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Abstract - A statistical approach to behavioral modeling for assessing dynamic metrological 

performance during the concept design of accurate digitizers is proposed. A surface-response 

approach based on statistical experiment design is exploited for avoiding unrealistic hypothesis of 

linearity, optimizing simulation, exploring operating conditions systematically, as well as verifying 

identification and validation uncertainty. An actual case study on the dynamic metrological 

characterization of a Fast Digital Integrator for high-performance magnetic measurements at the 

European Organization for Nuclear Research (CERN) is presented. 

Index term - Analog-to-digital converter (ADC), modeling, error analysis, statistics. 

 

I. INTRODUCTION 

In digital instrument design, metrological analysis by model simulation plays a key role during 

project assessment and enhancement [1]. Several indexes of metrological performance have to be 

evaluated in frequency and time domains (e.g., signal-to-noise-ratio, total harmonic distortion, 

integral and differential nonlinearity). This has to be carried out systematically, at varying operating 

conditions, influence parameters, and uncertainty sources, as well as, moreover, over the input range 

as a whole. During the conceptual design, behavioral modeling is useful for the sake of the 

generalization [1]: the digitizing chain is characterized by input–output analytical or numeric 

relations, without going in deep into the physical structure. In this way, a general perspective is kept, 

useful for several applications, owing to its independence on the specific architecture of the 

instrument and on its physical realization.  
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Once the model is defined, simulations are carried out usually by following an intuitive approach: the 

model parameter’s space is investigated by either or an One-Factor-At-Time strategy (OFAT) [2]-[3], 

or by a purely random variation. This can lead to misleading results, because (i) only a subspace of 

working conditions under investigation is explored and, (ii) moreover, often the digitizing chain is not 

appreciably linear and parameter interactions is not revealed in this way. Another more 

comprehensive approach is based on Monte-Carlo method in order to explore model parameter’s 

space as a whole [4]: the instrument model is set and run in each possible configuration in order to 

have a total comprehension of the performance landscape. However, for high-performance accurate 

instruments, this technique turns out to be burdensome from a computational point of view [5]: in 

fact, the simulation burden depends on the number of parameters, the width of their working range, 

and the target accuracy of the analysis.  

Experiment design techniques optimizes test burden in model identification by allowing a systematic 

exploration of a multidimensional parameter space with a high degree of resource exploitation [2]-

[3]. Although mainly developed for physical runs, their use in simulation presents several 

improvement opportunities difficult or impossible in physical experiments [6]. In particular, 

Response Surface-modeling [8]-[9] allows statistical a-posteriori behavioral modeling [1]. More 

recent Multiple Response Surface (MRS) techniques provide better estimation of the local function 

nonuniformity (though biased) [9]. Conversely, Single Response Surface (SRS) methods assess the 

total nonuniformity (deterministic and random), more suitable for behavioral modeling. 

In this paper, a behavioral modeling strategy, based on a Single Response Surface method, for tuning 

the simulation effort to the model complexity and the identification accuracy is proposed. In Section 

II, the proposed approach and the related model are illustrated. In Section III, a case study of a Fast 

Digital Integrator [7] for accurate dynamic magnetic measurements at European Organization for 

Nuclear Research (CERN) is shown. 

 

II. THE PROPOSAL 

In the following, (i) the basic ideas, (ii) the digitizer model, and (ii) the procedure of the proposed 

modeling approach are illustrated. 

A. Basic ideas 

The proposed approach exploits the following basic ideas: 
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1. Behavioral architecture-independent modeling based on experiment design: Simulations have 

to be carried out for each i-th metrological performance index qi of ( )1, ,T
zq q=q K , which is 

in general a function ( ): , ,i i if q f= x c n  of (i) an input array ( )1, ,T
lx x=x K , (ii) the design 

parameters ( )1, ,T
mc c=c K  of the instrument, and (iii) the inner and outer error sources 

( )1, ,T
hn n=n K . The experiment design-approach exploits an algebraic regression-model 

assumption about the way x, c, and n affect q. Such a regression model ( ): , ,i i if q f= x c n  is 

an approximation of the digitizer model, thus it is a “model of a model”, i.e. a metamodel. For 

this reason, it is generic and application independent, and intrinsically behavioral.  

