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Abstract—In this paper, a new two-stage Newton-Type Algo-
rithm for the measurement of power components according to the
IEEE Standard 1459-2000 is presented. To estimate their spectra
and fundamental frequency, in the first stage, the current and
voltage signals are processed, whereas in the second stage, the
power components are calculated based on the results obtained
in the first stage. The algorithm considers the frequency as an un-
known parameter and simultaneously estimates it with the input
signal spectrum. Through this, the algorithm becomes insensitive
to frequency changes and the problem becomes non-linear. The
algorithm performance is tested using computer-simulated and
laboratory tests.

Index Terms— IEEE Standard 1459-2000, nonlinear estimation,
power measurement, power systems, transient processes.

NOTATION

The following notation will be used in this paper:
h(x̂i, t) − (N · 1) Vector of nonlinear functions determined

by the signal model.
x̂i Estimated vector of unknowns in the ith

iteration.
ξ(t) Zero-mean random noise.
ω (Fundamental) Angular velocity.
σ Noise standard deviation.
ωm Discretized (fundamental) angular

velocity.
ϕk Phase angle of the kth harmonic.
θk Phase angle between Vk and Ik.
ϕkm Discretized phase angle of the kth

harmonic.
ξm Discretized random noise.
fs Sampling frequency.
h(x, t) Nonlinear function modeling the input

signal.
Ie,RMS RMS effective current.
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Ie1,RMS Fundamental rms effective current.
j Arbitrary row of the Jacobian.
J Jacobian matrix (matrix of partial deriva-

tives of the signal model with respect to
unknown parameters).

J# Left pseudoinverse of the Jacobian matrix.
M Highest-order harmonic presented in the

signal.
N Nonactive power.
N Number of samples belonging to a data

window.
n Number of unknowns and the order of the

model.
P Active power.
P1 Fundamental (50 or 60 Hz) active power.
PH Harmonics active power.
Q1 Fundamental reactive power.
QB Budeanu’s reactive power.
S Apparent power.
S1 Fundamental apparent power.
Se Effective three-phase apparent power.
SeN Nonfundamental effective apparent power.
SN Nonfundamental apparent power.
SNR Signal-to-noise ratio.
t Time.
tcnv Convergence period.
Tdw Length of data window.
tm Discretized time.
Ts Sampling period.
v (N · 1) measurement vector.
v(t) Instantaneous voltage at time t.
V0 Magnitude of the dc component.
V0m Discretized magnitude of the dc

component.
Ve,RMS RMS effective voltage.
Ve1,RMS Fundamental rms effective voltage.
Vk Magnitude of the kth harmonic.
Vkm Discretized magnitude of the kth

harmonic.
vm Discretized value of the signal
VRMS and IRMS RMS values of voltages and currents.
x Vector of unknown parameters to be

estimated.
xm Discretized vector of unknown parameters

to be estimated.

0018-9456/$25.00 © 2007 IEEE



2718 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 6, DECEMBER 2007

I. INTRODUCTION

THE INCREASED use of power electronics and electronic-
and microprocessor-based devices, and the existence of

nonlinear loads in today’s power system, contribute to the
unwanted distortion of voltage and current waveforms due
to harmonics [1]. This creates the need for a more accurate
method of measuring the power components in the presence
of signal distortions. In [2], it is recommended to replace
the existing solid-state energy meters with digital meters. The
functionality of digital meters is determined by the quality of
the input signals, the quality of the digital components, and the
selection of the numerical algorithm for input signal processing.
The fast Fourier technique (FFT) [3] is commonly applied
for harmonic component extraction. In [4], its application is
presented. However, the FFT optimal functionality is obtained
if the frequency of the processed input signals is constant (e.g.,
50 or 60 Hz). Kalman-filtering-based methods [5], [6] can also
be used for harmonic component extraction. The problem of
frequency deviations is tackled by implementing the extended
Kalman filter. The statistical properties of the processed signals
are required for the optimal estimation of unknown signal para-
meters (e.g., frequency, spectrum, etc.). They are often difficult
to determine, so estimators not including signal statistics would
be an attractive alternative. In this paper, the Newton-Type
Algorithm (NTA) is implemented to estimate the unknown sig-
nal parameters. Starting with the assumption that the frequency
of the input signal is not constant but variable in time, the list of
unknown parameters is extended with the signal frequency. By
doing this, the measurement problem becomes nonlinear, and
strategies of nonlinear parameter estimation should be applied.

In the first stage of the algorithm, the NTA is implemented
for harmonic components and signal frequency estimation. In
the second stage, the power components are being calculated.
For this purpose, the suitable power definitions are assumed in
advance.

