
446 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 3, MARCH 2008

ARMAsel for Detection and Correction of
Outliers in Univariate Stochastic Data

Piet M. T. Broersen

Abstract—For stationary random data, an automatic estimation
algorithm can now select a time series model with a spectral
accuracy close to the Cramér–Rao lower bound. The parameters
of that selected time series model accurately represent the spectral
density and the autocovariance function of the data. That is all the
possible information for Gaussian data, as well as the most impor-
tant information for arbitrarily distributed data. A single model
type and order is selected from many candidate time series models
by looking for the smallest prediction error. The single selected
model precisely includes only the statistically significant details
that are present in the data. The residuals of the automatically
selected time series model reveal the location of outliers or other
irregularities that may not be visible in the measured signal. The
program requires no user interaction and can be incorporated into
automatic measurement instruments and protocols.

Index Terms—Autocorrelation, autocovariance, autoregressive
model, autoregressive moving average (ARMA) model, feature
extraction, moving average model, order selection, parametric
model, spectral estimation.

I. INTRODUCTION

THE autocorrelation function and the power spectral den-
sity contain all the possible statistical information of sta-

tionary stochastic data with a joint normal distribution with zero
mean. For other distributions, the first and second moments are
also very valuable information. Until about 2002, modified pe-
riodograms and lagged-product autocorrelation estimates were
the standard analysis tools for random data [1]. Modification
of the periodogram with a window was necessary to obtain a
useful spectral estimate. The best choice of window depended
on the data and on the preferences of the data analyst [1] and
could not be automatically made.

Time series models can also be used for spectral analysis
[1]. Apart from the dedicated univariate time series modeling,
the treatment as a linear system, with white noise as the input
signal, has also been used for a time series with known model
order and type [2]. The computational demands for time series
modeling were very heavy in the past for the routine automatic
application to measurement data with unknown model type and
model order. Only a limited number of models, with order and
type specified by the data analyst, could be mutually computed
and compared with order selection criteria. The automatic esti-
mation and selection of a single time series model for a given set
of random observations enables many new applications to real-
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life data [3]. It will be investigated whether the automatically
selected time series model, with all the spectral details that are
statistically significant in the given data, is a good starting point
to detect outliers or changes.

Irregular and undesirable disturbances in measured sig-
nals can be distinguished in innovational or additive outliers
and permanent or transient level changes [4]. AutoRegressive
Moving Average (ARMA) time series models can be used to de-
tect outliers, and an example with an AR(1) process shows how
all types of disturbances can be incorporated into a univariate
model [4]. The detection of outliers can be extended to mul-
tivariate time series data [5]. The interaction between the size
and the dynamic structure of the model gives special properties
to the multivariate time series case [5]. Outliers in multivariate
regression problems often require robust estimation methods to
be detected because simple least squares estimation becomes
biased by the outliers. Recently, many new methods have been
developed [6]. An active research field in data mining is the
detection of outliers. Distance-based outliers can be detected,
but in some examples, the perception can be subjective to
what an outlier is [7]. Moreover, outliers should have sufficient
distance from inliers for reliable detection. Otherwise, outliers
tend to precisely bias the parameters of time series models to
reduce the residuals of those models. Furthermore, the residual
variance estimate is very large due to outsiders. Simple rules of
calling points further than three standard deviations (SDs) away
from the mean will be the reason that very few outliers may be
detected in dynamic processes [8].

Before 1980, AR models could be estimated for fixed speci-
fied orders, with the Burg method [9] and with the Yule–Walker
method [10]. However, the AR model class is not generic. The
traditional order selection criterion known as Akaike’s infor-
mation criterion [11] often selected very high model orders,
particularly in finite and small sample records. MA and com-
bined ARMA models could also be estimated [1] for specified
fixed orders. However, different estimation methods give rather
different results for the same data [12]. No preference for one
single estimation method could be given [13]. Improved order
selection criteria for finite samples in AR models, numerically
efficient estimation algorithms without iterations for MA and
ARMA models, and faster computers altogether give the possi-
bility of a reliable automatic analysis of data with the ARMAsel
algorithm [3], [14].