2. A-posteriori single response-surface approach to modeling: Model parameters are estimated by 

(i) making simulation runs at various input values for the if  domain 

{ }1: , , ,pD v v v p l m h= = + +K , representing the discretization of the s-dimensional 

simulation space, (ii) recording the corresponding responses, and then (iii) using standard least-

squares regression to estimate the coefficients. In particular, a Single Response Surface 

approach allows a detailed outlook of a single performance to be obtained, without pushing too 

much on a synthetic viewpoint of all the performance indexes. 

3. Comprehensive investigation of operating conditions by means of statistical experiment 

planning: The if  domain D is explored systematically by means of a statistical experiment 

planning [2]-[3]: given the model if , the optimum set of experiments for identifying such a 

model within a prefixed identification uncertainty, is found. The optimality is defined in terms 

of experiment position inside the simulation space D, as well as of number of experiments for 

achieving the prefixed uncertainty.  

4. Nonlinear metamodel by interaction-based representation: Superposition effect-based models 

brings to misleading results in metrological analysis of high-performance instruments owing to 

the implicit linearity assumption: for this reason a twofold levels approach is exploited; a first 

screening attempt by means of a linear model, and, then, if necessary, a more complex. 

interaction-based model is utilized [2]-[3]. 

5. Metamodel accuracy assessment by statistical analysis of variance: the identification 

uncertainty of the metamodel is assessed by means of Multivariate ANalysis Of VAriance 

(MANOVA). 
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6. Reliable metamodel identification and validation by statistical decision making: the metamodel 

identification and validation are assessed by means of statistical tests; in particular, (i) for the 

identification, the Fisher or Pillai’s trace tests [11]-[12] are used for their robustness to 

mismatch of underlying hypotheses (especially for Fisher test), and (ii) for the validation, a t-

test is employed in order to assess the significance of the metamodel prediction with reference 

to an independent experiment set. 

 

B. Digitizer model 

 

A behavioral model of a generic actual digitizer for metrological applications is shown in Fig. 1. The 

input signal passes through a programmable gain amplifier (PGA). The overall acquisition 

uncertainty is modeled as an additive random noise of standard deviation Vσ , and the overall 

acquisition distortion by a nonlinear deterministic block. Then, the amplified signal is digitized by an 

ideal analog-to-digital converter (ADC), introducing quantization and sampling noises. The time base 

is affected by an additive jitter noise of standard deviation Tσ . For the sake of generalization, a 

Universal Time Counter (UTC) can be inserted in order to have an absolute ADC-independent time 

reference for accurate time-dependent measurements. Finally, processing uncertainty is modeled as 

an additive numerical noise ( )n t . 

After a metrological test on the instrument (e.g. carried out according to IEEE Standard [13]), the 

performance q  is determined. 

 

C. Procedure 

On the basis of the above basic ideas and model, a procedure for analyzing the metrological 

performance of a digitizer design is proposed. It is based on 3 main steps: (i) metamodel definition, 

(ii) metamodel identification, and (iii) metamodel validation (Fig. 2). 

 

Metamodel Definition. As a first step, the metamodel inputs and parameters x , n , and c  are defined 

(parameter definition) (Fig. 2) according to the most critical aspects of the digitizer design. By 

referring to the behavioral model in Fig. 1, the digitizer error sources n  are (i) random, the voltage 

noise of the acquisition chain Vσ  and the time base jitter Tσ , and (ii) deterministic, the nonlinearity 
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of the acquisition chain, modeled by suitable parameters. The digitizer design settings c  consists of 

the use or not of the UTC, and the type of the processing algorithm, to be defined according to their 

impact on the performance. The digitizer performance index q  is selected according to the specific 

quality aspect of the instrument to be investigated. They are mainly metrological indexes, static and 

dynamic, in the amplitude (e.g. DNL, or INL), time (e.g. stability), and frequency (e.g. signal-to-

noise ratio) domains [13], but also functional performance, such as efficiency (e.g. throughput).  

