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Abstract—The quality of measurements made in any system is
quantified by supplying the expanded uncertainty of the result, as
recommended in the Guide to Uncertainty in Measurement. In a
system that involves analog-to-digital converters (ADCs), one of
the sources of uncertainty is the converter’s gain and offset error.
The uncertainty of these two parameters should be known in order
to compute the uncertainty of the measurements made with the
system. In this paper, we study the uncertainty of terminal-based
defined gain and offset error that are estimated using a standard
histogram test in the presence of an additive noise.

Index Terms—Analog-to-digital converter (ADC), gain, his-
togram test, offset error, precision.

I. INTRODUCTION

STANDARD histogram test is extensively used in the

area of analog-to-digital converter (ADC) testing to ob-
tain their transfer function and, consequently, several para-
meters of interest, namely, the integral nonlinearity (INL),
differential NL (DNL), gain, and offset error, among others. All
these parameters attest to the capacity of the ADC to perform
its intended function. ADCs are rarely used alone but are often
included in more elaborate systems. The performance of the
ADCs will affect the performance of the system where it is
included, and the precision with which the ADC parameters are
known is necessary to compute the precision of the final results
of the system using it. This, in turn, is extremely important
in accessing the quality of the system and, ultimately, the
application it serves.

The authors have extensively worked to determine the pre-
cision of the estimates of the ADC characteristics that are
obtained with the standard histogram test and other ADC test
methods [1]-[5]. Other authors have also published valuable
contributions in this area [6]-[9], which is a very active field of
research. This paper focuses on the ADC gain and offset error,
which are characteristics that have not received as much study
as the other parameters, like INL and DNL, for instance. We
consider the influence of three factors, namely, the amplitude of
the stimulus signal, the amount of additive noise that is present
in the ADC itself and in the test setup, and the number of
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Fig. 1. Transfer function of a bipolar ADC. This type of transfer function is
known as with no true zero.

acquired samples when performing the test. Other factors, like
phase noise and frequency error, can also potentially affect the
gain and offset error estimates uncertainty, but the study of their
influence will be relegated to a separate publication.

In Section II, we will present the definitions of ADC gain and
offset error as they are usually understood. Next, in Section III,
we determine the variance of the ADC gain and offset error
estimates, and in Section IV, we present experimental results
that would attest to the validity of the derived expressions.
Finally, in Section VI, we present some concluding remarks.

II. TERMINAL-BASED GAIN AND OFFSET ERROR

The purpose of an ADC is to convert the values of a current
or voltage that is present at the input, which is a continuous
variable, into a digital word that should represent that input.
The relationship between the input variable and output digital
words (or codes) is known as the ADC transfer function and is
determined by the ADC manufacturer. In the rest of the text,
we will consider that the input variable is a voltage. There are
different types of transfer functions. One of them, which is
used with bipolar ADCs, is the one represented in Fig. 1 and is
known as “with no true zero.” Variable n; represents the ADC
number of bits, and FS represents the full-scale voltage.

Each output code corresponds to a range of input voltage
values (horizontal lines). Given an output code, one cannot
exactly determine which was the input voltage at the time of
the ADC. It is a convention to adopt the middle point of the
ranges that is mentioned as the value of the input voltage for a
given output code (black circles).
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The transition voltages T}, define the ADC transfer function,
i.e., the relation between the input voltage and output code
k. For an ideal ADC, the transition voltages of the transfer
function, which is defined as in Fig. 1, are

Tideal — _FS + k- Q. (1)

They are equally spaced by an amount () that is given, from
the definition of the transfer function, by

2-FS
2

Q= )

In an actual ADC, the real transition voltages will be differ-
ent from the ideal ones. To express those differences, several
parameters are used. Two of those are the ADC gain and offset
error. They can be defined in different ways. Two of the most
commonly used definition are the terminal-based definition and
the independently based definition [10]. In this paper, we will
focus our attention on the first one, leaving the other one for
another publication due to its complexity. According to the
terminal-based definition, the offset error, plus the product of
the gain by the first and last real transition voltages, results
in the first and last ideal transition voltages, respectively. Hence,
the designation “terminal-based” refers to the fact that the
definition is based on the extremes of the transfer function,
i.e., on the value of the first (lowest) and last (highest) tran-
sition voltages. The gain (G) and offset error (O) will sat-
isfy the definition if they are computed using the following
expressions [1]:

Lideal - Edeal

GC=—7T"F

and O = Fideal - G- F. (3)

To simplify the notation, we introduced the variables F' = T}
and L = Tony .

When testing an ADC with the standard histogram test,
we obtain an estimate of the transition voltages (not the real
transition voltages). From those estimates, we can compute the
estimated ADC gain and offset error

-~ Liea_Fiea oy = B
G="deal " Tldeal  id O = Flgea — G- F. (4
L-F

The hat over the symbols signifies that they are an estimate
and not the actual values of the ADC under test.

