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Stable Approximation of Unstable
Transfer Function Models

László Balogh and Rik Pintelon, Fellow, IEEE

Abstract—The result of a system identification experiment is
usually a parametric continuous-time (s-domain) or discrete-time
(z-domain) model. Due to noise on the measurements and/or
nonlinear distortions, this model can be unstable. If an additional
delay is added to the unstable system, then experience shows that
a stable approximation with small approximation error can be
obtained. In this paper, a new numerical algorithm is proposed
for finding a delay that gives a stable result. Contrary to classical
approaches, it needs fewer gradientlike steps during the approxi-
mation process.

Index Terms—Delay, differential equations, parameter estima-
tion, stable approximation, system identification.

I. INTRODUCTION

IN A NUMBER of engineering problems, such as modeling,
simulation, and filter design, one needs a stable transfer

function approximation of a complex system. However, due
to disturbing noise and/or nonlinear distortions, the identified
transfer function model may be unstable. In addition, in the
filter design, the transfer function that best matches some user-
defined amplitude and phase specifications is usually unstable.

The transfer function is usually obtained by minimizing
some distance (norm) between the target function (frequency
response function or user-defined amplitude and phase spec-
ifications) and the transfer function model. According to the
particular norm used, one gets a minimax (weighted), least
squares, or least absolute values approximation.

There are several ways to obtain a stable approximation. One
possible solution is to search for the appropriate model in a
restricted subset of the whole parameter space. This leads to a
suboptimal but stable approximation. The main problem of this
kind of method is that the solution found by adapted algorithms
is local. An example is a modified gradient algorithm in which
the step size is halved every time the model obtained is unstable.
Intuitively, if the initial stable value of the gradient method is
not close to the global optimum, then it is impossible to reach
that with guaranteed stable steps [11]. In many cases, a so-
called penalty function is used. This function is close to zero
if the point from the model space determines a stable model,
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and it is very large if the corresponding model is unstable. The
modified cost function is the original function plus the penalty
function. The main advantage of this approach is that the
same numerical tools can be used without the penalty function.
However, it remains a local method.

Another approach consists of stabilizing the unstable poles
by reflecting them with respect to (w.r.t.) the stability border
and, next, adding an all-pass section. For example, if, in filter
design, the resulting infinite impulse response (IIR) filter is
unstable, then the unstable poles are stabilized by reflecting
into the unit circle giving Hstab(z). This operation does not
change the amplitude characteristic but does modify the phase.
Therefore, an additional all-pass filter Hall(z) is designed to
compensate the phase. The disadvantage of the method is that
the resulting filters Hstab(z)Hall(z) are not optimal with regard
to their orders [13]. It is shown in [13] that the same accurate
approximation can be obtained with lower filter orders by
approximating the delayed target in one step. Stability of the
final filter is obtained by an appropriate choice of the delay.

In [10], stable approximations are obtained without adding a
well-chosen delay to the target function. However, the approxi-
mation error in the frequency band of interest converges to zero
at the price of an unbounded error outside this band.

This paper handles the method where a delay is added to
the target function. Practical examples show that, if enough
delay is introduced in the target function, then the poles of the
approximator can be stabilized. Unfortunately, this idea implies
some problems, which have to be managed in a practical case.
The most important question is how the optimal delay value
can be determined. In this case, optimal means that the global
minimum of the cost function with fixed delay is the smallest
and determines a stable model. In this paper, a new method
based on ordinary differential equations (ODEs) is introduced
for automatically finding a stable (delayed) approximation.
The main benefit, in contrast with the full search, is that this
algorithm needs fewer gradientlike steps.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

The identification process can be divided into two steps.
In the first step, a parametric model is estimated from noisy
data. The result is a validated model provided with uncertainty
bounds. In the second step, the unstable model is stabilized
by adding a well-chosen delay to the target system. The result
is a stable model provided with bias bounds. The end result
of the two-step procedure is a stable model with uncertainty
and bias bounds. This is in contrast with the classical one-step
procedures that can provide neither bias bounds nor accurate
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uncertainty bounds [9]. The second step is the topic of this
paper. Stabilization means that we want to approximate the
model by adding a delay to the transfer function. Without
adding a delay, it is very hard to stabilize poles in the frequency
band of interest (see, for example, [8] and [10]).