Modified periodograms have been the only practical tools
for the routine analysis for spectra of random data for a long
time, together with lagged-product estimates for autocovariance
functions [1]. The SD of the raw periodogram is approximately
equal to its expectation and does not become smaller for longer
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data sets. Furthermore, the nonzero length of estimated autoco-
variance functions is always precisely equal to the length of the
data record, independent of the true correlation length. Spectral
or lag windows are therefore required to improve accuracy,
unless the data are periodical. The final results depend on the
choice of the shape and width of the window, which has to be
subjectively chosen by the data analyst. Therefore, these meth-
ods are not suitable for an automatic analysis of random data
with unknown characteristics. Moreover, it has been proved that
lagged products are not efficient for autocovariance estimation
[15]. This means that time series models can extract more
accurate information for the autocorrelation function from the
same amount of data.

Automatic time series analysis with selection of the model
order and type has recently become a new perspective with
the ARMAsel program [14] that selects between AR, MA, and
ARMA candidate models. Time series models can be subdi-
vided into three types: 1) AR; 2) MA; and 3) combined ARMA
models [1]. Finite or low-order AR, MA, or ARMA models
are accurate enough in practice because the true parameters of
higher orders rapidly decrease for most processes. Using only
the class of AR models is not generic and can be very inaccurate
for processes with spectral zeros close to the unit circle.

From a single selected model of the ARMAsel program
[14], the autocovariance function and the spectral density are
computed. The accuracy of this parametric spectrum is typi-
cally better than the best of all possible modified periodogram
estimates. The data select a model on statistical grounds, the
accuracy of which generally approaches the Cramér–Rao lower
bound in simulations with sufficient data [3]. According to the
invariance property of the maximum likelihood theory, func-
tions that are derived from maximum likelihood parameter esti-
mates are also maximum likelihood estimates for the functions,
under mild conditions. This explains the high quality of the
time series estimates for the spectrum and the autocorrelation
function. An automatic selection algorithm for the model type
and order selects a single AR, MA, or ARMA model, which is
denoted as the ARMAsel model. Subspace methods constitute
another framework for the automatic identification of stochastic
observations based on state-space modeling [16], [17]. Asymp-
totic properties of subspace estimators have been derived [18].
Unfortunately, it has been concluded that automatic procedures
based on recommendations from asymptotic theory lead to poor
accuracy in finite samples [19]. So far, other automatic methods
suffer from poor performance on some types of data and are less
suitable [19].

This paper treats an example with turbulence data ob-
tained with direct numerical simulations [20], [21]. The
Navier–Stokes equations are solved on a shared-memory su-
percomputer SGI Origin 3800. A study of the flow around
a cylinder gives information about heat and mass transfer to
a clothed human limb in extreme outdoor conditions. It very
much required computing time, and it is difficult to repeat the
computations for an independent verification of the random
data. The spectral density of the turbulence signal has been
analyzed before with time series analysis [3]. This showed that
the selected time series estimates had interesting properties.
Irregularities or outliers in the data will be detected and repaired

with programs that are available in the ARMAsel toolbox [14].
It is demonstrated how one single bad observation distorts
the spectrum of the flow data in more than 50% of the total
frequency domain.

II. TIME SERIES MODELS

Time series models have three different linear types: 1) AR;
2) MA; and 3) combined ARMA models. An ARMA(p, q)
model can be written as [1]

xn + a1xn−1 + · · · + apxn−p = εn + b1εn−1 + · · · + bqεn−q

(1)

where εn is a purely random process of independent identically
distributed stochastic variables with zero mean and variance
σ2

ε . If applied to estimation, then (1) is called a model. If the
formula is used to generate new data or to describe the true
characteristics of the data, then it is generally called a process.
The process or model is purely AR for q = 0 and purely
MA for p = 0. A shift operator is defined such that z−1xn

is equal to xn−1. The roots of the AR parameter polynomial
A(z) = 1 + a1z

−1 + · · · + apz
−p are denoted as the poles of

the ARMA(p, q) model. The roots of B(z), which are defined
as B(z) = 1 + b1z

−1 + · · · + bqz
−q, are the zeros. Models are

called stationary if all poles are within the unit circle and
invertible if all zeros are within it. A shorthand notation for an
ARMA model is

A(z)xn = B(z)εn. (2)

Assume that the data represent a stationary stochastic process.
The power spectrum h(ω) of the ARMA(p, q) process is com-
pletely determined by the parameters in (1), together with the
innovation variance σ2

