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Abstract—In this paper, we address the problem of target track-
ing in a collaborative acoustic sensor network. To cope with the in-
herent characteristics and constraints of wireless sensor networks,
we present a novel target-tracking algorithm with power-aware
concerns. The underlying tracking methodology is described as a
multiple-sensor tracking/fusion technique based on particle filter-
ing. As discussed in the most recent literature, particle filtering
is defined as an emerging Monte Carlo state estimation technique
with proven superior performance in many target-tracking appli-
cations. More specifically, in our proposed method, each activated
sensor transmits the received acoustic intensity and the direction
of arrival (DOA) of the target to the sensor fusion center (a
dedicated computing and storage platform, such as a microserver).
The fusion center uses each received DOA to generate a set of
estimations based on the state partition technique, as described
later in this paper. In addition, a set of sensor weights is calculated
based on the acoustic intensity received by each activated sensor.
Next, the weighted sum of the estimates is used to generate the
proposal distribution in the particle filter for sensor fusion. This
technique renders a more accurate proposal distribution and,
hence, yields more precise and robust estimations of the target
using fewer samples than those of the traditional bootstrap filter.
In addition, since the majority of the signal processing efficiently
resides on the fusion center, the computation load at the sensor
nodes is limited, which is desirable for power-aware systems.
Last, the performance of the new tracking algorithm in various
tracking scenarios is thoroughly studied and compared with stan-
dard tracking methods. As shown in the theory and demonstrated
by our experimental results, the state-partition-based centralized
particle filter reliably outperforms the traditional method in all
experiments.

Index Terms—Monte Carlo methods, multisensor systems,
sequential estimation, state estimation, tracking.

I. INTRODUCTION

DURING recent years, with the dramatic advances in the
design of microelectromechanical systems and ad hoc
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networking protocols, there has been an emerging trend to-
ward the use of sophisticated wireless networks of unattended
sensor devices for a variety of new monitoring and control
applications [1]–[3]. Sensor networks provide the monitoring
for the physical world via many distributed wireless sensing
devices that are deployed in the region of interest. Each of
these low-cost tiny devices, which are also known as a sensor
node, has limited processing and communication capabilities
with a limited power supply. The sensing information is collab-
oratively processed between the sensor nodes and at the sensor
fusion center (e.g., microserver), which has significantly greater
bandwidth, computation, and energy capabilities compared to
sensor nodes. Locating and tracking moving stimuli or targets
are the primary tasks for a sensor network in many practical
applications, such as robot navigation, security surveillance,
and battlefield awareness [1]. In this paper, we consider tracking
a ground vehicle in a wireless acoustic sensor network using
directions of arrival (DOAs) as the measurements. The sensor
network that is studied here consists of a large number of
sensor nodes and one mobile sensor fusion center, which has
access to the information gathered by the sensor nodes and
is installed on a monitoring vehicle. The tracking scenario is
illustrated in Fig. 1. For tracking targets in a sensor network, it
is important to design a sequential method that can dynamically
fuse the information that is sent by multiple sensors without
requiring significant processing capabilities at the sensor nodes
and excessive communication within the network. The selection
of the data routing scheme and the communication protocol is
out of the scope of this study.

This paper is based on our previous work [4] with the
addition of more detailed derivation, more experimental work
and analysis, and more current references in this field. This
paper is organized as follows. In Section II, we briefly review
the work of target tracking in a sensor network. Section III ana-
lyzes the mathematical model for target tracking in an acoustic
sensor network. The new tracking algorithm is formulated in
Section IV. Last, simulation results and conclusion remarks are
provided in Sections V and VI, respectively.

II. RELATED WORK IN SENSOR NETWORK

TARGET TRACKING

The earliest work of target tracking using multiple sensors
involves various Kalman-filter-based methods, such as the ex-
tended Kalman filter (EKF), the interacting multiple model
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Fig. 1. Target tracking in a wireless sensor network. Sensor nodes 1–3 are in the active mode, and sensor nodes 4 and 5 are in the sleep mode. The fusion center
is installed on the monitoring vehicle, which has the access to all sensor nodes.

