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Abstract—Two of the parameters that are determined 
when testing an analog to digital converter are the gain 
and offset error. One of the ways to define these two 
parameters is called “Independently Based”. Here we 
derive the precision of the gain and offset error 
estimated with the Histogram Test Method affected by 
additive noise. 
 
Index Terms—ADC, Gain, Offset Error, Histogram, 
Precision. 

I. INTRODUCTION 
The transfer function of an analog to digital 

converter (ADC) relates the analog input voltage (or 
current) to the digital output code (Fig. 1). In the 
following we will consider that the ADC input is a 
voltage. The number of output codes depends on the 
ADC resolution (nb) and is equal to 2 bn . The 
transition voltage Tk is, by definition, the value of 
constant input voltage that leads to an equal amount of 
output codes lower than k and equal or higher than k. 
Different output codes are expected for a constant 
input voltage due to the inevitable presence of noise. 
The code bin width, Wk, is the distance between the 
two consecutive transition voltages Tk and Tk+1. 
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Fig. 1 – Illustration of the transfer function of a symmetrical bipolar 
ADC. This type of transfer function is also known as “with no true 

zero”.  

 

In an ideal ADC the transition voltages are equally 
spaced by Q, the ideal code bin width, given by 

 2
2
⋅

=
bn

FSQ   (1) 

and the ideal values of the transition voltages are 
 with 1...2 1bnideal

kT FS k Q k= − + ⋅ = − ,  (2) 
where FS is the ADC Full Scale voltage. 

In a real ADC, however, the transition voltages are 
different from the ideal ones due to manufacturing 
defects and environmental conditions. It is thus 
important, for the user of an ADC, to know how close 
a given ADC is behaving in relation to its ideal, and 
expected, behavior. To that effect several types ADC 
tests can be used. The most common one, for the 
estimation of an ADC transfer function, is the 
Histogram Test (also known as Code Density Test) 
[1-9]. This is a statistical test where a sinusoidal 
stimulus signal is applied and a large amount of 
samples are required. From the digital output codes 
obtained, the behavior of the ADC is inferred and its 
transfer function estimated, that is, the values of the 
transition voltages are estimated.  

Fig. 1 represents the transfer function of a 
symmetrical bipolar ADC, also known as a bipolar 
with no true zero transfer function because there is no 
step whose middle point is zero. It is used mainly in 
theoretical considerations where the symmetry of 
transition voltages eases the derivations. There are, 
however other types of transfer functions like the 
bipolar with true zero and the unipolar, which have 
different values of transition voltages. The derivations 
carried on in this paper can easily be adapted to those 
cases if needed. 

To better evaluate the performance of an ADC, 
different parameters are used to express the transfer 
function, namely, the gain, offset error, integral and 
differential non linearity. The first two, gain and offset 
error, express the transfer function as a straight line 
that ideally goes through the middle point of the 
quantification steps (black circles in Fig. 1). The latter 
two, integral and differential non linearity, pertain to 
the difference between the ideal and real transition 
voltages and code bin widths respectively. 

In this paper we study the influence that the 



presence of additive noise and acquisition of a finite 
number of samples has on the precision of the 
estimative of ADC gain and offset error determined 
with the Histogram Method. The goal is to derive 
expressions that let us know what is the precision of 
those estimates. In the case of ADC testing, as in any 
measurement system, the result of the measurement 
should be accompanied by confidence intervals that 
give an idea about the uncertainty of the measurement 
result. In this paper we will concentrate our efforts in 
determining the standard deviation of the estimated 
gain and offset error which will allow us to specify the 
correspondent confidence intervals. 

In section II we will present the definitions of gain 
and offset error. In the following section (III) we 
address the precision of the parameters of estimated 
from linear regression which is used to estimate the 
ADC gain and offset error. In section IV we derive the 
covariance of the transition voltages estimated with 
the histogram method with the purpose of determining 
the standard deviation of the ADC gain and offset 
error which is done in section V. In section VI we 
present experimental results that validate the 
analytical derivations and approximations done. 
Finally, in section VIII, we present the conclusions 
reached with this work. 

II. INDEPENDENTLY BASED GAIN AND OFFSET ERROR 
There are two ways that are traditionally used to 

define an ADC gain and offset error. They are the 
Terminal Based Definition and the Independently 
Based Definition [10]. In this paper we will focus our 
attention on the second one, leaving the other one for 
a different publication. 

