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Exploration and Mapping Using the
VFM Motion Planner

Santiago Garrido, Luis Moreno, and Dolores Blanco

Abstract—Efficient mapping of unknown environments is a
fundamental function for mobile robot intelligence. To do so re-
quires good exploration strategies and solving the simultaneous
localization and mapping problem. The approach presented in
this paper is an integration of our solutions into the problems of
exploration and map building with a single robot. The exploration
algorithm is based on the Voronoi fast marching (VFM) method
to determine a motion plan toward the most unexplored and
free zones of the environment. One consistent global map of the
workspace is created using the simultaneous localization and mod-
eling (SLAM) algorithm based on a nonlinear evolutive filter called
the evolutive localization filter. The combination of the extended
Voronoi transform and the fast marching method in the VFM
method provides potential maps for robot navigation in previously
unexplored dynamic environments. The logarithm of the extended
Voronoi transform imitates the repulsive electric potential from
walls and obstacles. The method uses a fast marching technique
to determine a motion plan. A new strategy such that the robot
determines the zones that it must explore in an autonomous way is
described. As the robot carries out the exploration, it constructs a
consistent map of the environment using the SLAM algorithm.

Index Terms—Exploration, mobile robots, robot mapping,
simultaneous localization and modeling (SLAM).

I. INTRODUCTION

AUTONOMOUS exploration and mapping are fundamen-
tal problems to be solved as an autonomous robot car-

ries out tasks in real unknown environments. Sensor-based
exploration, motion planning, localization, and simultaneous
mapping are processes that must be coordinated to achieve
autonomous execution of tasks in unknown environments.

There is a variety of potential applications for autonomous
mobile robots in such diverse areas as forestry, space, nuclear
reactors, environmental disasters, industry, and offices. Poten-
tial tasks for autonomous mobile robots include maintenance,
delivery, and security surveillance, which all require some form
of intelligent navigational capabilities. A mobile robot will be
a useful addition to these domains only when it can serve the
following purposes: 1) robustly function under various envi-
ronmental conditions; 2) operate without human intervention
for long periods of time; and 3) provide some guarantee of
task performance. The environments in which mobile robots
must function are dynamic, unpredictable, and not completely
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specifiable by a map beforehand. For the robot to successfully
complete a set of tasks, it must dynamically adapt to changing
environmental circumstances. Sensor-based planning makes
use of the sensor-acquired information of the environment in its
latest configuration and generates an adequate path toward the
desired following position. Sensor-based discovery path plan-
ning is the guidance of an agent—a robot—without a complete
a priori map by discovering and negotiating the environment to
reach a goal location while avoiding all encountered obstacles.
Sensor-based discovery (i.e., dynamic) path planning is prob-
lematic, because the path needs to continually be recomputed
as new information is discovered.

To autonomously build a map of an unknown environ-
ment, this paper first presents an exploration and path-planning
method based on the logarithm of the extended Voronoi trans-
form (EVT) and the fast marching method. This path planner
is called Voronoi fast marching (VFM) [7]. The EVT of an
image gives a gray scale that is darker near the obstacles and
walls and is lighter when far from them. The logarithm of
the EVT imitates the repulsive electric potential in 2-D from
walls and obstacles. This potential impels the robot far from
obstacles. The fast marching method has been applied to path
planning [34], and their trajectories are of minimal distance.
They are not very safe, however, because the path is very close
to obstacles, and more importantly, the path is not smooth
enough. To improve the safety of the trajectories calculated
by the fast marching method, avoiding unrealistic trajectories
produced when the areas are narrower than the robot, objects
and walls are enlarged in a security distance that assures that the
robot does not collide and does not accept passages narrower
than the robot’s size.

The last step is to calculate the trajectory in the image
generated by the logarithm of the EVT using the fast marching
method. Then, the path obtained verifies the smoothness and
safety considerations required for mobile robot path planning.

The advantages of this method include the ease of imple-
mentation, the speed of the method, and the quality of the
trajectories. This method is used at a local scale that operates
with sensor information (i.e., sensor-based planning).