In the past, a number of papers dedicated to the definition
of electrical power components have been published [7]–[10].
In this paper, the power component definitions given in IEEE
Standard 1459-2000 [11]–[13] are an integral part of the nu-
merical algorithm for power component measurement.

First, the NTA is presented. Next, the power definitions from
IEEE Standard 1459-2000 and the block diagram of the com-
plete two-stage numerical algorithm are outlined. This paper
ends with the testing of the algorithm, i.e., computer-simulated
signals (pure test signals with a known structure) and signals
obtained in the power system laboratory are processed, and the
results are evaluated.

II. NTA ALGORITHM DEVELOPMENT

Let us assume the following observation model of the input
voltage (or current) signal digitized at the measurement device
location:

v(t) = h(x, t) + ξ(t) (1)

where v(t) is an instantaneous voltage at time t, ξ(t) is a zero-
mean random noise, x is a suitable parameter vector, and h(·)

is a nonlinear function expressed as

h(x, t) = V0 +
M∑

k=1

Vk sin(kωt + ϕk). (2)

For the generic model (2), a suitable vector of unknown param-
eters is given by

x = [V0, ω, V1, . . . , VM , ϕ1, . . . , ϕM ]T (3)

where V0 is the magnitude of the dc component; M is the
highest order of the harmonics presented in the signal; ω is
the fundamental angular velocity equal to 2πf , where f is the
frequency; Vk is the magnitude of the kth harmonic; and ϕk

is the phase angle of the kth harmonic (k = 1, . . . ,M). The
equivalent signal model can also be used to describe the current
signal.

The adopted signal model is a nonlinear function of the
unknown frequency, so the application of a nonlinear estimation
technique is required. In comparison to the linear estimation,
this is a more complex problem. The benefit of introducing
the signal frequency in the list of unknown parameters is the
expected algorithm insensitivity to frequency changes (both
small and large). Large interconnected electric power systems
are normally operated in such a state that its frequency changes
lie in a narrow band (±0.05 Hz) and the rate of change is almost
negligible. Contrary, during and after a fault in the system, i.e.,
during the large power imbalances in the system, the change of
the frequency and its rate of change are larger, and this strongly
influences the accuracy of the existing algorithms for power
measurement and for measurement in general.

If the input signal is uniformly sampled with the sampling
frequency fs and the sampling period Ts = 1/fs, then the
value of t at a discrete time index is given by tm = mTs, and
the following discrete representation of the signal model can
be used:

vm =h(xm, tm) + ξm, m = 1, 2, 3, . . . (4)

h(xm, tm) =V0m +
M∑

k=1

Vkm sin(kωmtm + ϕkm) (5)

and all the unknown parameters from (3) now have the
subscript m.

The number of unknowns that determines the order of the
model is n = 2M + 2. The order can be reduced by taking
simplified models, i.e., by reducing the value of M . In the
most simple case, the model that contains only the fundamental
harmonic has the order n = 3 and x = [ω, V1, ϕ1]T . This model
can be applied to process pure sinusoidal input signals. The
model selection depends on the application, i.e., on the features
of the processed input signal and the data acquisition digital
system.

The input signals are sampled during a finite period of time
called a data window. N samples belonging to the data window
result in a set of N (N ≥ n = 2M + 2) nonlinear equations
given by (4) and (5) in n unknowns. Now the problem is to
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solve the overdetermined system of nonlinear equations, i.e., to
estimate the unknown model parameters.

In [14], the NTA for the simultaneous estimation of voltage
phasors and power system frequency is described. It is derived
under the assumption that the input voltage is a pure sine wave.
In this paper, in which a problem of power measurement is
addressed, the distortion of input signals should be taken into
account in the way as described in (2). The NTA algorithm
belongs to the family of nonrecursive nonlinear estimators. The
key relation of the NTA algorithm is

x̂i+1 = x̂i +
(
JT

i Ji

)−1
JT

i (v − h(x̂i, t)) (6)

where i is an iteration index, x̂ is the estimated vector,
J#

i = (JT
i Ji)−1JT

i is referred to as the left pseudoinverse of
the Jacobian Ji, v is an (N · 1) measurement vector, h(x̂i, t)
is an (N · 1) vector of nonlinear functions determined by the
assumed mathematical description of the input signal, and N
is the number of samples from the data window. The Jacobian
matrix J is an (N · n) matrix, and its elements are the partial
derivatives of the signal (2). Let us denote with j an arbitrary
row of the Jacobian

j = [j1, j2, j3, . . . , j2+2M ] (7)

j1 =
∂h(x)
∂V0

= 1 (8)

j2 =
∂h(x)
∂ω

=
M∑

k=1

Vkkt cos(kωt + ϕk) (9)

j2+k =
∂h(x)
∂Vk

= sin(kωt + ϕk) (10)

j2+M+k =
∂h(x)
∂ϕk

= Vk cos(kωt + ϕk) (11)

where k = 1, . . . ,M .
The elements of the Jacobian are calculated from the esti-

mates obtained in the step before, where the data belonging to
the preceding data window were processed.