(IMM) EKF, and the probability data association methods [5].
Later, the hidden-Markov-model-based methods were studied.
In [6], an IMM tracking algorithm is developed based on
discretized target state space. Meanwhile, the “theory of evi-
dence” is used in [6] to construct the observation model. In
addition, a maximum-likelihood source localization method
based on acoustic sensor readings was also proposed for target
tracking in sensor networks [7]. However, as indicated in [8],
this method is sensitive to the parameter perturbation, and the
computational complexity is high for a multitarget location esti-
mation. Recently proposed methods also include the “dynamic
convoy tree” target tracking [9] as well as others. More recently,
particle filter (PF) based methods have been receiving increased
attention. For example, a PF tracking method is developed in
[8], in which a simple form of particle filtering, known as the
bootstrap filter, is used, and its particle weights are calculated
based on the acoustic energy readings. However, it is well
known that a bootstrap filter takes the state transition prior
as the proposal distribution, which does not take into account
the current measurements—it simply relies on one-step-ahead
predictions. When the likelihood distribution is narrow with
respect to the transition prior distribution, many particles will
receive negligible weights, which means that abundance of
computation will be wasted. In [10], a new PF tracking algo-
rithm is proposed with an improved Gaussian proposal and a
more complex measurement model.

In general, PF tracking algorithms are always categorized
as centralized or decentralized. In [8] and [10], there are
examples of centralized versions. Centralized particle filters
(CPFs) imply that all signal processing tasks are carried out
at the fusion center. On the other hand, various decentral-
ized (or distributed) particle filter (DPF) tracking algorithms
are discussed in the current literature. In [11], a DPF algo-
rithm is proposed; however, this algorithm demands significant
communication in the sensor network to update the complete
particle set and involves complicated learning procedures. In
[13], the sensors are divided into disjoint “cliques,” and the
PFs that are associated with each clique are ran in parallel.

Following this, a Gaussian mixture model is used to approx-
imate the whole particle set. Although this strategy does not
require significant communication between sensor nodes, it
requires computationally intensive filtering algorithms to be
implemented at the sensor node, whose computation capability
and power supply are very limited in many applications. Last,
the work in [13] depends on many sensors to be turned on to
achieve their desired performance. In general, many tracking
methods that are discussed here either require the sensor nodes
to have substantial signal processing capabilities or require a
more complex sensor network architecture. For example, the
recent work of [9] requires an elaborate multinode structure that
includes multiple “lead nodes” to track the target. To rectify
these problems, we propose a new PF tracking algorithm that
is based on the state partition technique and parallel EKFs
(SP-PEKFs). As demonstrated in our simulation results, the
new algorithm renders considerably accurate tracking results
while requiring only a small amount of communication proto-
cols in the network and limited processing tasks at each sensor
node, which, in turn, reduces power consumption.

III. PROBLEM FORMULATION

Here, we describe the tracking problem in two stages. The
first introduces the sensor model, whereas the second discusses
the dynamic model of the moving target.

A. Acoustic Wave Intensity Decay Model

We consider a distributed wireless acoustic sensor network,
which is composed of deterministically or randomly deployed
sensors, whose positions are known to the fusion center, which
is either stationary or mobile. The sensor locations could be
computed by using the methods proposed in [14]–[17] or using
an onboard Global Positioning System. An acoustic sensor is
capable of detecting the DOA of a perambulating target when
the target comes into the neighborhood (i.e., the effective range)
of this sensor. A sensor has limited computing capabilities to
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calculate the received acoustic intensity, and it also serves as
a transmitter/receiver. We assume that the sensor nodes are
dense enough such that during each sampling period, there
is at least one sensor in the active mode. Assuming that the
acoustic source can be treated as a point target, and the sound
propagation is isotropic, the acoustic intensity that is received
by sensor nodes can be modeled as follows [1], [22], [23]:

P (t) =
S(t)

‖X(t) − r(t)‖α
2

+ ε(t) (1)

where S(t) denotes the acoustic intensity emitted from the
source (target) that is located at X(t), and P (t) represents the
acoustic intensity received by a sensor that is located at r(t).
The variable α is an attenuation coefficient, and ε(t) is the
additive noise that is assumed to have a zero-mean Gaussian
distribution. In the sensor network, the sensors are designed
to switch to their active mode when the received acoustic
intensity is above a certain threshold. Once a sensor is in
the active mode, the acoustic intensity that is received by the
sensor will be calculated and sent to the fusion center. At the
fusion center, a set of sensor weights is calculated as Wk(t) =
Pk(t)/(

∑K
k=1 Pk(t)), where Wk(t) denotes the sensor weight

for sensor k, K is the total number of the active sensors, and
Pk(t) is the acoustic intensity that is received by sensor k.