To build the environment map while the robot carries out
the exploration task, simultaneous localization and modeling
(SLAM) is implemented. The algorithm is based on the sto-
chastic search for solutions in the state space to the global
localization problem through a differential evolution algorithm.
This nonlinear evolutive filter, called evolutive localization
filter (ELF) [20], stochastically searches along the state space
for the best robot pose estimate. The set of pose solutions
(the population) focuses on the most likely areas according to
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the perception and up-to-date motion information. The popu-
lation evolves using the log-likelihood of each candidate pose
according to the observation and the motion errors from the
comparison between observed and predicted data from the
probabilistic perception and motion model.

In the remainder of this paper, Section II reviews other
approaches to spatial exploration and map learning. Section III
presents our VFM motion planner. The SLAM algorithm is
briefly described in Section IV. Then, Section V describes
the specific exploration method proposed in this paper. Next,
Section VI demonstrates the performance of the exploration
strategy as it explores different environments according to the
two possible ways of working for the exploration task. Finally,
conclusions are summarized in Section VII.

II. PREVIOUS AND RELATED WORK

A. Representations of the World

Roughly speaking, there are two main forms for represent-
ing the spatial relations in an environment: 1) metric maps
and 2) topological maps. Metric maps are characterized by a
representation where the position of the obstacles is indicated
by coordinates in a global frame of reference. Some of them
represent the environment with point grids, defining regions
that can be occupied or not by obstacles or goals [9], [19].
Topological maps represent the environment with graphs that
connect landmarks or places with special features [12], [21].
In our approach, we choose the grid-based map to represent the
environment. The clear advantage is that, with grids, we already
have a discrete environment representation, which can readily
be used in conjunction with the EVT function and fast marching
method for path planning. The pioneer method for environment
representation in a grid-based model was the certainty grid
method developed at the Carnegie Mellon University [19] by
Moravec and Elfes. He represents the environment as a 3-D or
2-D array of cells. Each cell stores the probability of the related
region that is occupied. The uncertainty related to the position
of objects is described in the grid as a spatial distribution of
these probabilities within the occupancy grid. The larger the
spatial uncertainty, the greater the number of cells occupied
by the observed object. The update of these cells is performed
during the navigation of the robot or through the exploration
process by using an update rule function. Many researchers
have proposed their own grid-based methods. The main differ-
ence among them is the function used to update the cell. Some
of them are, e.g., fuzzy [25], Bayesian [8], heuristic probability
[2], and Gaussian [3]. In histogramic in-motion mapping, each
cell has a certainty value, which is updated whenever it is being
observed by the robots sensors. The update is performed by
increasing the certainty value by 3 (in the case of detection of
an object) or by decreasing it by 1 (when no object is detected),
where the certainty value is an integer between 0 and 15.

B. Approaches to Exploration

This section relates some interesting techniques for ex-
ploratory mapping. They mix different localization methods,
data structures, search strategies, and map representations.

Kuipers and Byun [13] proposed an approach to explore an
environment and to represent it in a structure based on layers
called spatial semantic hierarchy [12]. The algorithm defines
distinctive places and paths, which are linked to form an envi-
ronmental topological description. Then, a geometrical descrip-
tion is extracted. The traditional approaches focus on geometric
description before the topological one. The distinctive places
are defined by their properties, and the distinctive paths are
defined by the twofold robot control strategy: 1) follow the mid-
line or 2) follow the left wall. The algorithm uses a lookup table
to keep information about the place visited and the direction
taken. This allows a search in the environment for unvisited
places. Lee [16] developed an approach based on Kuipers and
Byun’s work [13] on a real robot. This approach is successfully
tested in indoor officelike spaces. This environment is relatively
static during mapping. Lee’s approach assumes that walls are
parallel or perpendicular to each other. Furthermore, the system
operates in a very simple environment with cardboard barriers.
Mataric [21] proposed a map-learning method based on a
subsumption architecture. Her approach models the world as a
graph, where the nodes correspond to landmarks, and the edges
indicate topological adjacencies. The landmarks are detected
from the robot movement. The basic exploration process is
wall-following combined with obstacle avoidance. Oriolo et al.
[25] developed a grid-based environment mapping process that
uses fuzzy logic to update the grid cells. The mapping process
runs online [24], and the local maps are built from the data
obtained by the sensors and are integrated into the environment
map as the robot travels along the path defined by the A∗