ε , and is given by

h(ω) =
σ2

ε
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The transform of an AR(p) model into a positive semidefinite
autocovariance function rAR(k) is made with the Yule–Walker
equations [12]. The complete autocovariance function can be
written in a compact style as a function of the parameters of (1)
as [3]

r(k) =
q∑

m=−q

[
rAR(k + m)

q∑
i=0

bibi+|m|

]
∀k. (4)

The ARMA autocovariance function can be written as a con-
volution of the separate autocovariances of the AR and MA
parts. The autocorrelation ρ(k) is found by dividing r(k) by
r(0). The method of (4) in deriving the autocovariance function
from the parameters is available in the ARMA Spectral Analy-
sis (ARMASA) Toolbox [14] that also contains the ARMAsel
algorithm. This Matlab program estimates the parameters of (1)
for a large number of candidate model orders and types and
automatically selects the best model for the data at hand.
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The prediction error (PE), as a measure for accuracy, allows
a mutual comparison of AR, MA, and ARMA models. It is
defined as the squared error of prediction when applying the
estimated model to another independent realization of the same
true process. It is estimated by using the residual variance with a
correction term. In simulations, knowledge of the true process
parameters is available. This can be used in the model error
(ME) [3]. This is a normalized and scaled version of the PE.
With A(z) and B(z) being the true ARMA(p, q) process poly-
nomials, Â(z) and B̂(z) denoting the estimated ARMA(p′, q′)
model, and N denoting the number of observations, the ME is
defined as

ME = ME

[
B̂(z)
Â(z)

,
B(z)
A(z)

]
= N

(
PE
σ2

ε

− 1
)

. (5)

By taking q′ = 0, the estimated ARMA(p′, q′) model be-
comes AR(p′), and p′ = 0 gives a pure MA(q′) model. The
minimal expectation of the ME for unbiased efficiently es-
timated models is the Cramér–Rao lower bound, and it is
independent of the sample size N . The expectation of the ME
is asymptotically equal to the number of estimated parameters
in unbiased models, with at least all truly nonzero parameters
included. An efficient expression for the computation of the ME
as an objective accuracy measure in the time domain requires
only the knowledge of the process and model polynomials [3].

A quality measure for measured data is the ratio between the
variance of the data and the variance of the residuals of the
selected model. The residuals are the unexplained part in (1),
and they will be dependent on outliers. The power gain Pg is
defined as the quotient of the variances of output and excitation
of the time series process in (1) or as the quotient of the signal
variance σ2

x and the residual variance σ2
ε̂ for estimated models.

It is given by

Pg =
σ2

x

σ2
ε̂

. (6)

Outliers will cause a smaller value of Pg because the variance
of the residuals increases if outliers are present.

III. TURBULENCE DATA

This paper treats an example of turbulence data obtained
by solving the Navier–Stokes equations on a supercomputer
[20], [21]. It required a total of 15 500 CPU hours, which is
still 16 days when it runs on 40 parallel CPUs. Therefore,
verification of the internal consistency of the generated signal
during the temporal storage of data for the shared-memory
operation is a problem. The time has been normalized with
TSt, the dimensionless Strouhal time, which, in turn, is given
by 1/fSt. The Strouhal number fSt is a measure for the vortex-
shedding frequency in turbulent flow [21].

Fig. 1 shows N = 3810 observations of the turbulence sig-
nal. The original signal had 76 200 observations, but the spec-
tral density was more than 80 dB lower in the last 95% of
the frequency range [22]. This irrelevant part of the frequency
range was removed by downsampling with a factor of 20 by

Fig. 1. Turbulent flow data obtained with computational fluid dynamics. The
original data have been downsampled with a factor of 20 without damage.
Antialiasing filters would severely influence the spectrum; simple downsam-
pling does much less. The timescale has been normalized with TSt, which is
the Strouhal time for the vortex-shedding period.