III. ESTIMATES PRECISION

Since the terminal-based gain and offset error are a function
of two random variAables,Anamely, the first and last estimated
transition voltages I’ and L, they will also be random variables.
We will now determine the standard deviation of the estimated
gain and offset error.
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The variance of the estimated gain and offset error can be
approximated by [11, p. 156]

~\ 2 ~\ 2
oF I?ZM;: oL 7o pe
~\ 2 ~\ 2
o2~ g o2 + 2 o2 5)
o oF Pepn F oL ) +_ i L
F L

which, in this case, by using (4), leads to

2 2
Li - E Li — Fl .
0%~ Sideal — - ideal o2+ Sideal — Zideal 0%
(p — pp) (p — bp)

2 2
L; — F; Ligeal — Fige:
2 ideal ideal 2 ideal ideal 2
oar | ppr—— | o5t | | oA
0 < (g —1p)? ) P (F (hp — 17)? ) :
(6)

Approximating the mean of the estimated values of FandL
by their ideal values leads to

2 2
oa~ o + 2
G Lideal - Edeal F Lideal - Edeal L
2 2
o2~ ( Ligeal > o2 4 ( Fideal > 2
o Lideal - Fideal F Lideal - Edeal L

@)

On a bipolar ADC, with a “no-true-zero” transfer function,
one has, from (1), Ligeal = —Fideal = FS — Q. Equation (7)
simplifies to

1
2 2 2
o5 1(FS —Q)? (Uﬁ—i— 0’2>
1
2 2 2

Equation (8) expresses the variance of the estimated gain and
offset error as a function of the variances of the first and last
estimated transition voltages. The precision of the estimated
transition voltages using the standard histogram method has
been a subject of a previous work in [3]. We will now briefly
review the results adapted to the situation considered here.

The standard histogram method involves the application of
a sinusoidal stimulus signal, with frequency f, amplitude A,
and offset C, to the ADC under test, and the acquisition of a
predefined number of samples M with a sampling frequency
fs- The output codes that are obtained are then grouped into
classes that form a histogram—more precisely, a cumulative
histogram—since the number of elements cj in each class k
is the number of samples with output codes that are equal to
or lower than k. From the cumulative histogram, the transition
voltages are estimated using [3], [6]

ﬂH:O—Ammcﬁﬁ- 9)



CORREA ALEGRIA AND CRUZ SERRA: HISTOGRAM TEST FOR ADC GAIN AND OFFSET ERROR ESTIMATION

!
!

(5o

3558
5
%!
5

S S
".‘:,:‘:‘:‘:,‘.‘:‘:‘:‘:‘ S
e e e e T n

S

3
“
‘\‘“"‘“ 58
Sl
RS
SIS
S
SRS
S
S
3
55
o5
B
o
5
5
%

S
‘
S5
%8S
o e
““‘,
$lasSes
5
o
85
8%s
55

!
o5
SSOSCS

fos%s
.
5
sfuuistiesiosl

%%

A
eestiiyuanatin
Suasussniistnnitineg
Ssattuntbiuatti sty
Sttt ity
o \\l\l\\‘\‘““““\‘““\\“‘i““\““ N
LT AT T TS
SRS
Nt Wi
WA

q ‘
=
A
“‘:‘:
S
= OIS
ResseResesiase
e etigtigul utet
—a=‘¢‘,¢‘
&5

"‘

-1 Ulk+1]

Fig. 2. Variance of the number of counts of cumulative histogram as a
function of the normalized additive noise (oy) and normalized transition
voltages (U).

The number of counts in the cumulative histogram is a
random variable. From (9), one can determine the variance of
the estimated transition voltages [11, p. 113]

Th+1 M A *

The variance of the number of counts of the cumulative
histogram depends on the real transition voltages (7'), additive-
noise standard deviation (o), and number of samples (M). In
[3], we presented its mathematical derivation, which lead to the
following result:

(10)

2 2
oL =i, o
e THo? T O,

K

nee = - pe()]dy

Teple 21
—Tr

2. 2

M

M-1
M 27
2 . .
O'ltck\q; T or Eopk (]M—'_SD) dep
j=

0
ﬂ 2
M
— | — d 11
3 [y (an
where
1 1 Uk+1 + cos(7)
=—+-ef| ——= 12
Pr(7) 2+2€r ( V2o (12)
and
Tk -C g
Uk—T, Unfz- (13)

This variance is graphically represented in Fig. 2 as a
function of the normalized transition voltage (U), normalized
additive-noise standard deviation (o, ), which is given by (13),
and the number of acquired samples (M ).

1529

Note that the number of arcs observed for o,, = 0 is the same
as the number of acquired samples. In addition, note that the
variance of the number of counts of the cumulative histogram
approaches M /4 when the additive-noise standard deviation
approaches infinity. The presented example is for M = 5, just
to illustrate the influence of the different variables. In practice,
the number of samples will be much greater, and the normalized
standard deviation is smaller (< 0.1).