algorithm to the goal. The algorithm has two phases. The first
phase is the perception phase. The robot acquires data from the
sensors and updates its environment map. The second phase is
the planning phase. The planning module replans a new safe
path to the goal from the new explored area. Thrun and Bucken
[37], [38] developed an exploration system that integrates both
evidence grids and topological maps. The integration of the
two approaches has the advantage of disambiguating different
positions through the grid-based representation and performing
fast planning through the topological representation. Explo-
ration is performed through the identification and generation
of the shortest paths between unoccupied regions and the robot.
This approach works well in dynamic environments, although
the walls have to be flat and cannot form angles that differ
more than 15◦ from the perpendicular. Feder et al. [4] proposed
a probabilistic approach to treat the concurrent mapping and
localization using a sonar. This approach is an example of
a feature-based approach. It uses the extended Kalman filter
to estimate the localization of the robot. The essence of this
approach is to take actions that maximize the total knowledge
about the system in the presence of measurement and navi-
gational uncertainties. This approach was successfully tested
in wheeled land robot and autonomous underwater vehicles.
Yamauchi [39], [40] developed the frontier-based exploration
to build maps based on grids. This method uses a concept of
frontier, which consists of boundaries that separate the explored
free space from the unexplored space. When a frontier is
explored, the algorithm detects the nearest unexplored frontier
and attempts to navigate toward it by planning an obstacle-free
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path. The planner uses a depth-first search on the grid to reach
that frontier. This process continues until all the frontiers are
explored. Zelek [42] proposed a hybrid method that combines
a local planner based on a harmonic function calculation in a
restricted window with a global planning module that performs
a search in a graph representation of the environment created
from a computer-aided design map. The harmonic function
module is employed to generate the best path, given the lo-
cal conditions of the environment. The goal is projected by
the global planner in the local windows to direct the robot.
Recently, Prestes da Silva et al. [29] have investigated the
performance of an algorithm for exploration based on the partial
updates of a harmonic potential in an occupancy grid. They
consider that as the robot moves, it carries along an activation
window whose size is of the order of the sensors range.

Prestes da Silva et al. [30] propose an architecture for an
autonomous mobile agent that explores while mapping a 2-D
environment. The map is a discretized model for the localiza-
tion of obstacles, on top of which a harmonic potential field
is computed. The potential field serves as a fundamental link
between the modeled (discrete) space and the real (continuous)
space where the agent operates.

The proposed method in this paper can be included in the
sensor-based global planner paradigm. It is a potential method,
but it does not have the following typical problems of these
methods enumerated by Koren–Borenstein [10]:

1) trap situations due to local minima (cyclic behavior);
2) no passage between closely spaced obstacles;
3) oscillations in the presence of obstacles;
4) oscillations in narrow passages.

The proposed method is conceptually close to the navigation
functions of Rimon–Koditscheck [33], because the potential
field has only one local minimum at the single goal point. This
potential and the paths are smooth (similar to the repulsive
potential function), and there are no degenerate critical points
in the field. These properties are similar to the characteristics
of the electromagnetic-waves propagation in geometrical optics
(i.e., for monochromatic waves, with the approximation that
length wave is much smaller than obstacles and without con-
sidering reflections or diffractions).