The representation models of the parameters are identified experimentally by determining in 

particular the variation range of each array component (experimental parameter identification). In this 

step, an estimation of the central values of the working ranges for each parameter is obtained, often 

by means of several identification techniques [14]. Once the components of the arrays x , c , and n  

are defined, they represent the continuous domain of the metamodel function f . According to the 

particular application, it has to be made discrete suitably, in order to carry out the simulations in a 

finite number of steps.  

By following the above-mentioned a-posteriori approach, the order of the metamodel capable of 

describing suitably the digitizer metrological behavior is to be decided. In the practice of 

experimental design, combinatorial increase of the problem dimensionality is faced by means of a full 

quadratic model [11]. The function ( ) ( ), ,= =q f x c n f v , describing the dependence of the 

performance on input signal, design setting parameters, and uncertainty sources, can expressed for the 

i-th index as : 

( ) 0
1 1 1

i i i ik k ikj k j
k p k p j p

q f a b v d v v ε
≤ ≤ ≤ ≤ ≤ ≤

= = + + +∑ ∑ ∑v        (1) 

where ε  represents the metamodel uncertainty and 0ia , ikb , and ikjd  the coefficients of the 

corresponding response surface. 

However, such a model turns out to be too heavy, thus a first-screening attempt based on a linear 

model is usually carried out: 

( ) 0
1

i i i ik k
k p

q f a b v ε
≤ ≤

= = + +∑v         (2) 

Metamodel Identification. Afterwards, the coefficients of the response surface described by the model 

(1) - (2), best fitting of simulation and experimental data, have to be determined.  

The suitability of the function f  is verified by: (i) the simulation planning and running, (ii) the 

Analysis of Mean (ANOM), and (iii) the ANalysis Of VAriance (ANOVA). Then, an identification test 
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is carried out in order to validate the surface-response metamodel. 

i. Simulation planning and running. The optimum subset of the simulation domain D is defined 

by selecting an experimental plan, according to the number of parameters and their levels, as 

well as the desired resolution [2], i.e. the desired information about covariance between the 

parameters. Then, the simulations are run according to the defined plan. 

ii. ANOM. The main effects of each parameter on the mean response μ  are assessed. In particular, 

the actual mean of the simulation runs is estimated, thus the main effect of the k-th parameter in 

any configuration r can be evaluated as: kr krmδ μ= − , where krm is the mean of q  in all the 

runs where the k-th parameter is in the configuration r (i.e., one of the points of the discrete 

domain D). 

iii. ANOVA. The significance of the parameter effects is determined. In particular, ANOVA is 

aimed at determining, within a prefixed uncertainty, if a variation over the mean performance 

imposed by a corresponding parameter variation is due to the parameter itself or it can be 

confused with the model uncertainty.  

Then, an identification test is carried out in order to check the model adequacy. If the performance 

index q  is a scalar, the Fisher test can be used to establish the global parameter F-statistic of the 

model [10]. If q  is an array, the Fisher test can be also applied to each component. A 

multicomponent check is carried out by determining  the F-statistic through the Pillai’s trace [12]. 

 

Metamodel validation. The metamodel is validated through Simulation Validation and Experimental 

Validation (Fig. 2).  

The Simulation Validation aims at verifying the goodness of the simulator in itself, as well as of the 

identified metamodel. Performance is evaluated by simulations in points of the domain D, not 

considered in the simulation plan. The result is then compared with the metamodel prediction.  

The Experimental Validation is based on the same concept: performance of an actual prototype of the 

instrument (or of a low-level simulator) in particular working points are measured and then compared 

with the metamodel forecasts. To validate the metamodel, the results must be consistent within to the 

uncertainty ε of the metamodel. 