There is no closed-form expression that can be derived to
calculate the variance of the number of counts of the cumulative
histogram. In [3], an approximate expression was proposed for
the maximum value of the variance of the number of counts
of the cumulative histogram for every transition voltage. Here,
we are not interested in the maximum value of the variance
for all transition voltages, but we are interested, instead, in the
variance of the number of counts of the cumulative histogram
for the first and last transition voltages. The approximate ex-
pression that we will use here is

1 M On
™ 1z

(14)
+1

which is a good approximation for the practical values of
on < 0.1

By using (10) and (14), we can derive an approximate
expression for the variance of the estimated transition voltages

Ar\? 1 M o
2 ~ [ == _ 772 - - . n
07A“k+1w( ) (1 Uk+1)max iy — g
+1

15)

From (8) and by considering that, for a bipolar ADC with a no-
true-zero transfer function, the first and last transition voltages
are symmetric and their estimate has the same variance, we can
write

oA o4
%$ and o~ = gy

G~ 2(Fs - Q) AN

By introducing (15) into (16), we have an approximate
expression for the variance of the estimated gain and offset
error, as desired:

o5=FS—-Q)ogs

(16)

g

Q

=I5
Sl

1—-UZ2, | ma L M In
/1 _ <= 22 9
0 4" m/m /1= U2

a7

IV. EXPERIMENTAL RESULTS

To demonstrate the validity of the expressions presented
here, we tested a 12-bit ADC using the standard histogram test.
Only the eight most significant bits were used so that the ADC
could be considered ideal. By using a Monte Carlo procedure
with 1000 repetitions (IV), we computed the standard deviation
of the estimated gain and offset error.
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Fig. 3. Estimated gain as a function of the normalized additive-noise stan-

dard deviation. We considered n, =8, A=1.2 V,FS=1V, M = 1000,
f =200 Hz, fs = 200 kHz, and N = 1000. The solid line represents the
approximation given by (17), and the vertical bars represent the experimental
results.
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Fig. 4. Estimated gain as a function of the number of samples. We considered
np=8A=11V,FS=1V, 0, =0.1, f = fs/M, fs = 200 kHz, and
N = 1000. The solid line represents the approximation given by (17), and the
vertical bars represent the experimental results.
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Fig. 5. Estimated gain as a function of the stimulus signal amplitude. We

considered n, = 8, M =1000, FS=1V, o, =0.1, f =200 Hz, fs =
200 kHz, and N = 1000. The solid line represents the approximation given
by (17), and the vertical bars represent the experimental results.

We varied the additive-noise standard deviation, number of
samples, and stimulus signal amplitude in order to observe their
influence on the standard deviation of the estimated gain and
offset error. The results for the estimated gain are shown in
Figs. 3-5. Since the variance of the estimated offset error is
just a scaled version of the variance of the estimated gain, as
seen in (8), we refrained from showing them here.
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Fig. 6. Estimated probability distribution function of the terminal gain that is
estimated using the histogram method. We considered np, =8, A =1.2 V,
FS=1V, o, =0.05, M = 1000, f =200 Hz, and fs = 200 kHz. The
number of repetitions (NN') was 1000.

The vertical bars in the previous figures translate the 99.9%
confidence interval to account for the Monte Carlo uncertainty
due to the 1000 test repetitions (V) that are being carried out.

It can be seen, by observing the previous figures, that the
experimental results, which are represented by vertical bars, are
below the value given by the approximate expression (17). This
validates the derivations presented here and justifies the use of
those expressions to determine an upper bound for the estimated
ADC gain and offset error.

V. EXPANDED UNCERTAINTY

An accepted way to express the quality of measurements is
through a confidence interval that is obtained by multiplying
the standard uncertainty with the coverage factor [12]. Usually,
the chosen value is two, which corresponds to a confidence
level of approximately 95% if the probability distribution of the
measurement result is normal. In order to verify that this is the
case for the estimation of the ADC gain using the histogram
method, we repeated the test 1000 times and constructed the
probability distribution function that is shown in Fig. 6. The
experimental values are very close to the theoretical ones for a
normal distribution.

The tests were carried out with an additive-noise value of
5% of the stimulus signal amplitude and 1000 samples. Further
studies with different test parameters will be carried out and
will be a subject of another publication that is dedicated to
verifying if the probability distribution can always be consid-
ered to be normal.

VI. CONCLUSION

In this paper, we analyzed the precision of the estimates of
ADC gain and offset error that are obtained with the standard
histogram method. The main results were shown in (17), which
can be used to determine the expanded uncertainty and the
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corresponding uncertainty interval for the estimated gain and
offset error. This has the same importance as in any measure-
ment system, where the quality of the measurements should be
expressed in terms of confidence intervals for the results.

The case considered here was for an ADC with a bipolar
no-true-zero transfer function. The results for a bipolar ADC
with a “true zero” transfer function would approximately be the
same since the variance of the first estimated transition would
be lower, but the variance of the last would be higher, leading to
approximately the same sum in (8). The presented derivations
can also be easily done for the unipolar ADCs.

Future work will show the independently based definition of
ADC gain and offset error and the effect of other contributions
to the uncertainty of the test results, namely, phase noise and
frequency error.
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