simply deleting 19 of every 20 observations. Decimating the
data with standard antialiasing filters was not appropriate here
[22]. The steep spectral slopes of the filter would be within the
frequency range of the final signal. This steep slope requires
very high-order time series models for the filtered signal, which
creates spurious details in the rest of the frequency range after
filtering [22]. Downsampling folds back the high-frequency
contents of the spectrum to the remaining frequency range.
It can only be an acceptable solution if the power of the
signal that is above half of the new resampling frequency is
(almost) negligible. Antialiasing filters leave the first part of the
spectrum undisturbed but give a very strong distortion at the
frequencies that are filtered out. The distortion is already obvi-
ous for frequencies below the cutoff frequency of these filters.
The performance of antialiasing filters in combination with time
series analysis can be improved. It has been verified that the
smallest distortion of the spectrum is found by taking the cutoff
frequency of the antialiasing filter at 95% of the remaining
frequency range. To demonstrate this, a white noise signal has
been decimated with antialiasing filters. Time series modeling
only selects a flat white noise spectrum with ARMAsel [14]
for the decimated white noise signal if the cutoff frequency
was chosen at 0.95 times half the resampling frequency. Other
choices of the cutoff frequency gave a colored spectrum for the
model selected from the wideband decimated white noise. It
should be realized that all other properties of the original signal
are strongly disturbed by the filtering; only the spectral density
until the cutoff frequency is left the same. As an example,
outliers that are obvious or recognizable in the original data are
not visible or detectable in decimated filtered data because the
high frequencies are filtered out.

The signal in Fig. 1 shows some irregular periodicity because
the zero crossings are not equidistant. Moreover, it is obvious
that the signal is not normally distributed. A normal distribution
would have its maximal density around the mean value, and the
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Fig. 2. Residuals of the selected time series model of the original downsampled data and of the data where one erroneous observation at t/TSt = 6.4 has been
replaced by its linear interpolation and finally replaced by the best time series prediction based on the observations around that time.

density would gradually decrease for greater deviations from
the mean. The signal in Fig. 1 has only a few observations
around the mean and more at +0.03 and −0.03 m/s. The
autocorrelation function and the power spectral density do not
contain all the relevant statistical information of the given data.
Higher order moments will also contain valuable information
for this signal. Only the second-order moments will be analyzed
here with ARMAsel [14]. This paper shows the possibilities of
the automatic time series analysis to practical data, even if they
are not normally distributed.

IV. RESIDUALS OF ARMAsel

The ARMAsel program has been applied to find the best
time series model for the downsampled data. The automatic
ARMAsel program selected the AR(16, 15) model for these
data. The power spectral density of the selected model will
be shown later. The residuals of the ARMA(16, 15) model
for the measured data are shown in the upper plot of Fig. 2.
It is obvious that a very irregular behavior is found at
t/TSt = 6.4, which is the observation xn for n = 1280. This
single observation is an outlier, which is probably caused by one
of the interruptions of the turbulence computations where the
shared memory of the supercomputer requires data swapping.
The residual plot shows the capacity of the automatic ARMAsel
program to detect outliers. Studying the residuals of the selected
model definitely traces this outlier that is much greater than all
other irregularities in the residual signal.

The best solution in dealing with outliers is to completely
remove them and to treat the remaining signal as a missing-data
problem [23]. This requires no assumptions at all. A powerful
algorithm based on the ARMAsel program for stationary sto-
chastic data is available for missing-data problems, including
automatic order selection [3]. This algorithm still gives accurate
spectra close to the Cramér–Rao lower bound if less than 10%
of the data is missing [23]. However, it very much requires
computing time, and it is sometimes difficult to estimate models
with more than about 20 AR parameters. If the missing fraction
is very small, like one outlier on 3810 observations, it may be
accurate enough to use some sort of interpolation.

Based on experience with missing data, two different meth-
ods have been investigated to replace the outlier by a corrected
observation. The first method is linear interpolation, which has
a disappointing accuracy in missing-data problems [23]. The
outlier is replaced by the average of the preceding and the fol-
lowing observations. ARMAsel was applied to the new signal
after the correction of the outlier. It selected the AR(84) model
for the corrected data. This model was used to again compute
the residuals after the linear interpolation of the outlier. This
reduces the residual error variance with a factor of 3. It makes
the largest corrected error more than a factor of 2 smaller, as
shown in the middle plot of Fig. 2. However, it is obvious that
the residual at t/TSt = 6.4 remains, by far, the largest. It should
be possible to find a better correction.