In the Independently Based Definition, the gain and 
offset error are defined as the two scalars that when 
used to multiply the estimated transition voltages, kT ,  
(gain, G) and add to the result of the multiplication 
(offset error, O) lead to corrected transition voltages 

 
corr
k kT G T O= ⋅ +   (3) 

that are as close as possible to the ideal transition 
voltages in a least square sense. 

The way traditionally used to determine the 
independently based ADC gain and offset error is to 
use a linear regression procedure to fit the estimated 
transition voltages to the ideal ones: 
 ideal

kkT G T O= ⋅ + .  (4) 
The estimated gain is the slope of the fitted straight 

line and the estimated offset error is the point of 
intersection of that straight line with the vertical axis 
(axis of the ideal transition voltages). 

In the following section we will present the 
expressions for the standard deviation of the estimated 
gain and offset error obtained from the linear 
regression. 

III. PRECISION OF THE PARAMETERS OF LINEAR 
REGRESSION 

Consider an independent variable x (not random) 
and a dependent variable y that are related in the 
following way: 
 0 1   ,   1, 2,...,i i iy x u i Iβ β= + ⋅ + = ,  (5) 
where β1 is the slope parameter and β0 is the intercept 
parameter. The term ui represents an error, that is, it 
represents other factors, other than x, that influence y. 

From a set of values of x and y it is possible to use 
the following least squares estimators for the two 
parameters [11]: 
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The distance between the points yi and the fitted 
straight line is called residual ( iu ): 

 0 1i i iu y xβ β= − − ⋅ .  (7) 
The least square estimators (6) are the best linear 

unbiased estimators, according to the Gauss-Markov 
Theorem [12] if the following assumptions are 
satisfied: 
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These assumptions mean that the errors must have 
zero mean, be uncorrelated and must all have the same 
variance (homoskedasticity). 

Unfortunately, in the case of the determination of 
the independently based ADC gain and offset error 
with the Histogram Test, in the presence of additive 
noise, none of these assumptions is valid. The 
estimated transition voltages do not have zero mean 
[13], do not all have the same variance [8] and are 
correlated as will be shown in the following section. 

As a consequence, the least squares estimators (6) 
are not the best ones. Since the variances of the 
estimated voltages can be computed, it is possible to 
define other estimators that are better than these by 
using weighted least square estimation. However, 
since traditionally the normal least square estimators 
are used, we consider it important to study them even 
though they are not the best estimators possible. We 
plan, in the future, to extend the study presented here 
to other estimators based in weighted least square 
procedure. 

So, given the estimators (6), we want to determine 
the standard deviation of the parameters β. The 
parameter β1 in (6) can be written as 

 ( )( ) ( )1
1 1

1 1I I

i i i i
i ixx xx

x x y y x x y
s s

β
= =

= − − = −∑ ∑ .  (9) 



The variance of the estimator of β1 is, using the 
properties of variance [14], 
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For the estimated offset error, using (6) and 
considering 0x = , leads to 

[ ]0 2 2
1 1 1

1 1var var cov ,
I I I

i k l
i k l

y y y
I I

β
= = =

⎡ ⎤⎡ ⎤ = =⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑∑ .  (11) 

Since the independent variable, x, is considered as 
non random and given what was said in the previous 
section about the definition of independently based 
gain and offset error we will change equation (4) to 
 ' 'ideal

k kT G T O= ⋅ +   (12) 
where the parameters G’ and O’ are related to the 
ADC gain and offset error by 

 1 '   and   
' '

OG O
G G

= = − .  (13) 

From [15] we can write 

 var var '    and   var var 'G G O O⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ≈ ≈⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (14) 

having approximated the mean of 'G  by its ideal 
value of 1. 

Comparing (5) with (12) we have y T=  and 
idealx T= . To compute (10) and (11) it is necessary to 

derive the covariance of the estimated transition 
voltages which is done in the following section. 