B. Target Dynamic Model

In this paper, we focus on tracking a moving target using
a bearings-only measurement (i.e., DOA angle). As the target
moves through the network field, sensors that are located in
the neighborhood of the target will be turned on and will send
out the DOA of the target to the sensor fusion center. For
each single activated sensor, the state space model of a target-
tracking problem is formulated here. The target is represented
by a vector given as follows:

xt = [x(t) y(t) vx(t) vy(t)]T (2)

where (x(t), y(t)) is the target location in a local Cartesian
coordinate, which takes the sensor location as its origin. The
variables vx(t) and vy(t) denote the target velocities along the
x-axis and y-axis, respectively. The discrete time model for
the kinematics of a moving target is given as follows [26]:

xt = F · xt−1 + Γ · vt−1 (3)

where

F =

⎡
⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎦ , Γ =

⎡
⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤
⎥⎦

where T is the sampling rate. The process noise vt is a 2 × 1
noise vector with a distribution vt ∼ N (0,Qv), where

Qv =
[

σ2
v 0
0 σ2

v

]
.

The measurement of the tracking system is the angle between
the current sensor (the coordinate origin) and the location of the
target, which is given by

z(k) = arctan
(

x(t)
y(t)

)
+ w(t) (4)

where the scalar variable w(t) denotes the observation noise
that is distributed as w ∼ N (0, σ2

w). Equations (3) and (4)
constitute the state space model for the bearings-only tracking
problem, in which the observation equation contains nonlinear-
ities. In addition, the velocities vx(t) and vy(t) are the hidden
states of the system, which do not have direct measurements.

IV. POWER-AWARE PF FOR TARGET TRACKING

IN SENSOR NETWORKS

A. New Scheme for Tracking in Sensor Networks

As indicated in Section III, the sensor nodes in the network
have both limited computation and communication capabilities.
In addition, it is difficult or even impossible to frequently
replenish the power supply in many sensor networks. All of
these constraints pose new challenges for the target-tracking
problem. On the other hand, particle filtering has emerged to
be a promising tracking algorithm in various applications. The
design of the proper proposal distribution is crucial to imple-
ment a PF. This distribution governs the weights of the particles
that approximate the posterior distribution. In light of this, we
propose a novel particle filtering algorithm with its proposal
that is generated from a weighted sum of estimates calculated
by using each sensor feedback. More specifically, at the fusion
center, the DOAs returned from each activated sensor are used
to formulate a set of individual trackers. These trackers can
generate fast but perhaps not very accurate estimates. However,
these estimates should remain in the neighborhood of the true
target location. In addition, a set of sensor weights Wk(t) is
calculated by using the acoustic intensity that is received by
each active sensor node. Then, a weighted sum is calculated
based on these estimates and the sensor weights. Last, by taking
the weighted sum estimations as the proposal distribution, a
PF is applied for target sensor fusion. Here, in this paper, we
propose to use the state partition technique with a bank of EKFs
(SP-PEKFs) to generate individual trackers using each received
DOA. The SP-PEKF method is discussed in Section IV-B.

B. Method of the SP-PEKF

The SP-PEKF technique [24], [25] is a method to estimate
the statistics of the states from a nonlinear system given as
follows:

x(t) = f (x(t − 1)) + v(t − 1)

y(t) =h (x(t)) + w(t). (5)

The rationale behind this method is to generate a set of samples
xi, i = 1, . . . , N associated with each state x according to
a given initial state distribution N (x(0), R(0)). Then, these
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samples are partitioned and propagated through a bank of
EKFs. Last, the estimated state is given by the weighted sum
of these samples. More specifically, each state of the nonlinear
system, or each component of x(t), is partitioned as follows:

x(t) Δ= xn(t) + xr(t) (6)

where xn(t) and xr(t) denote the nominal part and the residual
part of the true state, respectively. The samples xi(0) are
generated according to the initial conditions as follows:

x(0) =xni
(0) + xri

(0) (7)

x̂(0) = x̂ni
(0) + x̂ri

(0) (8)

R(0) =Rni
(0) + Rri

(0) (9)

x̂ni
(0) = x̂(0), Rni

(0) = R(0)

x̂ri
(0) = 0, Rri

(0) = 0.