The experience with missing data [23] learns that a better
replacement is found with an algorithm that is based on the
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iterative expectation–maximum (EM) principle. The E-step
calculates the conditional expectation of the missing data with
a model; the M-step computes maximum likelihood estimates
from the combined observed and reconstructed data. This can
be iterated, and it can be interpreted as a method to minimize
the PE of the missing data [2]. The single outlier turns out
to have a significant influence on the estimated time series
parameters. All estimation methods minimize, in some sense,
the sums of squared residuals. Therefore, the largest residual
has a significant influence if it is very much larger than the
others. The erroneous observation at t/TSt = 6.4 is observation
xn for n = 1280. It can be approximated by the prediction that
can be made with the ARMA(16,15) time series model that
has been estimated for the given data, with the outlier, from
the observations from n = 1 until 1279. The prediction is made
with the ARMA2pred algorithm from the ARMASA Toolbox
[14]. The program ARMA2pred is based on a state-space
representation of the time series model in Kalman filtering
notation, which was originally developed for the calculation of
the likelihood function for missing-data problems [24]. Like-
wise, a backward prediction is made from all observations with
n > 1280. Finally, the average of these two predictions is taken
to replace the outlier at n = 1280. It is the average because
the estimated accuracy of the two predictions is equal. If two
or more consecutive observations are outliers, the same two-
sided method can be used with weighting factors based on the
covariance matrix of the predictions, which is also computed in
the ARMA2pred algorithm. It is the E-step of an EM algorithm.

ARMAsel selected the AR(83) model for the data with the
ARMA2pred correction at n = 1280. The residuals of this
AR(83) model are shown in the lower plot of Fig. 2. The
difference between the analyzed signals is only the replacement
of the observation at n = 1280 by its two-sided predicted value.
After that, the magnitude of all residuals is reduced to about
40% of the upper part of residuals, with the outlier included.
Therefore, replacing the single outlier gives a much better time
series model for the rest of the data, with much smaller residuals
over the whole signal. The SD of the measured signal is 0.0270,
the SD of the residuals in Fig. 2 is 0.00039, 0.00023, and
0.00013, respectively. The values of the Pg measure of (6) of
the data with an outlier, linear interpolation, and ARMA2pred
correction are 5.1 103, 1.5 104, and 4.8 104, respectively.
Therefore, replacing one outlier by its ARMA2pred prediction
reduces the residual variance with a factor of about 10.

The automatic canonical correlation analysis (CCAsel) sub-
space procedure [19] has been applied to the same data. Unfor-
tunately, it will fail to converge if all 3810 observations were
used. It has been verified that the lack of convergence of the au-
tomatic subspace algorithm also frequently occurred with other
data sets. However, using only the first 3000 observations of the
turbulence signal gives a result of the automatic subspace algo-
rithm CCAsel, with the ARMA(7, 7) model selected. The SD
of the residuals was 0.00024, and Pg was 1.4 104 then—close
to the performance of linear interpolation and much worse than
that of ARMAsel. The candidates of this automatic subspace
algorithm are only ARMA(p, p) models. This is a problem
because, here, the best model was AR(83), which has been
selected with ARMAsel for the turbulence data. The subspace

ARMA(p, p) model would require 166 parameters for an exact
unbiased description of the AR(83) model, with 83 superfluous
MA parameters. The minimal ME value of (5) would become
2p for unbiased subspace models of a true AR(p) process,
which is a factor of 2 above the Cramér–Rao lower bound
for unbiased models. Moreover, order selection for subspace
methods can become difficult if the true process is a high-
order pure AR or MA process because too many insignificant
parameters disturb the performance of order selection criteria.
Therefore, the order of the selected ARMA(7, 7) model is really
very low here. Convergence problems, limited ARMA(p, p)
candidates for order selection, and the existence of example
processes for which the subspace method gives poor results
[19] have never been found for the ARMAsel algorithm. At
the moment, this leads to a definite preference for ARMAsel
in automatic signal processing and spectral analysis. The same
conclusion has been obtained with a comparison of automatic
model selection methods [19].

The residual at n = 1280 could still be made smaller by
iterating the EM estimation with the ARMAsel algorithm.
Then, the new AR(83) model for the corrected data would be
used for an improved prediction and correction. It can be a
good solution if more outliers are present or if the outcome of
the first iteration is not satisfactory. This can happen if a very
large outlier is present in the original data. However, this EM
iteration has not been used here because the new residual at
n = 1280 is already of the same level as the largest residuals
for the given data at other times in Fig. 2. One iteration step
already fulfilled all sensible requirements for the correction of
the outlier. A second iteration may be necessary if the outlier is
much greater.

The rather large residuals at t/TSt = 12.18 and t = 14.765
are not related to visible irregularities in the densely sampled
signal. These residuals are of the same magnitude as the
corrected residual at t/TSt = 6.4 in the lower plot of Fig. 2,
and outliers of this size cannot be detected. Nevertheless, if
they are synchronized with swapping of the memory of the
supercomputer, they could also be indications of inaccuracies
in the data generation.