IV. COVARIANCE OF THE ESTIMATED TRANSITION 
VOLTAGES  

A. Histogram Test 
In the Histogram Test usually a sinusoidal stimulus 

signal is applied to the ADC input: 
 ( ) ( )cos 2s t C A f tπ ϕ= − ⋅ ⋅ ⋅ + .  (15) 

Due to the presence of additive noise in the 
stimulus signal and generated in the ADC itself we 
can consider the sampled voltage to be 

    ,   0,1,..., 1j V
s

jv s n j M
f

⎛ ⎞
= + = −⎜ ⎟

⎝ ⎠
.  (16) 

where nV is a random variable that represents additive 
white Gaussian noise (AWGN) and M is the number 
of samples acquired. Inserting (15) into (16) leads to 

 cos 2j V
s

jv C A f n
f

π ϕ
⎛ ⎞

= − ⋅ ⋅ ⋅ + +⎜ ⎟
⎝ ⎠

.  (17) 

In order to simplify the derivations we will 
introduce the following normalized variables: 

   ,      ,   2j V
j j j

s

v C n fu n t
A A f

γ π ϕ
−

= = = + .  (18) 

Using these variables we can write the normalized 
sampled voltage, from (17), as 
 ( )cosj ju nγ= − + .  (19) 

The M samples acquired are used to construct the 
cumulative histogram, ck, which is the number of 
samples with output code equal to or lower than k. 
The transition voltages are then estimated with [1] 

 cosk kT C A c
M
π⎛ ⎞= − ⋅ ⎜ ⎟

⎝ ⎠
  (20) 

or, using a normalized transition voltage, 

 cosk
k k

T CU c
A M

π− ⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

. (21) 

B. Probability of a sample having a given code 
To compute the covariance of the transition 

voltages we will need first to compute the covariance 
of the number of counts of the cumulative histogram, 
ck. To that effect we will introduce a binomial 
variable, wk, which assumes the value 1 if a sample 
belongs to class k of the cumulative histogram and 0 
otherwise. The probability that a given sample, with 
phase γj, belongs to ck is the probability that the 
sampled voltage (with phase γj) is lower than the 
transition voltage Uk [8] 

 ( ) ( )cos1 1
2 2 2

k j
k j

n

U
p erf

γ
γ

σ

⎛ ⎞+
⎜ ⎟= +
⎜ ⎟⋅⎝ ⎠

. (22) 

The definition of covariance is [15] 
 [ ] [ ] [ ] [ ]cov ,k l k l k lw w E w w E w E w= − . (23) 

The expected value, [ ]k lE w w , of the product of wk 
and wl is the probability that a sample belongs 
simultaneously to ck and cl. which is to say that it is 
the probability that the sampled voltage is lower than 
both Uk and Ul. This probability is just the probability 
that the sampled voltage is lower than the minimum of 
Uk and Ul: 
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. (24) 

Since w is a binomial variable its expected value is 
equal to the probability of w = 1 which is 
 ( ) ( )|    and   |k j k j l j l jE w p E w pγ γ γ γ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ .(25) 

Inserting (24) and (25) into (23) leads to 
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γ γ
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. 

  (26) 

C. Conditional Covariance of the Cumulative 
Histogram 
The number of counts of the cumulative histogram, 



ck, is just the sum of variable wk for all samples 
acquired: 

 
1

,
0

M

k k j
j

c w
−

=

= ∑ . (27) 

The covariance between the summations of two 
variables is the double summation of the covariance of 
those variables [14]:  
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A sample having or not a certain output code is 
independent of another sample, with a different phase, 
of having the same or another output code. From this 
it follows that the covariance in (28) is only different 
from 0 when i = j. Eq. (28) can thus be written as 

 [ ]
1

| |
0

cov , | cov ,
j j

M

k l k l
j

c c w wγ γϕ
−

=

⎡ ⎤= ⎣ ⎦∑ . (29) 

D. Total Covariance of the Cumulative Histogram 
Usually the stimulus signal and the sampling signal 

are not synchronized which means that the phase at 
the origin of the stimulus signal, ϕ, can assume any 
value. Considering that it has a uniform distribution in 
the interval [-π, π] the total covariance of the number 
of counts of the cumulative histogram can be 
computed from the conditional covariance given by 
(29) [14]: 
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The first term of the right side of eq. (30) is  

 [ ]{ } [ ]1cov , | cov , |
2k l k lE c c c c d

π

π
ϕ ϕ ϕ

π −
= ∫ . (31) 

Inserting (29) leads to  
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Considering the definition of γj, given by (18), and 
that (22) is periodic on γj, eq. (32) becomes  

[ ]{ } | |cov , | cov ,
2 j jk l k l
ME c c w w d

π

γ γπ
ϕ ϕ

π −
⎡ ⎤= ⎣ ⎦∫ . (33) 