 



 
 

7

 III.  EXPERIMENTAL CASE STUDY OF A FAST DIGITAL INTEGRATOR AT CERN 

The proposed approach was validated during the design of the Fast Digital Integrator (FDI) [7] in the 

laboratory of Magnet Test & Measurement Group (Accelerator Technologies Dept.) at CERN.  

In the following, (i) the FDI conceptual design, (ii) the metamodel definition, (iii) the metamodel 

identification, (iv) and the metamodel validation are illustrated. 

A. FDI Conceptual Design 

At CERN, a Fast Digital Integrator has been proposed for a real-time on-board integration of 

magnetic transducer signals [7]. In its conception, this instrument can digitize voltage signals over a 

bandwidth larger than state-of-art solutions, with a higher accuracy, owing to its 18 bit-resolution and 

500 kS/s-rate digital conversion, as well as with higher precision, owing to its self-correction of offset 

and gain errors.  

In the FDI architecture, the input signal is conditioned by a low-noise low-distortion custom 

differential PGA, specifically designed at CERN. Then, it is digitized by an 18-bit SAR ADC. The 

ADC data are processed by means of a DSP, by exploiting external trigger pulses. At each pulse 

event, the results of the process is released. These pulse events are measured by a time-base with a 

resolution of 50 ns (UTC) in order to provide a fine link between the time and the angular domain. 

The processor supervisor of the FDI is the DSP. A field-programmable gate array (FPGA) acts as I/O 

processor of the DSP: it supervises the PGA operations at low level and provides the interface for the 

board bus PXI. 

As an example, in a first application of magnetic flux measurement (test technique of rotating coil 

[16]), FDI has to sample the voltage arising from a coil transducer and to output the computed 

integral at a trigger frequency determined by an encoder, mounted on the shaft of the coil transducer 

rotating inside the superconductive magnet under test. 

B. Metamodel Definition 

In the FDI conceptual project, the design team is interested in investigating comprehensively and 

systematically the impact of possible nonideality sources ( n ) on the dynamic distortion (q ) of the 

FDI output, at varying the working operating conditions, mainly defined by the measurand ( x ) and 

by the available design settings (c ). 
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Initially, under the assumption that the parameters n , x , and c , are statistically independent, a first-

order screening metamodel is exploited in order to describe the dependency of n , x , and c  on q  (Eq. 

2). If such an assumption should turn out to be inadequate after the validation, a second-order more 

accurate metamodel, including also interactions among parameters, is to be considered (Eq. 1). 

In the design analysis, the team is interested in analyzing the impact of nonideality parameters and 

design settings on dynamic performance, at varying the input dynamic. For this reason, the input x  of 

the FDI metamodel (Fig. 3) is expressed as Over-Sampling Ratio (OSR), i.e. the ratio between the 

ADC sampling rate Sf  and the trigger frequency tf . As a matter of fact, a sample of processed output 

signal (i.e. the flux increment) is released at each trigger event, giving rise to a decimation.  

In particular, the resulting nonideality of the FDI output as a whole has to be analyzed, thus the 

metamodel output q  is the SIgnal-to-Noise And Distortion ratio (SINAD) of the computed integral.  

At this stage of conceptual design, the team is interested in assessing the need for 

(i) integration algorithms (e.g. trapezoidal) more advanced than the basic rectangular one. The 

team suspects that an increase in algorithm complexity, producing a loss in on-line 

computation time, could not produce a corresponding significant improvement in 

performance; 

(ii) the possibility of using the UTC for a fine link between angular and time domains. 

Therefore, the design settings parameters c  are the type of integration algorithm (rectangular or 

trapezoidal), and the possibility of using the UTC (algorithm and timebase, respectively, in Fig. 3). 

In the FDI acquisition and processing chain, main significant nonideality sources (n ) are (Fig. 3) [1]: 

the overall acquisition amplitude random noise (modeled as additive [1] and expressed as its standard 

deviation Vσ ), the time stamp jitter noise (in terms of its standard deviation Tσ ), and the 

deterministic nonlinearity of the input/output characteristic. At this last aim, Kim proposed a 

meaningful model [17], relating the characteristic shape to the FFT test results: in particular, a 

parameter χ  takes into account the asymmetry of the characteristic, while a parameter ξ  its 

exponential nonlinearity.  