The result of the identification process is a rational transfer
function model T (Ω) given by

T (Ω) =
δ0 + δ1Ω + · · · + δnδ

Ωnδ

γ0 + γ1Ω + · · · + γnγ
Ωnγ

(1)

where Ω denotes the corresponding (angular) frequency vari-
able (ej2πf for the z-domain and jω for the s-domain); nδ

and nγ are the orders of the numerator and denominator, res-
pectively; and δl and γk are the coefficients. If this is stable, then
the system identification process ends. However, if T is unsta-
ble, then further processing is needed to obtain a stable model.
In open-loop applications, adding a delay to target function
T is allowed. Practical experience shows that approximating
this system in the least squares sense gives stable results. The
approximation problem consists of minimizing the following
cost function w.r.t. P :

C(P, τ) =
∫
I

W (Ω)
∣∣T (Ω)e−jωτ − H(Ω, P )

∣∣2 dΩ (2)

where H is the approximator, W is a weighting function, P
is the parameter vector (the coefficients of the numerator and
denominator polynomials of H), I is the frequency interval of
the system, τ is the additional delay, and

H(Ω, P ) =
β0 + β1Ω + · · · + βnβ

Ωnβ

α0 + α1Ω + · · · + αnα
Ωnα

(3)

P = [β0, . . . , βnβ
, α0, . . . , αnα

] (4)

where nα and nβ are the orders of the denominator and nu-
merator, respectively. The dimension of parameter vector P is
nβ + nα + 1, because one of the parameters is fixed to obtain
a unique solution. The conjecture is that there always exists a
delay τ such that the global minimum of the cost function (for
a fixed τ ) results in a stable model.

In the case of a continuous frequency grid (I = [0, 2π] for the
z-domain and I = (−∞,+∞) for the s-domain), the integral
in (2) remains unchanged, but in the case of a finite frequency
grid, it is replaced by a sum, i.e.,

C(P, τ) =
F∑

k=1

∣∣W (
Ωk)(T (Ωk)e−jωkτ − H(Ωk, P )

)∣∣2 (5)

where Ωk and ωk denote the frequency points, and F denotes
the number of elements in the frequency grid. Target function
T need not be given as in (1). In (5), only F complex numbers
must be given. An advantage of the analytical expression is that
frequency point selection from the band of interest can be done
with fewer restrictions, which can be important because the
delay that determines a minimum of the cost function, which
is a stable model, depends on the frequency grid.

III. PROPOSED PRACTICAL ALGORITHM

Equation (5) is continuous w.r.t. τ . The characterization
of the extreme values of the cost function can be done by
evaluating the following equation:

∂C(P, τ)
∂P

= 0. (6)

This is a necessary but insufficient condition for the global
minimum of the cost function. As we can see, this equation
defines an implicit function P (τ), which is continuous w.r.t. the
delay, which means that we can write a differential equation for
the local minima. The following formula comes from the total
differentiation of (6):

∂2C(P, τ)
∂P 2

dP

dτ
+

∂2C(P, τ)
∂P∂τ

= 0. (7)

Hence

dP

dτ
= −

[
∂2C(P, τ)

∂P 2

]−1
∂2C(P, τ)

∂P∂τ
. (8)

This is a set of ODEs; hence, numerical tools from the nu-
merical differential equations theory can be used [4]. In this
paper and in our software, we use, for instance, the following
methods [4]:

• the classical Euler method (see Appendix A);
• the Runge–Kutta method (see Appendix B).
The main difference with the classical ODE solvers is that, in

the proposed method, a gradient-type algorithm can be rerun at
every delay value; hence, the optimal parameter vector can be
determined. The trigger and frequency of running the gradient-
type method are the control parameters of the algorithm. For
example, it is possible to run, in every kth integration step of
(8), the gradient-type algorithm, where k is given by the user.
Another possibility consists of running the gradient method
when the variation of the cost function exceeds the user-defined
threshold. The continuity of parameter vector P (τ) implies that
an ODE step can provide a good initial value for the gradient
method.

It is important to note that the solution of (6) gives a local
extreme value of the cost function for every τ . At least one
of these curves is the global optimum P∗ at a value of the
delay. Since the cost function is a complicated function, P∗(τ)
does not coincide for all real values τ with any solution of (6).
Hence, P∗(τ) is not a continuous function of delay τ . However,
C(P∗(τ), τ) is continuous w.r.t. delay τ .

The benefits of this algorithm are given here.
• The algorithm is able to find a stable approximation that is

the global optimum of the cost function with fixed delay.
In the method in which the delay is one of parameters
to be optimized, it cannot be guaranteed that the model
found is stable. One can obtain a stable approximation,
but an appropriate initial value of the delay is necessary.
However, finding such an initial delay is not an easy task.

• In Section III-A, it can be seen that the computation loads
of a gradient-type step and an ODE step are the same.
However, estimating the parameter vector with the ODE

Authorized licensed use limited to: BME OMIKK. Downloaded on November 15, 2008 at 12:19 from IEEE Xplore.  Restrictions apply.