The variables Rni
and Rri

represent the covariance that is asso-
ciated with the nominal state and the residual state, respectively.
In the case when x̂(0) and R(0) are known, the nominal state
can be viewed as a deterministic variable propagating through
the system as follows:

xni
(t) = f (xni

(t − 1)) + vni
(t − 1) (10)

where vni
(t) has the same distribution as v(t), but vni

(t) is
a different realization. Following that, the system is linearized
about xni

(t) as

x(t)≈f(xni
(t−1))+F (xni

(t−1))·[x(t−1)−xni
(t−1)]+v(t−1)

= f (xni
(t−1))+ F (xni

(t−1)) · xri
(t−1)+ v(t−1)

where

F (xni
(t)) =

∂(f(x))
∂x

∣∣∣∣
x=xni

(t)

. (11)

The above equation can be simplified as

xri
(t)≈F (xni

(t−1))·xri
(t−1)+v(t−1)−vni

(t−1) (12)

where F is the Jacobian (see [24] and [25] for details). Further-
more, the following equation is constructed in a similar way:

y(t) ≈ h (xni
(t)) + H (xni

(t)) · xri
(t) + w(t) (13)

where

H (xni
(t)) =

∂ (h(x))
∂x

∣∣∣∣
x=xni

(t)

. (14)

Equations (12) and (13) form an approximate dynamic model
to the nonlinear system that is given by (5). This approximate
model is linear to the residual part of the state xri

(t). A bank
of EKFs is then applied to update xri

(t). In the context of
our problem statement, a summary of the nonlinear filtering
technique based on the SP-PEKF is described below. For further
information on SP-PEKFs, see [24] and [25].

To begin, the one-step-ahead prediction of the residual state
x̂ri

(t|t − 1) and the filtered estimate of x̂ri
(t|t) are given by

x̂ri
(t|t−1)= F (xni

(t−1)) · x̂ri
(t−1|t−1)−vni

(t−1) (15)

x̂ri
(t|t) = x̂ri

(t|t − 1) + Gi(t) · ŷi(t|t − 1) (16)

where Gi(t) is the ith subfilter gain given as

Gi(t) = Ri(t|t − 1)H (xni
(t))T Ryi

(t|t − 1)−1. (17)

The residual state prediction covariance and its update covari-
ance are given by

Rri
(t|t−1)=Ri(t|t−1)

=F (xni
(t−1)) Ri(t−1|t−1)

× F (xni
(t−1))T +σ2

v (18)

Rri
(t|t)=Ri(t|t)

= [I−Gi(t)H (xni
(t))]Ri(t|t−1). (19)

The pseudo-innovation process and its covariance are given by

ŷi(t|t − 1) ≈ y(t) − h (x̂i(t|t − 1)) (20)

Ryi
(t|t − 1) =H (xni

(t)) Ri(t|t − 1) × H (xni
(t))T + σ2

w.

The variables σ2
v and σ2

w denote the variance of the process
noise and of the observation noise, respectively. The estimation
of the state at time t is given by the following weighted sum:

x̂total(t|t) =
N∑

i=1

x̂i(t|t) · ψi(t) (21)

where x̂i(t|t) = xni
(t) + x̂ri

(t|t). The weight for each subfil-
ter is given as follows:

ψi(t) =
Li(t|t) · ψi(t − 1)

N∑
i=1

Li(t|t) · ψi(t − 1)
(22)

where

Li(t|t) = |Ryi
(t|t − 1)|−0.5

× exp
[
−1

2
‖ŷi(t|t − 1)‖2 · R−1

yi
(t|t − 1)

]
.