By summarizing, the parameter arrays of the FDI metamodel are: 

( ) ( )OSR; SINAD; Algorithm, UTC ; , , ,T T
T Vx q σ σ χ ξ= = = =c n . 

The working range of each parameter and its levels are determined according to the following 

procedures: 



 
 

9

• OSR: by assuming an ADC sampling rate of 125 kS/s, three different values of OSR were 

chosen, (1, 12.5, and 125) in order to evaluate the performance for the different values of 

trigger frequency ( tf ), 125 kHz, 10 kHz, and 1 kHz. 

• Time stamp jitter: it was defined through the reference clock data sheet [18]. 

• Acquisition noise: by assuming a Gaussian distribution, the acquisition noise was derived 

experimentally, according to: 

2SNR 10 Log 10 Log ;sig sig

noise V

P P
P σ

= ⋅ = ⋅  (3) 

2
SNR
1010

sig
V

P
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= ; (4) 

where SNR is the Signal-to-Noise Ratio in dB (i.e. the SINAD without the harmonic 

distortion), sigP  is the input signal power, and noiseP  is the noise power over all the bandwidth, 

expressed by the variance 2
Vσ . 

• ADC nonlinearity parameters: according to the abovementioned Kim’s two-parameters ADC 

model [17], a direct relation between the second and third harmonics amplitude and ξ  and χ  

is derived from the FFT of the output: 

( )22 II

I

Amp
Amp

χ  ; (5) 

4 III

I

Amp
Amp

ξ  ; (6) 

where Ampi  represents the amplitude of the i-th harmonic.  

In Tab. I, the numerical values of the FDI metamodel parameters, selected according to the 

abovementioned criteria, are reported. 

C: Metamodel Identification 

According to the procedure of Fig. 2, the metamodel is identified by: (i) Simulation Planning, (ii) 

ANOM and ANOVA, and (iii) Fischer test. 
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Simulation Planning: A Resolution-III standard Taguchi plan L18 is used [19], owing its capability of 

exploring a combinatorial space generated by up to seven 3-level parameters and one 2-level 

parameter, according to a first-order model.  

A first simulation cycle showed that the UTC has a largely predominating influence on the 

performance, by making the other parameters negligible. Thus, the UTC was permanently used in the 

further simulation planning and the only design setting parameter left is the algorithm. In this case, 

one 2-level (integration algorithm type) and four 3-level (time stamp jitter, acquisition noise, ξ , and, 

χ ) parameters are considered, thus 8 degrees of freedom are left for determining the model 

uncertainty. 

 

ANOM and ANOVA. In Tab. II, the effects of each parameter on the average SINAD are shown 

(ANOM results), for an OSR of 125 due to an ADC sampling rate of 125 kS/s and a trigger frequency 

equal to 1 kHz. By the table, a predominance of the non-linearity parameter ξ  and χ  seems to rise 

up (especially of χ ), expressed in terms of effect range Δ. Furthermore, the time stamp jitter and the 

acquisition noise have the largest influence on the SNR such as expected, because the non-linearity 

parameters affect the amplitudes of the harmonics, and, thus, their effects are not detectable by means 

of the SNR index. 

Tab. III reports the ANOVA results, by showing (i) the contribution of the i-th parameter to the 

performance variance ( 2
iσ ), (ii) the corresponding F-statistic (Fi), and (iii) the P-parameter (P) 

pointing out the probability that a parameter does not affect q , with a confidence level of 1%.  

The SINAD is a scalar quantity, thus the goodness of the first-order model was verified by a Fisher 

test. As larger the index iF  is, as the variation over the mean is due to the parameter variation and not 

to the model uncertainty. 

Thus, the F-statistic and the P-parameter of Tab. III show that the most significant parameter is the 

non-linearity parameter χ . As a matter of fact, it is directly related to the harmonics of the signal to 

be integrated. 