Inserting (26) leads to 
[ ]{ }
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2 1    ,   

k l

k j l j k l
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∫
∫

. (34) 

In relation to the second term of the right side of 
(30), we can use the definition of covariance to write 
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  (35) 

Considering the uniform distribution of ϕ between 
 −π and π leads to 
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The conditional expected value of ck is the sum of 
the conditional expected values of all variables wk 

 [ ] ( )
1 1

,
0 0

|
M M

k k j k j
j j

E c E w pϕ γ
− −

= =

⎡ ⎤= =⎣ ⎦∑ ∑ . (37) 

Substituting in (36) leads to 
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Using the same arguments employed when deriving 
eq. (33) we can write 
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Inserting (34) and (39) into (30) leads to the 
expression for the covariance of the number of counts 
of the cumulative histogram: 
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As can be seen in Fig. 2, the covariance of the 
expected values of the number of counts of the 
cumulative histogram tends to 0 as the standard 
deviation of noise increases. This can also be seen for 
the variance of the expected values of the number of 
counts as shown in [8]. The condition found in [8] was 
that this term can be considered approximately null for 
situations where 1nM σ⋅ > . To give an idea of the 
actual values one might encounter for this product, 
consider a stimulus signal with an amplitude equal to 
the ADC Full Scale (A = FS) and that the additive 
noise standard deviation is 0.5 LSB ( / 2

Vn Qσ = ). The 

referred condition is thus  



 1 1 2
2

nb
n

QM M M
A

σ⋅ > ⇔ ⋅ > ⇔ >  (41) 

which corresponds to having more than 1 sample per 
output code. Even if the additive noise is greater, for 
instance, 2 LSB, this condition corresponds to at least 
4 samples per output code which is a common 
situation in actual tests using the Histogram Method. 
This approximation will be used later to derive an 
approximate expression for the variance of the 
estimated gain and offset error. 
 

kU

nσ

[ ] [ ]0cov , kE c E c⎡ ⎤⎣ ⎦

 
Fig. 2 – Representation of the covariance between the expected 

value of the number of counts of class 0 and of class k of the 
cumulative histogram as a function of the normalized transition 

voltage of class k and the standard deviation of additive noise. M=4. 

E. Covariance of the Transition Voltages 
The estimated value of the transition voltages is 

obtained from the number of counts of the cumulative 
histogram with (20). The covariance of the estimated 
transition voltages is given by [15] 

[ ]cov , cov ,
k lT Tk l

k l
k l k l

k lT T

dT dTT T c c
dc dc

μ μ= =

⎡ ⎤ ≈⎣ ⎦ . (42) 

Differentiating (20) and inserting into (42) leads to 
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× −

. (43) 

We considered, to simplify the computations, that the 
stimulus signal has no offset (C=0). The same results 
would have been obtained if the stimulus signal had 
an offset. 

V. GAIN PRECISION 
The variance of the estimated ADC gain is given by 

(10), with y = T, as seen previously. Inserting (43) 
gives rise to 
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Making the variable substitution T = UA, leads to 
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Using (6) and considering that x represents the ideal 
transition voltage, we can write 

 ( )
2 1 2

1
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ideal ideal
xx i

i

s T T
−

=

= −∑ .  (46) 

For a sufficient number of bits (in general more 
than 4) we can approximate the summation in (46) by 
an integral: 
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We considered that it was a bipolar with no zero 
ADC, which means that the transition voltages are 
symmetric and thus their mean is null. Inserting into 
(45) leads to 
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The double summation in (48) can also be 
approximated by a double integration in Uk and Ul: 
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Note that the integration limits should be 
( ) /FS Q A− +  and ( ) /FS Q A−  which are the 
normalized values of the first and last transition 
voltage. In practice the value of stimulus amplitude 
used, A, is slightly larger than FS−Q because the ADC 
must be overdriven to minimize the bias introduced in 
the transition voltage estimates due to the presence of 
additive noise [13]. We chose to use the limits ±1 in 
the integrals in (49) in order to have its value 
independent of both A and FS. As a consequence the 
value of the integration becomes slightly smaller. 

Using the approximation justified in the previous 
section, 1nM σ⋅ > , we can substitute the covariance 
in (49) by the expected value of the covariance term 
given by (34) 
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In the previous expression we have taken into 
account that for small amounts of additive noise 
(σn < 0.1) usually encountered in practical situations, 
and considering the use of overdrive, we can assume 
the mean of the estimated transition voltages to be 
unbiased [13]. 

