all times.

IV. CONCLUSION

We have derived the uncertainty of positioning devices at
the quantum noise limit and found that the main dependence
is from the inverse square root of the number

√
Nph of

photoelectrons detected in the measurement time interval or
from the signal-to-noise ratio S/N = [I0/2eB]1/2 of the mean
photocurrent by which the measurement is performed. In ad-
dition, the multiplication factor mf to the main dependence
Lc/

√
Nph is on the order of unity, and it has been evaluated

for a number of position-sense and displacement- or distance-
measuring arrangements.

In Table I, we summarize the results of our analysis about
characteristic length Lc and multiplication factor mf at the
quantum limit.

Last, we have found that when the device deviates from the
quantum limit, the worsening of uncertainty is easily described
by the excess factor

√
(1 + Ieq/I0), in which Ieq is the equiva-

lent current, describing thermal noise of the photodetector load
resistance and the dark current noise.
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