Although all computations have been made with the down-
sampled signal, the full densely sampled signal is also avail-
able here. This can be used to visualize the signal around
t/TSt = 6.4, which agrees with observation number n = 1280.
Fig. 3 gives the segment with the outlier in the original densely
sampled signal before downsampling. This demonstrates, with-
out any doubt, that the observation at n = 1280 was an outlier.
The fortuitous availability of a more densely sampled signal
makes sure that there really is an outlier in those practical data.
The difference between a linear interpolation of the observa-
tions at n = 1279 and 1281 and the ARMA2pred correction is
only small, as can be concluded from Fig. 3. This demonstrates
the sensitivity of the residuals to very small deviations. The
computed SD of the ARMA2pred prediction at n = 1280 was
about 0.0003.

It is evident in Fig. 3 that the original observation at
t/TSt = 6.4 is not a very clear outlier after downsampling.
In fact, the differences with the neighboring observations are
not much greater than the usual differences between neighbors
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Fig. 3. Original turbulence observations before downsampling and the down-
sampled data corrected with the ARMA2pred prediction. The signal properties
around n = 1280 or t/TSt = 6.4 are definitely different from the rest of
the data. The correction is only slightly different from a linear interpolation
between the two neighbors.

in Fig. 3. Moreover, the peak at t/TSt = 10.3 in Fig. 1 and
many other peaks in the downsampled signal are at least as
sharp as the outlier at t/TSt = 6.4, without giving the large
residuals. In other words, the outlier cannot be detected in the
downsampled data by a visual inspection, without detecting
many false alarms. This demonstrates that an inspection of
the residuals of a selected time series model is a powerful
method to locate irregularities in data that are generated by a
supercomputer with a shared-memory.

V. ACCURACY OF ARMAsel

The spectra of the selected models for the data with an
outlier, which were corrected with linear interpolation and with
ARMA2pred correction, are given in Fig. 4. The correction
has a strong influence on the spectrum for frequencies in the
normalized range from 50 to 100, which is more than half of
the linear frequency range. The difference at the end is more
than a factor of 1000. The correction with ARMA2pred reveals
more high-order spectral details than linear interpolation here,
with a large dynamic spectral range in this example.

Three different signals have been analyzed with the
ARMAsel program, with the correction at n = 1280 being sole
difference. The estimated model accuracies of all estimated
time series candidate models for two of these signals are given
in Figs. 5 and 6. The global shapes of both figures are similar.
The most important difference between these two figures is the
vertical scale. The second figure has about ten times smaller
values for the accuracy on the vertical axis. These accuracies are
squared PEs. This means that the SD of the errors is about three
times smaller after the correction. This approximately agrees
with the differences in amplitude of the residuals, which had
already been found between the upper and lower plots in Fig. 2.

ARMA(16, 15) is selected in Fig. 5. After replacing the
single outlier xn at n = 1280 by its time series prediction,

Fig. 4. Selected ARMA(16, 15) spectrum of the original data, the AR(84)
spectrum of the data with linear interpolation, and AR(83) of the ARMA2pred
correction. The outlier causes a strong spectral distortion in the normalized
frequency range between 50 and 100.

Fig. 5. Estimated model accuracies of all the models estimated with the
ARMAsel program for N = 3810 downsampled observations of the turbulence
data with outlier. ARMA(16, 15) is selected with the normalized model
accuracy 1.53 10−7.

AR(83) is selected in Fig. 6, but the ARMA(28, 27) model
would have been a good candidate, with almost the same
spectrum. MA models are not attractive for these data. It is
remarkable that a small modification of a single observation can
have such a strong influence on the estimated model accuracies
if the spectrum extends over ten decades of magnitude. The
explanation is that a constant is added to the spectrum by the
outlier, which causes the flat distortion of the spectrum in Fig. 4
at the high frequencies with very low power.