Inserting (22) into (50) leads to 
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These integrals were solved numerically and an 
approximated value of 21.21 nσ  was obtained. 
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Using (18) we can write, for the estimated gain 
standard deviation, 
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VI. OFFSET ERROR PRECISION 
The variance of the estimated ADC offset is given 

by (11) with y = T, as seen previously. Inserting (43) 
gives rise to 
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Making the variable substitution T = UA, leads to 
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The double summation in (55) can be 
approximated, for an ADC with a sufficiently high 
number of bits, by a double integration between the 
first and last normalized transition voltages: 
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   (56) 
As was done for the estimated gain variance, we 

will replace the limits of integration with ±1: 
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Using the approximation justified previously, 
1nM σ⋅ > , we can substitute the covariance in (56) by 

the expected value of the covariance term given by 
(34), 
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Note that the limits of integration on Uk have changed 
due to the piecewise definition used in (34). 

In the previous expression we have taken into 
account that for small amounts of additive noise 
(σn < 0.1) usually encountered in practical situations, 
and considering the use of overdrive, we can assume 
the mean of the estimated transition voltages to be 
unbiased [13]. 

Inserting (22) leads to 
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 (59) 

These integrals were solved numerically and a 
value of approximately 25 nσ  was obtained. 
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Using (47) and (18) we can write, for the estimated 
gain standard deviation, 

 1.1 vn
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FS Q M

σ
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−
.  (61) 



VII. EXPERIMENTAL RESULTS 
To demonstrate the validity of the expressions 

presented here we tested a 12-bit ADC using the 
Standard Histogram Test. Only the 8 most significant 
bits were used to so that the ADC could be considered 
ideal. Using a Monte Carlo procedure with 1000 
repetitions (N) we computed the standard deviation of 
the estimated independently based gain and offset 
error. We varied the additive noise standard deviation, 
number of samples, stimulus signal amplitude and 
ADC Full Scale range. 
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Fig. 3 – Representation of the estimated gain and offset error 

standard deviations as a function of the normalized additive noise 
standard deviation. We considered nb=8, A=1.2V, FS=1V, M=1000, 

f=200Hz, fs=200kHz and N=1000. The solid lines represent the 
approximation given by (53) and (61), and the vertical bars 

represent the experimental results. 
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Fig. 4 – Representation of the estimated gain and offset error 

standard deviations as a function of the number of samples. We 
considered nb=8, A=1.2V, FS=1V, σn=0.1, f=fs/M, fs=200kHz and 

N=1000. The solid lines represent the approximation given by (53) 
and (61), and the vertical bars represent the experimental results. 

The results obtained for the standard deviation of 
the estimated ADC gain and offset error are presented 
in Fig. 3 through Fig. 6. 

The vertical bars in the figures translate the 99.9% 
confidence interval to account for the Monte Carlo 
uncertainty due to the 1000 test repetitions (N) carried 
out. 
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Fig. 5 – Representation of the estimated gain and offset error 

standard deviations as a function of the stimulus signal amplitude. 
We considered nb=8, M=1000, FS=1V, σn=0.1, f=200Hz, fs=200kHz 
and N=1000. The solid lines represent the approximation given by 

(53) and (61), and the vertical bars represent the experimental 
results. 
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Fig. 6 – Representation of the estimated gain and offset error 

standard deviations as a function of the ADC Full Scale Range. We 
considered nb=8, M=1000, A=1.2V, σn=0.1, f=200Hz, fs=200kHz 
and N=1000. The solid lines represent the approximation given by 

(53) and (61), and the vertical bars represent the experimental 
results. 

It can be seen, by observation of the previous 
figures, that the experimental results, represented by 
vertical bars, are below the value given by the 
approximate expressions (53) and (61). This validates 
the derivations presented here and justifies the use of 
those expressions to determine an upper bound for 
estimated ADC gain and offset error. 

VIII. CONCLUSIONS 
In this paper we analyzed the precision of the 

estimates of the independently based ADC gain and 
offset error obtained with the Standard Histogram 
Method. The main results were expressions (53) and 
(61) that can be used to determine the expanded 
uncertainty, and corresponding uncertainty interval, 
for the estimated independently based gain and offset 
error. This has the same importance as in any 
measurement system where the quality of the 
measurements should be expressed in terms of 
confidence intervals for the results. 
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