2722 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 12, DECEMBER 2008

solver needs only one step, whereas solving the mini-
mization problem with a gradient method needs several
iteration steps, which means that the required number of
steps can be reduced by using the ODE steps.

A. Numerical Efficient Computation Written as an ODE Step

Equation (5) can be written as

C(P, τ) = (y(τ) − g(P ))T (y(τ) − g(P )) (9)

where y(τ) : R �→ R
2F , and g(P ) : R

nβ+nα+1 �→ R
2F . The

definition of y(τ) is

y(τ) =
[

Re {yC(τ)}
Im {yC(τ)}

]

where yC(τ) ∈ C
F denotes the following complex delayed

target function:

yC(τ) = [yC(τ,Ω1), . . . , yC(τ,ΩF )]T

where yC(τ,Ωk), k = 1, . . . , F , as given in the following, are
the elements of vector yC(τ):

yC(τ,Ωk) = W (Ωk)T (Ωk)e−jωkτ .

The real g(P ) is constructed by the usual complex-to-real
transformation, i.e.,

g(P ) =
[

Re {gC(P )}
Im {gC(P )}

]
.

gC(P ) is defined as

gC(P ) = [gC(P,Ω1), . . . , gC(P,ΩF )]T

where

gC(P,Ωk) = W (Ωk)H(Ωk, P ).

In this expression, the usual map between the complex plane
and the 2-D real space is used. Differentiation of (9) w.r.t.
P gives

(
∂C(P, τ)

∂P

)T

= −2
(

∂g(P )
∂P

)T

(y(τ) − g(P )) (10)

where (∂g(P )/∂P ) ∈ R
2F×(nβ+nα+1). Then

∂2C(P, τ)
∂P 2

= −2
2F∑
k=1

((
∂2g[k](P )

∂P 2

)
(y(τ) − g(P ))[k]

)

+ 2
(

∂g(P )
∂P

)T (
∂g(P )
∂P

)
(11)

where subscript [k] denotes the kth element of a vector, and
(∂2g(P )/∂P 2) ∈ R

(nβ+nα+1)×(nβ+nα+1). If P is close to an
extreme value of the cost function, then y(τ) ≈ g(P ), and

the sum containing the terms of the second derivative can be
neglected, i.e.,

∂2C(P, τ)
∂P 2

≈ 2
(

∂g(P )
∂P

)T (
∂g(P )
∂P

)
. (12)

Since (
∂2C(P, τ)

∂P∂τ

)T

= −2
(

∂g(P )
∂P

)T (
∂y(τ)
∂τ

)
(13)

and using (8) and (12), we obtain

JT J
∂P

∂τ
= JT

(
∂y(τ)
∂τ

)
(14)

where J is the Jacobian matrix, i.e., J = (∂g(P )/∂P ). Explicit
expressions are given in Appendices C and D.

The last equation can be solved in a numerical stable way
using the singular value decomposition, i.e.,

J = USV T

where U ∈ R
2F×(nα+nβ+1) and V ∈ R

(nα+nβ+1)×(nα+nβ+1)

are unitary matrices, and S ∈ R
(nα+nβ+1)×(nα+nβ+1) is a

diagonal matrix that contains the singular values. Hence, the
solutions can be calculated as

∂P

∂τ
= −V S†UJT

(
∂y(τ)
∂τ

)

where S† is a matrix in which the nonzero diagonal elements of
S are inverted.

B. Proposed Algorithm

The automatic delay selection algorithm can be split into two
main parts. The first part is responsible for finding a delay value
such that the minimum of the cost function (5) is a stable model.
Using this result as a starting point, the second main part of the
algorithm improves the parameter vector to find the best model.
The two parts can independently be treated.

Automatic delay selection is not an easy task. In this paper,
a possible solution is presented. Two kinds of steps are distin-
guished. A step is equivalent with updating parameter vector P .
The first group includes the steps that are computed at a fixed
delay value. These steps are called gradient steps, because, in
the algorithm, every step at a fixed delay is a minimization of
the cost function. The second group includes the steps that also
change the delay. These steps are called ODE steps, because the
new parameter vector is computed by using the ODE solving
algorithms. The overall algorithm is a sequence of different
steps.

1) Start.
2) τ = 0.
3) Calculate an initial value of parameter vector P (τ).
4) Decide if it is an ODE step or gradient (for example,

every kth step and/or if the variation of the cost function
exceeds a threshold).
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5) If it is an ODE step, then go to 8.
6) Gradient steps until the minimum is reached.
7) Go to 9.
8) Make an ODE estimation.
9) Meet the stop condition? If no, then go to 4.