This approach requires the right choice of the sampling
frequency, the length of the data window Tdw, and the initial
guess for the vector of the unknown parameters x0. The initial
vector x0 can simply be calculated by using FFT. The number
of iterations i from one data window can be reduced to one
single iteration by setting i = 1. Through this, the estimate from
the preceding iteration is used as input for the next iteration.
This simplification significantly reduces the central processing
unit requirements and at the same time does not influence the
algorithm features. In [15], it is proven that the NTA algorithm
has a second-order convergence. This feature allows us to
set i = 1.

The presented NTA algorithm is adaptive in nature. That
enables the provision of high measurement accuracy over a
wide range of magnitude and frequency changes. With the
initial guess x0 correctly determined, the true estimates can be
obtained in the frequency range from −fs/2 to +fs/2. Given
a step change of one (or all) model parameter(s), after a short
convergence period tcnv, the true estimates are obtained. The

convergence period is approximately equal to the size of the
data window, i.e., tcnv ≈ Tdw. Since the approach is based
on the suitable linearization and on the ordinary Least Error
Squares Estimation, it does not require a priori knowledge of
the noise statistics as is required for optimal estimators [5],
[6]. This is an important property, because it is often difficult
to obtain reliable information about the noise statistics of the
processed signal.

The described method requires relatively powerful micro-
processors because the hardware organization is distributed
over several processors. One processor is responsible for the
online matrix inversion [see (6)], and the other processor can
calculate the variables for the second algorithm stage. The
accuracy of the method is of course restricted by the quality
of A/D conversion.

III. BASIC POWER COMPONENT DEFINITIONS AND

TWO-STAGE NUMERICAL ALGORITHM DESCRIPTION

The power component definitions given in [11] are used in
the algorithm.

For single-phase systems, the following representation can
be used:

v =
√

2V1 sin(ωt− α1) +
√

2
∑
k �=1

Vk sin(kωt− αk) (12)

i =
√

2I1 sin(ωt− β1) +
√

2
∑
k �=1

Ik sin(kωt− βk) (13)

where k is the harmonics order. Through this, the rms values of
voltages and currents are

VRMS =
√

V 2
1 +

∑
k �=1

V 2
k =

√
V 2

1 + V 2
H (14)

IRMS =
√

I2
1 +

∑
k �=1

I2
k =

√
I2
1 + I2

H . (15)

The active power is defined as

P = P1 + PH (16)

where P1 is the fundamental (50 Hz or 60 Hz) active power

P1 = V1I1 cos θ1̀ (17)

and PH is the harmonics active power

PH =
∑
k �=1

VkIk cos θk̀. (18)

The fundamental reactive power is defined as

Q1 = V1I1 sin θ1̀. (19)

Budeanu’s reactive power [16] is expressed as

QB = Q1 + QH = Q1 +
∑
k �=1

VkIk sin θk̀ (20)
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Fig. 1. Two-stage NTA algorithm for a single-phase system.

where θk is the phase angle between Vk and Ik. Because of its
inability to quantify the harmonic nonactive power flow [11],
Budeanu’s reactive power is not recommended to be used in
engineering practice. The apparent power is defined as

S = VRMSIRMS. (21)

The fundamental apparent power is defined as

S1 = V1I1. (22)

From the energy flow point of view, the fundamental apparent,
active, and reactive power components are of the highest inter-
est. The nonfundamental power determined by the distortion of
voltages and currents is defined as

SN =
√

S2 − S2
1 . (23)

The nonactive power N can now be defined as

N =
√

S2 − P 2. (24)

In three-phase systems, in the general case (unbalanced and
nonsinusoidal conditions), the voltages and currents in each
phase (a, b, c) could be represented by (12) and (13). By
introducing the rms effective voltage and current in a three-wire
system given as [11]

Ve,RMS =
1
3

√
V 2

ab,RMS + V 2
bc,RMS + V 2

ca,RMS (25)

Ie,RMS =
1√
3

√
I2
a,RMS + I2

b,RMS + I2
c,RMS (26)

the effective three-phase apparent power is defined as

Se = 3 · Ve,RMSIe,RMS. (27)