The fast marching method has previously been used
in path planning by Sethian [35], [36] but using only an
attractive potential. This method has some problems. The most
important one that typically arises in mobile robotics is that
optimal motion plans may bring robots very close to obstacles
(including people), which is not safe. This problem has been
dealt with by Latombe [14], and the resulting navigation
function is called NF2. The Voronoi method also tries to
follow a maximum clearance map [6]. Melchior et al. [23],
[28] present a fractional potential to diminish the obstacle
danger level and improve the smoothness of the trajectories,
Philippsen and Siegwart [27] introduces an interpolated
navigation function but with trajectories very close to obstacles
and without smooth properties, and Petres et al. [26] introduce
efficient path-planning algorithms for underwater vehicles that
take advantage of underwater currents.

LaValle [15] deals with on-the-feedback motion-planning
concept. When moving in the physical world, actions must
be planned, depending on the information gathered during
execution.

Lindemann and LaValle [17], [18] present a method in which
the vector field globally solves the navigation problem and
provides robustness to disturbances in sensing and control. In
addition to being globally convergent, the vector field’s integral
curves (system trajectories) are guaranteed to avoid obstacles
and are C∞ smooth, except in the changes of cells. They
construct a vector field with these properties by using existing
geometric algorithms to partition the space into simple cells;
they then define local vector fields for each cell and smoothly
interpolate between them to obtain a global vector field that can
be used as a feedback control for the robot.

Yang and LaValle [41] presented randomized framework
motion strategies by defining a global navigation function over
a collection of spherical balls in the configuration space. Their
key idea is to fill the collision-free subset of the configuration
space with overlapping spherical balls and define collision-
free potential functions on each ball. A similar idea has been
developed for collision detection in [31] and [32].

The proposed method constructs a vectorial field as in the
work of Lindemann, but the field is done in the global map
instead of having local cells maps with the problem of having
trajectories that are not C∞ in the union between cells. The
method also has similarities with the Yang and LaValle method.
They proposed a series of balls with a Lyapunov potential
associated with each of them. These potentials are connected
in such a way that it is possible to find the trajectory using the
gradient method in each ball. The method that we propose has a
unique global Lyapunov potential associated with the vectorial
field that allows for building the C∞ trajectory in a single pass
with the gradient method.

To achieve a smooth safe path, it is necessary to have smooth
attractive repulsive potentials, which are connected in such a
way that the resulting potential and the trajectories have no local
minima and curvature continuity to facilitate the path-tracking
design. The main improvement of the proposed method in-
cludes the good properties of smoothness and the safety of
the trajectory. Moreover, the associated vector field allows the
introduction of nonholonomic constraints.

Note that, in the proposed method, the important ingredients
are the attractive and the repulsive potentials, i.e., the manner of
connecting them, which describes the attractive potential using
the wave equation (or in a simplified way, the eikonal equation).
This equation can be solved in other ways. Mauch [22] uses
a marching-with-correctness criterion with a computational
complexity that can be reduced to O(N). Covello and Rodrigue
[1] present a method that can be used on nodes that are on
highly distorted grids or are randomly located.

III. VFM MOTION PLANNER

Which properties and characteristics are desirable for a mo-
tion planner of a mobile robot? The first one is that the planner
always drives the robot in a smooth safe way to the goal point.
In nature, there are phenomena with the same way of working,
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Fig. 1. Propagation of a wave and the corresponding minimum time
path when there are two media of different slowness (diffraction) index.
(a) With a vertical gradient. (b) Wavefront that propagates with velocity F .

i.e., electromagnetic waves. If, in the goal point, there is an
antenna that emits an electromagnetic wave, then the robot
could drive itself to the destination following the waves to the
source. The concept of the electromagnetic wave is particularly
interesting, because the potential and its associated vector field
have all the good properties desired for the trajectory, e.g.,
smoothness (it is C∞) and the absence of local minima. This
attractive potential still has some problems. The most important
one that typically arises in mobile robotics is that optimal
motion plans may bring robots very close to obstacles, which is
not safe. This problem has been dealt with by Latombe [14], and
the resulting navigation function is called NF2. The Voronoi
method also tries to follow a maximum clearance map [5]. To
generate a safe path, it is necessary to add a component that
repels the robot away from obstacles. In addition, this repul-
sive potential and its associated vector field should have good
properties such as those of the electrical field. If we consider
that the robot has an electrical charge of the same sign as the
obstacles, then the robot would be pushed away from obstacles.
The properties of this electric field are very good, because
it is smooth, and there are no singular points in the interest
space Cfree.