10) Stop.

After finding a stable model that minimizes the cost function
with fixed delay, the improvement part of the algorithm comes.

1) Start.
2) Calculate initial estimation of Δτ .
3) Compute (∂C(P, τ)/∂τ), which determines the direction

of the step.
4) If |Δτ | meets the stop condition, then end.
5) Calculate the ODE step, i.e., determine Pnew.
6) Is it a stable model? If yes, go to 5.
7) Do gradient minimization with the fixed delay value.

Update Pnew.
8) Is it a stable model? If no, Δτ = Δτ/2, and go to 5.
9) τ = τ + Δτ , Δτ = 1.4Δτ , and P = Pnew.

10) Go to 3.

In this part of the algorithm, many of the gradient steps are
executed. The reason for this is that there is no guarantee that
delay changes do not cause a noncontinuous jump in parameter
vector P∗(τ).

IV. DESIGN OF INTEGRATORS, DIFFERENTIATORS,
AND HILBERT TRANSFORMERS

To demonstrate, the algorithm is applied to already published
examples. In [6], a design of the digital integrator is shown. The
aim is to approximate the characteristic of an ideal integrator
in a restricted frequency band. The ideal integrator transfer
function is

T (j2πf) =
1

j2πf
. (15)

In [6], it was found that this integrator can be well approximated
using a model of nβ = 6/nα = 6 order and τ = 4.47796 in the
frequency band [0, 0.25]. The sampling frequency is equal to 1.
The relative complex error of the realized transfer function H
is defined as

δ =
∣∣∣∣H − T

T

∣∣∣∣ (16)

where T is the target function from (15).
To avoid a singularity at f = 0, the target T in (15) is

replaced by

T̃ =
1 − ej2πfTs

j2πf
(17)

and an approximator H̃ of order nβ/(nα − 1) is calculated,
resulting in exactly the same transfer function order as in [6].

Fig. 1. Magnitude of the complex error of the half-band integrators for
(dashed line) τ = 4.47796 and (solid line) τ = 2.5853.

TABLE I
POLES AND ZEROS OF THE FIFTH-ORDER, HALF-BAND INTEGRATOR

WITH FRACTIONAL SAMPLE DELAY τ = 4.47796

TABLE II
POLES AND ZEROS OF THE FIFTH-ORDER, HALF-BAND INTEGRATOR

WITH FRACTIONAL SAMPLE DELAY τ = 2.5853

Final approximation H is then equal to

H̃

1 − z
. (18)

The proposed algorithm finds a stable solution for τ =
2.5853 that has a relative complex approximation error δ that
is 20 dB smaller than the solution for τ = 4.47796 given in [6]
(see Fig. 1). Tables I and II summarize the poles and zeros of
the resulting transfer function.

Applying the proposed method to half-band differentiators
and Hilbert transformers gives similar results as in [5] and [6],
respectively.

V. EQUALIZATION OF A DATA-ACQUISITION CHANNEL

In this section, the equalization of a data-acquisition channel
is presented. The compensation procedure should consist of
two steps. First, we have to determine the transfer function of
the channel from noisy measurement. This is an identification
problem. Second, a digital filter is to be designed for compen-
sation of the identified transfer function. This is a filter design
problem, which can be executed by the presented method.
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Fig. 2. Magnitude of the relative complex error of the data acquisition channel
for (dashed line) τ = 35 and (solid line) τ = 31.285868488.

Fig. 3. Magnitude of the (x marks) measured and (solid line) estimated
transfer functions.

In [12] and [13], compensation of an audio band Cauer filter
with an order of 11 that was produced with laser-trimmed
thick-film technology was presented. In [12], an amplitude-
and phase-compensating IIR filter was designed. The relative
complex error has been reduced to less than −58 dB using a
14/14 IIR filter for the amplitude compensation and a 20/20 IIR
filter for the phase equalization. Thus, the resulting compen-
sation filter has an order of 34/34. In [13], the order of the
compensation filter was decreased by designing a new IIR filter,
which compensated both the amplitude and the phase, with
an order lower than 34/34. A 26/26 filter was obtained with
practically the same fitting error as the 34/34 filter. The absolute
value of the complex approximation error is less then 6 mdB,
which means that the relative complex error is approximately
−58 dB. The results can be seen in Fig. 2.