The fundamental rms effective voltage and current are defined
in a similar manner as

Ve1,RMS =
1
3

√
V 2

ab1,RMS + V 2
bc1,RMS + V 2

ca1,RMS (28)

Ie1,RMS =
1√
3

√
I2
a1,RMS + I2

b1,RMS + I2
c1,RMS. (29)

The fundamental apparent power becomes

Se1 = 3 · Ve1,RMSIe1,RMS. (30)

Having defined Se and Se1, the nonfundamental apparent
power can be written as

SeN =
√

S2
e − S2

1 . (31)

The total three-phase active power is the sum of the power
per phase, i.e.,

P = Pa + Pb + Pc. (32)

The power components given above are estimated by the
two-stage NTA. In the first algorithm stage, the spectra and
frequency of the processed voltages and currents are estimated,
as described in the previous section. In Fig. 1, the voltage
and current samples are labeled with v and i, respectively. It
is assumed that data sampling is synchronized, and therefore,
asynchronous A/D conversion has not been taken into account.

As output of the first algorithm stage, the voltage and current
unknown parameter vectors, including frequency, harmonics
magnitudes, and their phase angles, provide the input for the
second algorithm stage. In Fig. 1, these vectors are denoted
as xV and xI . Once the voltage and current parameters are
known, it is relatively simple to calculate the power components
in the second algorithm stage. In Fig. 1, the result of the second
algorithm stage is denoted as {PQ}. In case of single-phase
systems, the two-stage algorithm is shown in Fig. 1.

For three-phase systems, there are three blocks of the first
algorithm stage, one for each phase.

IV. ALGORITHM TESTING

The two-stage NTA is tested with the help of computer-
simulated tests (test signals with a known structure) and
by using signals recorded under laboratory conditions. The
computer-simulated tests are carried out for the sampling fre-
quency fs = 1600 Hz and the data window size Tdw = 20 ms.
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Fig. 2. Estimated power components (static test).

A. Static Tests

The following input signals are processed:

v(t) = cos(ωt + 30◦) + 0.3 cos(3ωt + 90◦)

+ 0.2 cos(5ωt + 150◦) (33)

i(t) = cos(ωt) + 0.3 cos(3ωt) + 0.2 cos(5ωt). (34)

In Fig. 2, the estimated power components are shown. The
following accurate results are obtained: P = 0.41569 p.u.,
QB = 0.305 p.u., S = 0.565 p.u., and N = 0.38266 p.u.. The
highest relative error for static testing was smaller than 10−5%,
and this was because of the finite precision of the computer
number representation.

Using the same input signals [(33) and (34)], but dis-
torted with an additive zero-mean Gaussian random noise with
SNR = 70 dB, the unknown power components are estimated
and shown in Fig. 3. (The SNR is defined as

SNR = 20 log
S√
2σ

(35)

where S/
√

2 = SRMS is the root mean square value of the
processed signal, and σ is the standard deviation of the noise.)
In this test, the estimated values slightly differ from the exact
values presented in Fig. 2.

The algorithm sensitivity to random noise is determined by
the selection of the data window size (Tdw). For an increased
data window size, the sensitivity to noise decreases and vice
versa. On the other hand, by increasing the data window size,
the algorithm convergence is prolonged so a compromise in
data window size must be found. The constraints are the quality
of the processed signals and the dynamic properties of the
monitored process. In Fig. 4, the maximal active power relative
errors versus the SNR are depicted. It is obvious that the wider
is the data window, the lower is the maximal error.

Fig. 3. Estimated power components in the presence of random noise.

Fig. 4. Maximal error versus SNR and data window width.

B. Dynamic Tests

The dynamic properties and the sensitivity to frequency
deviations are verified by processing the following distorted
voltage and current signals:

v(t) = cos(ωt + 45) + 0.5 cos(3ωt + 120)

+ 0.3 cos(5ωt + 150) + 0.2 cos(7ωt + 280) (36)

i(t) = cos(ωt) + 0.4 cos(3ωt + 60)

+ 0.2 cos(5ωt + 30) + 0.1 cos(7ωt + 130). (37)

To verify the dynamic properties of the proposed algorithm,
in the period from t = 0 to 0.158 s, both test signals were
pure cosine signals and consisted of the first terms from (36)
and (37). At t = 0.158 s, both input signals are distorted with
higher harmonics as given by (36) and (37). Simultaneously,
the frequency of the fundamental harmonic is instantaneously
changed from 50 to 45 Hz. In Figs. 5 and 6, the estimated
power components and frequency are respectively depicted.
In the period before the distortion is applied, S = 0.5 p.u.,
and P = Q = N = 0.5/

√
2 = 0.35355 p.u. (see Fig. 5).
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Fig. 5. Estimated power components (dynamic test) by the NTA algorithm.