The third part of the problem consists of how the two fields
can be mixed together. This union between an attractive and a
repulsive field has been the biggest problem for the potential
fields in path planning since the works of Khatib and Chatila
[11]. In the VFM method, this problem has been solved in the
same way that nature does: electromagnetic waves, e.g., light,
have a propagation velocity that depends on the media. For
example, flint glass has a refraction index of 1.6, whereas in the
air, it is approximately 1. This refraction index of a medium is
the quotient between the velocity of light in the vacuum and the
velocity in the medium under consideration. That value is the
slowness index of the front-wave propagation in a medium. A
light ray follows a straight line if the medium has a constant
refraction index (the medium is homogeneous) but refracts
when there is a transition of medium (a sudden change in the
refraction index value), as shown in Fig. 1(a). In the case of
a gradient change in refraction index in a given medium, the
light ray follows a curved line, as shown in Fig. 1(b). This
phenomenon is shown in nature as hot road mirages. In this
phenomenon, the air closer to the road surface is warmer than
the higher level layers. The warmer air has lower density and
lower refraction index. Thus, light rays that come from the sun
are curved near the road surface and cause what is called the hot

Fig. 2. Light rays that bend due to changing refraction index in the air with
higher temperature near the road surface.

road mirage, as illustrated in Fig. 2. This case is the idea that
inspires the way in which the attractive and the repulsive fields
are merged in our work.

For this reason, in the VFM method, the repulsive potential is
used as refraction index of the wave emitted from the goal point.
This way, a unique field is obtained, and its associated vector
field is attractive to the goal point and repulsive from the obsta-
cles. This method inherits the properties of the electromagnetic
field. Intuitively, the VFM method gives the propagation of a
front wave in an inhomogeneous media, as shown in Fig. 1(b).

In geometrical optics, Fermat’s least time principle for light
propagation in a medium with a space-varying refractive index
η(x) is equivalent to the eikonal equation and can be written as
‖∇Φ(x)‖ = η(x), where the eikonal Φ(x) is a scalar function
whose isolevel contours are normal to the light rays. This
equation is also known as the Fundamental Equation of the
Geometrical Optics.

The eikonal (from the Greek “eikon,” which means “image”)
is the phase function in a situation for which the phase and the
amplitude are slowly varying functions of position. Constant
values of the eikonal represent surfaces of constant phase or
wavefronts. The normals to these surfaces are rays (the paths of
energy flux). Thus, the eikonal equation provides a method for
“ray tracing” in a medium of slowly varying refractive index
(or the equivalent for other kinds of waves).

The theory and the numerical techniques known as fast
marching methods are derived from an exposition to describe
the movement of interfaces based on a resolution of the equa-
tions on partial differential equations as a boundary condition
problem. The fast marching method has previously been used in
path planning by Sethian [35], [36] but using only an attractive
potential.

The use of the fast marching method over a slowness (refrac-
tion or inverse of velocity) potential considerably improves the
quality of the calculated trajectory. On one hand, the trajectories
tend to go close to the Voronoi skeleton because of the optimal
conditions of this area for robot motion [5]. On the other hand,
the trajectories are also considerably smooth. For a small easy
L-shaped environment, the funnel-shaped potential given by
the wave propagation is shown in Fig. 3(a), and the trajectory
calculated by the gradient method is shown in Fig. 3(b).

The solution of the eikonal equation used in the VFM method
is given by the solution of the wave equation. We have

φ = φ0e
ik0(ηx−c0t).
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Fig. 3. (a) Union of the two potentials, with the second potential having the first one as the refractive index. (b) Associated vector field and typical trajectories
obtained with this method.

Fig. 4. Potential of the logarithm of the inverse of the EVT.