In this paper, the design of the compensation filter was done
by the presented algorithm. The identified transfer function can
be seen in Fig. 3, and the identified model parameters are sum-

TABLE III
POLES AND ZEROS OF THE ESTIMATED TRANSFER FUNCTION

TABLE IV
POLES AND ZEROS OF THE STABLE APPROXIMATOR

marized in Table III. The frequency grid is [400:400:19600] Hz,
where the sampling frequency is 51 200 Hz.

The resulting IIR filter is of nonminimum phase; hence, its
inverse is unstable. Therefore, the compensation filter is a stable
approximation of the inverse IIR filter. A stable approximation
of order 26/26 was computed using the proposed algorithm. In
the case of integer delay values (dashed line), the approximation
error is approximately the same as that in [13]. However, if a
fractional delay is allowed, then the algorithm returns a better
approximation for which the magnitude of the relative complex
error is less then −80 dB. The zeros and poles of the model are
shown in Table IV.

VI. CONCLUSION

In this paper, a new method of the stable approximation with
additional delay has been given. The theoretical background has
been analyzed, and the difficulties of this kind of algorithm have
been explained.

The main advantages of the proposed algorithm are given as
follows:

• the automatic delay selection;
• the resulting approximation error being at least as small as

the existing solutions.

Moreover, it turned out that, for several examples, the approxi-
mation error was significantly smaller.

Finally, the algorithm has been illustrated on the design of
digital integrators, differentiators, and Hilbert transformers, and
the equalization of a data-acquisition channel.
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TABLE V
CASH PARAMETERS FOR THE RUNGE–KUTTA METHOD

APPENDIX A
EULER METHOD

Using the Euler method to solve the ODE (8), Pnew is
calculated by applying the following expression:

Pnew = P + f(P, τ)Δτ

where f(P, τ) is equal to

f(P, τ) = −
[
∂2C(P, τ)

∂P 2

]−1
∂2C(P, τ)

∂P∂τ
.

APPENDIX B
RUNGE–KUTTA METHOD

All the Runge–Kutta methods are based on

Pnew = P + φ(P, τ)Δτ.

To obtain a q-stage Runge–Kutta method (q function evalua-
tions per step) with parameters a, b, and v, we choose

φ(P, τ) =
q∑

i=1

viki

where

ki = f

⎛
⎝P + Δτ

i−1∑
j=1

bijkj , τ + aiΔτ

⎞
⎠ (19)

a1 = 0, and f is defined in (8). For convenience, the coefficients
a, b, and v of the Runge–Kutta method can be written in the
form of a Butcher array, i.e.,

a b

vT

where a = [a1, a2, . . . , aq]T , v = [v1, v2, . . . , vq]T , and
b = [bij ].

In our algorithm, the so-called Cash–Karps parameters are
used. The corresponding Butcher array is given in Table V [4].

APPENDIX C
EXPLICIT EXPRESSION OF J

Using the fact that the linear projection and the differentia-
tion are commutative operators, we find

J =
∂g(P )
∂P

=

⎡
⎣ Re

{
∂gC(P )

∂P

}
Im

{
∂gC(P )

∂P

}
⎤
⎦

where

∂gC(P )
∂P

=
[
∂gC(P,Ω1)

∂P
, . . . ,

∂gC(P,ΩF)
∂P

]T

∈C
F×(nα+nβ+1).

Every row can be formulated as

∂gC(P,Ωk)
∂P

=
[
∂gC(P,Ωk)

∂PNum

∂gC(P,Ωk)
∂PDen

]

where

∂gC(P,Ωk)
∂PNum

=
[

∂gC(P,Ωk)
∂β0

. . . ∂gC(P,Ωk)
∂βnβ

]
∂gC(P,Ωk)

∂βl
=W (Ωk)

Ωl
k

nα∑
s=0

αsΩs
k

∂gC(P,Ωk)
∂PDen

=
[

∂gC(P,Ωk)
∂α0

. . . ∂gC(P,Ωk)
∂αnα

]
∂gC(P,Ωk)

∂αl
= − W (Ωk)H(Ωk, P )

Ωl
k

nα∑
s=0

αsΩs
k

.

APPENDIX D
EXPLICIT EXPRESSION OF (∂y(τ)/∂τ)

Reversing the differentiation and the projection operators
leads to

∂y(τ)
∂τ

=

⎡
⎣ Re

{
∂yC(τ)

∂τ

}
Im

{
∂yC(τ)

∂τ

}
⎤
⎦ ∈ C

2F

where

∂yC(τ)
∂τ

=
[
∂yC(τ,Ω1)

∂τ
, . . . ,

∂yC(τ,ΩF )
∂τ

]T

∈ C
F

with

∂yC(τ,Ωk)
∂τ

= W (Ωk)T (Ωk)(−jωk)e−jωkτ .
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