Last, the overall estimation error covariance Rtotal is given by

Rtotal(t|t) =
N∑

i=1

{
Ri(t|t) + [x̂(t|t) − x̂i(t|t)]

· [x̂(t|t) − x̂i(t|t)]T
}
· ψi(t). (23)

The above filtering method is based on the idea of using a
bank of EKFs to generate multiple state trajectories to simulate
the true state trajectory. The weighted sum gives the estimation
of the system state, and the weights are adaptively updated as
time evolves.
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Fig. 2. PF-based sensor tracking/fusion with a power-aware design.

C. PF-Based Sensor Network Tracking

In the past few years, particle filtering has received consid-
erable attention in the engineering literature [18]–[21] as the
next-generation nonlinear filtering technique, whose objective
is to estimate the posterior distribution of the dynamic sys-
tem states p(x(0 : t)|y(1 : t)). Particle filtering is a sequential
Monte Carlo method based on the concept of importance sam-
pling and Bayesian theory. By applying the sequential impor-
tance sampling, the posterior distribution can be approximated
by a set of weighted samples shown as follows:

p (x(0 : t)|y(1 : t))≈
Ns∑
i=1

ω̃(i)(t)δ
(
x(0 : t)−x(i)(0 : t)

)
(24)

where Ns denotes the number of particles (samples). The
variable ω̃(i)(t) is called the normalized importance weight and
is given by

ω̃(i)(t) =
ω(i)(t)

Ns∑
j=1

ω(j)(t)
(25)

where

ω(i)(t) = ω(i)(t − 1)
p

(
y(t)|x(i)(t)

)
p

(
x(i)(t)|x(i)(t − 1)

)
q
(
x(i)(t)|x(i)(0 : t − 1),y(1 : t)

) .

(26)

The variable ω(i)(t) denotes the importance weight that is as-
sociated with the ith particle at time t. The particles (samples),
which are denoted by x(i)(t), are drawn from the proposal
distribution

x(i)(t) ∼ q
(
x(t)|x(i)(0 : t − 1),y(1 : t)

)
. (27)

As mentioned earlier, we choose the PF proposal as the
weighted sum of estimations calculated from the SP-PEKF
using each returned DOA and sensor weight. More specifically,
in each iteration, the individual tracker generates an estimate
with mean and variance given by (21) and (23). Then, a
weighted sum is calculated using the sensor weights. Next, a PF
algorithm is applied by using the weighted sum as the proposal
for sensor fusion. Last, the estimates are updated for the next
iteration. Our new multiple-sensor PF-SP-PEKF algorithm is
illustrated in Fig. 2 and is summarized in Algorithm 1.

Estimate x(t) according to x(t) ≈ (1/Ns)
∑Ns

i=1 xi�(t), and
update the proposal.

We also provide two additional remarks as follows. First, to
take advantage of the estimates that are derived from the PF,
the particles are recursively fed back into the SP-PEKF at the
end of each iteration. This update stage serves as a “correction”
step for the SP-PEKF at each interaction. Second, we typically
choose the number of filter bank channels N in (21)–(23) to be
much smaller than the number of particles Ns. Our experience
is that taking 10 ≤ N ≤ 20 is generally sufficient to obtain
significantly improved performance compared to a bootstrap
filter.

V. DATA FUSION AND TRACKING RESULTS

Extensive experiments have been conducted to test the ac-
curacy and the robustness of the new proposed algorithm. The
experimental results are presented in this section. To ascertain
the effectiveness of the new algorithm (SP-CPF), we first apply
it to a single-sensor tracking problem (i.e., tracking an aircraft
using a single radar with DOA measurements) and compare it
with other known tracking techniques. Next, we examine the
application of the SP-CPF for ground vehicle tracking in an
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acoustic sensor network for three different tracking scenarios:
1) a rectilinear motion that is disturbed by random noise; 2) a
motion that involves sharp coordinate turns with periodically
changing velocities and accelerations; 3) a dual-mode motion
trajectory that is initially described by a constant acceleration
and then followed by a constant deceleration. Based on our
research, these three motion models are the major components
that represent the true motions of a ground vehicle.