Fig. 5. Trajectory obtained by directly applying the fast marching method
over the binary image without using our algorithm.

This solution is an exponential; thus, if the potential η(x) is C∞,
then the potential φ is also C∞, and therefore, the trajectories
calculated by the gradient method over this potential would be
of the same class.

This smoothness property can be observed in Fig. 6, where
the trajectory is clearly good, safe, and smooth. One advantage
of the method is that it generates not only the optimum path
but also the velocity of the robot at each point of the path.
The velocity reaches its highest values in the light areas and its
minimum values in the grayer zones. The VFM method simul-
taneously provides the path and maximum allowable velocity
for a mobile robot between the current location and the goal.

Fig. 6. Trajectories calculated by applying the proposed algorithm with fast
marching over the logarithm of the EVT.

TABLE I
COMPUTATIONAL COST (IN SECONDS) FOR THE

ROOM ENVIRONMENT IN FIG. 12 (966 × 120 PIXELS)

A. Details of the VFM Algorithm

This method starts with the calculation of the logarithm of
the EVT of the 2-D map of the environment (or the EVT in
case of 3-D maps). Each white point of the initial image (which
represents free cells in the map) is associated with a level of
gray that is the logarithm of the 2-D distance to the nearest
obstacles (or the EVT in 3-D). As a result of this process,
one kind of potential that is proportional to the distance to the
nearest obstacles to each cell is obtained (see Fig. 4). Zero
potential indicates that a given cell is part of an obstacle, and
maxima potential cells correspond to cells in the Voronoi dia-
grams (which are the cells located equidistant to the obstacles).

This function introduces a potential similar to a repulsive
electric potential (in 2-D), as shown in Fig. 4, which can be
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Fig. 7. Flowchart of Case 1.

expressed by

φ = c1 log(r) + c2 (1)

where c1 is a negative constant.
If n > 2 (with n being the space dimension), the potential is

φ =
c3

rn−1
+ c4 (2)

where r is the distance from the origin.
In the second step, the technique proposed here uses fast

marching to calculate the shortest trajectory in the potential
surface defined by the logarithm of the EVT. The calculated
trajectory is the geodesic one in the potential surface, i.e., with a
viscous distance. This viscosity is done by the gray level. If the
fast marching method were directly used on the environment
map, we would obtain the shortest geometrical trajectory, as
shown in Fig. 5, but the trajectory is neither safe nor smooth.

The potential created has local minima, but the trajectories
are not stuck in these points, because the fast marching method
gives the trajectories that correspond to the propagation of a
wave front, which is faster in lighter regions and slower in the
darker ones.

The trajectories obtained using the logarithm of the EVT tend
to go by the Voronoi diagram but are properly smoothed, as
shown in Fig. 6.

B. Properties

TheproposedVFMalgorithmhas the followingkeyproperties.
• Fast response. The planner needs to be fast enough to

reactively be used and plan new trajectories. To obtain
this fast response, a fast planning algorithm and a fast
simple treatment of the sensor information are necessary.
This condition requires a low-complexity-order algorithm
for a real-time response to unexpected situations. The
proposed algorithm has a fast response time to allow its
implementation in real time, even in environments with
moving obstacles using a normal PC computer.

The proposed method is highly efficient from a compu-
tational point of view, because the method directly oper-

ates over a 2-D image map (without extracting adjacency
maps) and due to the fact that the fast marching complexity
is O(m×n) and the EVT is also of complexity O(m×n),
where m × n is the number of cells in the environment
map. In Table I, orientative results of the cost average
in time appear (measured in seconds), and each step of
the algorithm for different trajectory lengths is calculated
(the computational cost depends on the number of points
of the image).

• Smooth trajectories. The planner must provide a smooth
motion plan that can be executed by the robot motion
controller. In other words, the plan does not need to be
refined, avoiding the need for a local refinement of the
trajectory. The solution of the eikonal equation used in
the proposed method is given by the solution of the wave
equation. We have

φ = φ0e
ik0(ηx−c0t).