In stationary ARMA(p, q) data, the expected model accuracy
first becomes better for increasing model orders of the three
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Fig. 6. Estimated model accuracies of all the models estimated with the
ARMAsel program for N = 3810 downsampled observations of the turbulence
data, with the ARMA2pred correction for the outlier at n = 1280. AR(83) is
selected with the normalized model accuracy 1.67 10−8.

types until minima are found in Fig. 5 or 6. Afterward, the
accuracy will become worse for all types. In theory, the ME
will linearly increase with the order for overcomplete models
with too many parameters included [3]. This is seen for the AR
and ARMA models in Fig. 5. The slope of ARMA is twice
the slope of AR because the ARMA(r, r − 1) model has two
extra parameters for one order higher. This behavior is also
found in simulation experiments where it is known that there
are no deviations from the stationary character of the signal. A
remarkable local dip in the AR models at order 517 in Fig. 6
can be attributed to the large residuals at t/TSt = 12.18 and
14.765 in Fig. 2. These are the observations n = 2436 and
2953, with the same difference of 517 as the AR order with the
dip. Obviously, something irregular happened at that distance,
which becomes important for AR models of orders greater than
517. The continuation of the AR model accuracy in Fig. 6 for
orders above 550 has the same slope of the line for orders
between 100 and 500, but it is shifted downward. It becomes
much more significant in Fig. 6 than in Fig. 5 after correcting
the outlier at n = 1280. Apart from the automatic selection
of the model with the best spectrum for the given data, the
ARMAsel program [14] gives a lot of additional information
in Fig. 5 or 6 that can be used to trace peculiarities in the data.

It is remarkable that the estimated model accuracy of all
models with more than ten estimated parameters in Fig. 6 is
about a factor of 10 smaller than the accuracy of the models in
Fig. 5. The single outlier has a very significant influence on the
spectra of all the estimated models of all types and orders.

VI. ADDING DELIBERATE ERRORS

The signal with the correction of the time series prediction
can be used as a prototype signal. One or more outliers can be
added to this corrected signal to verify the quality of the outlier
detection. The same distorted spectrum of the downsampled

signal in Fig. 4, with the additional outlier, is also found by
adding an error of 0.002 to any arbitrary observation of the
corrected data. This error value happens to be the amplitude
of the outlier in Fig. 3. The distorted spectrum is given by
the original spectrum (without an outlier) plus a constant. This
constant is about 10−8 in Fig. 4, with a Pg value of about
5000. Adding an error of amplitude 0.02 at some place gives
a constant spectral level at 10−6, with a Pg value of about
620, distorting the spectra above the normalized frequency
40. An error of 0.2 gives a constant of 10−4, with a Pg

value of about 30, distorting the spectra above the normal-
ized frequency of 25. Therefore, the spectral distortion due
to an outlier is characterized by the addition of a constant to
the spectrum. The influence is only strong in the frequency
range where the original spectrum is of the same magnitude
as the constant. Spectral details in the rest of the frequency
range are almost completely undisturbed by adding this small
constant error. ARMAsel selected ARMA(16, 15) for those
data with one deliberate additional error, like for the original
data with an outlier. This model gives a spectrum that is very
similar to the spectrum of all original data, where ARMA(16,
15) was also selected. Without an outlier, the AR(83) model
is selected, which shows more details in the high-frequency
range and also gives significant details around the normalized
frequency of 3.

It is also possible to add more outliers and deliberate errors
at the same time. Adding four errors of amplitude 0.01 has
about the same influence as adding one error of size 0.02. Both
situations have the same error energy. The constant level in
the spectrum with those four errors was around 10−6, with
a Pg value of about 620. ARMAsel would have selected the
ARMA(14, 13) model if four outliers were added. The four
errors could be corrected with the ARMA2pred predictions for
each individual outlier. Therefore, it has been verified that the
correction method is also applicable to multiple outliers.

VII. CONCLUSION

The ARMAsel algorithm estimates the parameters of time
series models, automatically selects a single model, and pro-
vides additional information about the model accuracies. The
plots of the residuals of the automatically selected model and
of the accuracies of all the estimated models contain a lot of
detailed information about the data. Outliers that are invisible
in the data themselves can be visually detected in the plot of the
residuals, for signals with a high power gain. ARMAsel opens
new perspectives for a refined analysis of random data.

Linear interpolation between neighbors is much less efficient
for outlier correction than prediction with an estimated time
series model. This paper has shown that the application of
time series analysis to data that are not normally distributed
can reveal different interesting details that cannot be easily
found with other methods. It gives a useful tool to analyze
the influence of interruptions in dynamic numerical simulation
computations with supercomputers with data swapping.

Only one iteration of the prediction is sufficient for the
correction of the outlier. If a better accuracy would be desired,
repeated iterations can be applied.
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