Fig. 6. Frequency estimates (dynamic test).

After a convergence period of tcnv = 0.02 s, true estimates
of the new power components are obtained (P = 0.3799 p.u.,
QB = 0.4711 p.u., S = 0.6461 p.u., and N = 0.5226 p.u.).
The same is valid for the estimated frequency (see Fig. 6). The
length of the data window determines the algorithm conver-
gence properties. For the shorter data window sizes, one obtains
the faster convergence and vice versa. The highest relative error
obtained in power component measurement during dynamic
testing was less than 10−5% (not including the convergence
period).

In Fig. 7, the results of processing the dynamic signals
obtained by using the FFT algorithm are presented. Before
the distortion of the input signals, both algorithms give iden-
tical results. However, for t > 0.158 s, as a consequence of
the frequency changes, the FFT algorithm gives erroneous
results.

C. Laboratory Testing

In the next example, the signals recorded under laboratory
conditions are used for the evaluation of the NTA algorithm.

Fig. 7. Estimated power components obtained by the FFT algorithm.

Fig. 8. Laboratory setup (synchronization of two networks).

Fig. 9. Phase a voltage before and after synchronization.

For this case, the synchronization of two networks is used as an
attractive example.

The synchronization of two networks is a normal and stan-
dard procedure for system operators in a multimachine power
system. Often, a single generator unit is synchronized to the
rest of the system. To avoid overcurrents, tripping of protective
devices, instability, or any other damage, the synchronization
has to be carefully done. For a successful synchronization, the
corresponding phasors of the two systems are approximately
the same (equal amplitudes, phase angles, and frequencies).
Nowadays, synchronization is automatically done by digital
devices. For the next test, a successful synchronization is taken
in the laboratory at Saarland University (Germany). For this, a
modern data acquisition digital system [17] was used.
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Fig. 10. Phase a current before and after synchronization.

Fig. 11. Current and its estimated amplitude.

In Fig. 8, a single-line diagram of a synchronous generator
(SG) connected over a block transformer (T) to the load is
shown. By closing the circuit breaker (CB) at t = 0.495 s, the
single generator system is synchronized with the infinite bus
Vinf . At t = 15 s, the two networks are separated. In the test
example, the generator voltages and currents were sampled with
5 kHz in a data window of 120 ms.

In Figs. 9 and 10, the voltage and current signals just before
and after the synchronization are shown, and both signals are
distorted. The total harmonic distortion of the current signals is
about 8%. The harmonic distortion for the voltage was 1%–2%
before synchronization, 8%–10% in the period of synchronized
operation of the two systems, and 1%–2% after the disconnec-
tion from the infinite bus.

However, the synchronization was successful, but the context
was far from ideal. The corresponding phasors and the frequen-
cies of the two subsystems were not the same at the time of
synchronization. As a consequence, a transient process takes
place. During this transient phase, the currents are dramatically
increased, the voltages are distorted, and the frequency oscil-

Fig. 12. Voltage and its estimated amplitude.

Fig. 13. Estimated generator power components.

lates. In this period of time, generator torsion oscillations occur
because of the fact that the synchronization was not ideal.

In Figs. 11 and 12, the estimated amplitudes of the voltage and
current signals as well as those instantaneous values are shown.

Based on the parameters estimated in the first algorithm
stage, the unknown power components (active (P ), Budeanu’s
reactive (QB), effective apparent (Seff), and nonfundamental
apparent (SN ) power) and the frequency are estimated in the
second algorithm stage (see Figs. 13 and 14).

V. CONCLUSION

In this paper, a new two-stage NTA algorithm for the digital
metering of power components according to IEEE Standard
1459-2000 is presented and tested in detail. It is based on
the application of the NTA, which is a nonlinear nonrecursive
estimator suitable for the estimation of the power spectrum.
It has been shown that the algorithm is not sensitive to fre-
quency changes of the distorted input signal. The algorithm
has been tested using static and dynamic computer-simulated
tests, as well as under laboratory conditions (synchronization
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Fig. 14. Estimated generator frequency.

of two active networks). The obtained results confirm the high
accuracy of the algorithm. Through the comparison with the
FFT algorithm, it has been proved that it is superior during off-
nominal frequency conditions. The fast algorithm convergence
offers the opportunity to apply the algorithm in processes where
fast and very fast transients can occur. The technique is not
limited to measurement applications in power systems only.
It might also be applied in designing algorithms for other
applications.
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