Now, we study the single-sensor tracking problem. The
data in this experiment show the air traffic at a major airport
(Oklahoma City International Airport), as measured by the
National Weather Radar Testbed in Norman, OK. These data
were taken on September 2005. Here, the detection was made
within a 90◦ sector, looking toward the airport, and the origin
establishes the location of the radar. We apply three tracking
algorithms to a specific path. These algorithms are the EKF, the
traditional PF (bootstrap), and the single-sensor SP-CPF. Fig. 3
depicts the experimental results of one typical realization of the
tracking algorithm. As indicated in the figure, our new algo-
rithm gives better estimates of the target locations, as compared
to the EKF and the bootstrap filter. This experimental result is
important because tracking based on single DOA measurements
has traditionally been a difficult task [26]. Next, we consider
tracking scenarios with multiple sensors.

A. Tracking Scenario Number 1

In this tracking scenario, we analyze tracking a target, which
has a rectilinear motion that is disturbed by random noise. The
target trajectory together with a grid sensor topology is shown
in Fig. 4(a). In all the simulations in this study, we assume that
the moving target, i.e., a ground vehicle, has a noise level of
70 dB. The sensor threshold is set to 72%, 75%, and 78% of

Fig. 3. (Plus marks) True locations. (Line with circles) Our estimates with
the new method. (Line with triangles) Output of the traditional bootstrap filter.
(Line with stars) Estimates with the EKF. As the results indicate, the new
approach yields very close estimates of the true states, whereas the others
weakly follow or lose track.

the source acoustic intensity, respectively. Once the acoustic
intensity received by a sensor exceeds these thresholds, the
sensor will be switched to the active mode and will be able
to transmit the target’s DOA to the fusion center. Activated
sensors with the above thresholds are plotted in Fig. 4(b)–(d),
respectively. As illustrated in this figure, when the threshold is
set to 78% of the source intensity, only one or two sensors are
in the active mode during each sampling period. This indicates
that 78% is approximately the highest threshold that can be used
for this particular network topology since it is assumed that at
least one sensor is active during each sampling period.
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Fig. 4. (a) Grid sensor topology and the true target trajectory. (b)–(d) Activated sensors with sensor thresholds setting to 72%, 75%, and 78% of the source
energy, respectively.

Fig. 5. RMSEs of scenario number 1. (Red line) RMSE from the SP-CPF.
(Green line) RMSE from the bootstrap filter.

Next, we apply an SP-CPF and a centralized bootstrap
filter (a standard PF) to this problem for comparison. The
sensor threshold is set to 75% of the source acoustic in-
tensity. One hundred Monte Carlo runs are implemented to
generate the statistical performance index, i.e., the root-mean-
square error (RMSE). The RMSEs for the x-coordinate and the
y-coordinate are shown in Fig. 5. As indicated in this figure,
the SP-CPF gives very accurate estimations, whereas the

TABLE I
PERFORMANCE INDEX OF TRACKING SCENARIO NUMBER 1

Fig. 6. Location estimations from one typical realization of scenario
number 1. (Blue line) True target trajectory. (Red line) SP-CPF estimations.
(Green line) Bootstrap filter estimations.

traditional bootstrap filter yields a huge estimation error. This
is mainly because using the bootstrap filter takes the target state
transition prior as the proposal distribution for the PF, which
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Fig. 7. Velocity and acceleration estimations from one typical realization of scenario number 1. (Blue line) True target. (Red line) SP-CPF estimations.
(Green line) Bootstrap filter estimations.

Fig. 8. RMSEs of scenario number 2.

does not include the current measurement. When the likelihood
distribution is narrow with respect to the state transition prior
distribution, many particles will receive negligible weights, and
large estimation errors occur. The overall mean and variance
of the RMSEs are shown in Table I, from which it is clear
that the SP-CPF gives not only a small estimation error but a
small estimation error variance as well, which means that the
SP-CPF gives much more consistent estimations compared with
the bootstrap filter. It should be also noted that the SP-CPF
renders such good estimations with only 200 particles, whereas
the bootstrap filter uses 2000 particles. The execution time for
each algorithm is also provided in Table I.

Fig. 9. Location estimations from one typical realization of scenario
number 2. (Blue line) True target trajectory. (Red line) SP-CPF estimations.
(Green line) Bootstrap filter estimations.