Actually, its effect cannot be avoided, but the proposed technique allowed the reachable improvement 

to be pointed out, if the FDI analog part is optimized, or if a suitable correction is carried out. 

The Fisher test confirms the suitability of the first-order model to represent the FDI behavior, thus, 

the weight coefficient of the re-arranged metamodel was determined: 
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   SINAD 69.1 8.61 χ= + ⋅ % ;      (7) 

where: 

( )
( ) ( )

max min

max max min min
max

ˆ ˆ
Log

2 ˆ ˆ, Log , Log ,
ˆ

χ χχ
χ χ χ χ χ

χ

−−
= = =%  (8) 

and maxχ  and minχ  are the maximum and minimum value of the parameter χ  respectively (Tab. Ι). 

Eq. 7 expresses the dependence of the SINAD index on the non-linearity parameter χ,  related to the 

harmonic distortion.  

D. Metamodel Validation 

In Fig. 4, the FDI performance in terms of SINAD is depicted for different value of the OSR. The 

graph shows that the predictions of the model are consistent with the simulated results, as well as 

with the experimental results within a model band of uncertainty of 1σ .  

The model is highly helpful in determining the sensitivity of the FDI overall distortion to the ADC 

nonlinearity. Moreover, the results of model analysis point out that the most important distortion to be 

corrected is the asymmetry of the transfer function represented by χ . This is a valuable requirement 

for the FDI correction procedure of the dynamic distortion to be realized. 

 

IV. CONCLUSION 

In this paper, an error modeling technique of accurate digitizers for metrological purposes is 

presented. A systematic procedure allows the behavioral model of the device to be defined, identified, 

and validated in an efficient way. 

As a case study, a Fast Digital Integrator, developed at CERN for magnetic measurements, was 

analyzed and modeled to understand its main uncertainty sources. The results show the practical 

usefulness of the proposed approach in defining the impact of uncertainty source on working 

conditions and design choices during the concept design of a digital instrument. As a matter of fact, 

the model pointed out that the most important distortion to be corrected is the asymmetry of the 

transfer function. This is an important indication for the FDI dynamic correction procedure to be 

realized. 
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Fig. 1 Behavioral model of a generic actual digitizer. 
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Fig. 2 Procedure for metamodel-based analysis. 
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Fig. 3 . FDI behavioral model and the metamodel parameters. 

 

 
 
 

 
Fig. 4 Comparison among simulated performance, experimental performance, and metamodel 

predictions.  

 
 



 
 

19

 
 

Table I. Numerical values of the metamodel parameters. 

 Levels 
  1 2 3 
Algorithm rectangular trapezoidal # 
Universal Time Counter present absent # 
Time Stamp Jitter 5·10-15 5·10-13 5·10-12 
Acquisition Noise 4.7·10-4 3.7·10-4 2.7·10-4 
χ 5.0·10-4 1.6·10-4 5.0·10-5 
ξ 500·10-6 250·10-6 1·10-6 

 
 

 
 

Table II. ANOM results at 1 kHz trigger frequency. 
 Levels  
  1 2 3 Δ 
Algorithm -0.01 0.01 # 0.01 
Time Stamp Jitter 0.32 -0.16 -0.16 0.49 
Acquisition Noise 0.31 -0.15 -0.16 0.47 
χ -9.50 0.25 9.25 18.75 
ξ -0.78 0.31 0.46 1.24 

 
 
 

Table III. ANOVA results at 1 kHz trigger frequency. 
  γ σι

2 Fi P 
Time Stamp Jitter 2 4,7·10-1 7,0·10-1 5,2·10-1 
Acquisition Noise 2 4,3·10-1 6,4·10-1 5,5·10-1 
χ 2 5,3·102 7,9·102 <10-4 
ξ 2 2,7 4,1 6,0·10-2 
Algorithm 1 5,0·10-4 7,5·10-4 >(1-10-4) 
Error 8 6,7·10-1   

 