Figs. 6 and 7 illustrate a typical realization of this track-
ing scenario. As demonstrated in these figures, the SP-CPF
algorithm keeps a close track of the target throughout the
whole experiment. However, for the bootstrap filter, although
it can follow the general direction of the target, it gives large
estimation errors when compared with that of the SP-CPF,
as shown in Fig. 6. In addition, our research also shows that
when setting the threshold to 78%, the SP-CPF can provide
estimation results that are similar to those mentioned above,
which demonstrates that this algorithm has the advantage of
reducing the computation and communication load at sensor
nodes, which is required to give accurate results.
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Fig. 10. Velocity and acceleration estimations from one typical realization of scenario number 2. (Blue line) True target. (Red line) SP-CPF estimations.

B. Tracking Scenario Number 2

In the second scenario, we apply the tracking algorithm
to a target whose motion trajectory has two sharp coordinate
turns with periodic changing velocities and accelerations. In
a target-tracking community, this kind of a target is classified
as a maneuvering target [27]. By definition, this implies that
the target’s x and y velocities are nonconstant as it makes
a path. This aspect presents additional tracking challenges,
as compared to tracking nonmaneuvering targets. Tradition-
ally, multiple-model techniques are used to track maneuvering
targets [5]. However, to test the algorithm robustness for model
uncertainties, we still use the single non-maneuvering model
for the SP-CPF. As in the previous example, 100 Monte Carlo
runs were implemented. As shown in the experiments, the
SP-CPF can keep a close track in every realization. However,
the bootstrap filter loses the target in more than 80% of the
100 realizations. Due to the fact that most of the bootstrap
filters lose track, we only provide the RMSE of the SP-CPF,
which is shown in Fig. 8. A typical realization is shown in
Figs. 9 and 10. As it is shown from this simulation, the
SP-CPF closely follows the target, despite the fact that the
model that is utilized here is a single non-maneuvering model.
This fact demonstrates that the SP-CPF can achieve certain
robustness under model uncertainties. Moreover, this robust
tracking is achieved by using only 200 particles, which is a
rather small sample size compared to the standard bootstrap PF
that uses 2000 particles.

C. Tracking Scenario Number 3

In the third scenario, we investigate tracking a target with
a dual-mode motion trajectory that is initially described by
a constant acceleration and then followed by a constant de-

Fig. 11. Location estimations from one typical realization of scenario
number 3. (Blue line) True target trajectory. (Red line) SP-CPF estimations.
(Green line) Bootstrap filter estimations.

celeration. Due to the instantaneous change in the velocity
and the acceleration, the target makes a significant maneuver
operation, although its motion is still rectilinear. As indicated
in the 100 Monte Carlo runs, the bootstrap filter can fol-
low the general direction of the target; however, it fails to
detect the instantaneous acceleration change, and, finally, it
loses the target. Figs. 11 and 12 depict one realization. It is
very clear in Fig. 12 that the bootstrap filter cannot detect
the velocity and acceleration change. On the other hand, the
SP-CPF yields very good estimates for both target locations
and velocities. The RMSEs of the Monte Carlo runs are shown
in Fig. 13.
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Fig. 12. Velocity and acceleration estimations from one typical realization of scenario number 3. (Blue line) True target. (Red line) SP-CPF estimations.
(Green line) Bootstrap filter estimations.

Fig. 13. RMSEs of scenario number 3.

VI. CONCLUSION

In this paper, we have proposed a new sensor network target-
tracking method-based particle filtering and state partition tech-
nique. Simulation results demonstrate that this technique is
capable of yielding accurate and robust estimations while re-
ducing the computations and channel requirements in the sensor
network. In particular, the dynamic model of a moving target
via an acoustic sensor network has been analyzed. The network
has been defined as a distributed wireless acoustic sensor
network that is composed of deterministically or randomly de-
ployed sensors, and the position of these sensors is known to the
fusion center, which is either stationary or mobile. This paper

has provided contributions by showing that improved sequential
Monte Carlo methods can be used to efficiently generate precise
estimations for targets that have complex motion patterns, and
sensor nodes can be switched between the active mode and
the sleep mode that is adaptively based on the requirements of
power consumption and estimation accuracy.
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