This solution is an exponential; thus, if the potential
η(x) is C∞, then the potential φ is also C∞, and therefore,
the trajectories calculated by the gradient method over this
potential would be of the same class.

This smoothness property can be observed in Fig. 6,
where the trajectory is clearly good, safe, and smooth. One
advantage of the method is that it generates not only the
optimum path but also the velocity of the robot at each
point of the path. The velocity reaches its highest values
in the light areas and its minimum values in the grayer
zones. The VFM method simultaneously provides the path
and the maximum allowable velocity for a mobile robot
between the current location and the goal.

• Reliable trajectories. The proposed planner provides a
safe (reasonably far from detected obstacles) and reliable
trajectory (free from local traps). This result is due to the
refraction index, which causes higher velocities far from
obstacles.

• Completeness. The method consists of the propagation of
a wave; thus, if there is a path from the initial position to
the objective, the method can find it.
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Fig. 8. Flowchart of Case 2.

Fig. 9. Laser data read by the robot.

IV. DIFFERENTIAL EVOLUTION APPROACH TO SLAM

Localization and map building are key components in robot
navigation and are required to successfully execute the path
generated by the VFM planner in the exploration method
proposed in this paper. Both problems are closely linked,
and learning maps are required to simultaneously solve both
problems—this case is the SLAM problem. Uncertainty in
sensor measures and uncertainty in robot pose estimates make
use of a SLAM method necessary to create a consistent map of
the explored environment.

The SLAM algorithm used in this paper is described in
[2020]. It is based on the stochastic search of solutions in the
state space to the localization problem through a differential
evolution algorithm. A nonlinear evolutive filter, called ELF,
stochastically searches along the state space for the best robot
pose estimate. The proposed SLAM algorithm operates in two
steps. In the first step, the ELF filter is used at a local level to
relocalize the robot based on the robot odometry, the laser scan
at a given position, and a local map where only a low number

Fig. 10. Trajectory calculated with the VFM method using the laser data
(local map).

Fig. 11. Robot Manfred has been used to test the algorithms.
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Fig. 12. Environment map of the Robotics Laboratory.

Fig. 13. Consecutive steps of the process using the first case of the exploration algorithm. The red line represents the crossed path, and the blue one represents
the calculated trajectory from the present position to the destination point.

Fig. 14. Consecutive steps of the process. The illuminated area represents the front-wave propagation.

Fig. 15. Map built in each step using the SLAM algorithm.

of the last scans have been integrated. In the second step,
the aligned laser measures, together with the corrected robot
poses, are used to detect when the robot revisits a previously
crossed area. Once a cycle is detected, the ELF is reused to
reestimate the robot position and orientation to integrate the
sensor measures in the global map of the environment.

This approach uses a differential evolution method to perturb
the possible pose estimates contained in a given set until the
optimum is obtained. By properly choosing the cost function,
a maximum a posteriori estimate is obtained. This method
is applied at a local level to relocalize the robot and at a
global level to solve the data association problem. The method
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Fig. 16. Simulation results with Case 1, with the final objective. Trajectory was calculated. The red line represents the crossed path, and the blue one represents
the calculated trajectory from the present position to the destination point.

Fig. 17. Simulation results with Case 1 with front-wave expansion. The red line represents the crossed path, and the blue one represents the calculated trajectory
from the present position to the destination point.

proposed integrates sensor information in the map only when
cycles are detected, and the residual errors are eliminated, thus
avoiding a large number of modifications in the map or the
existence of multiple maps and decreasing the computational
cost compared to other solutions.

V. IMPLEMENTATION OF THE EXPLORER

To solve the problem of the exploration of an unknown en-
vironment, our algorithm can work in two different ways. First,
the exploration process can be directed by giving the algorithm
one or several successive goal points in the environment to
which the robot must drive during exploration. Second, which is
the second form of our algorithm, the exploration can be carried
out without having any previously fixed objective point. In

such a case, the algorithm must automatically determine toward
where the robot must drive to complete the exploration process.

Case I: In the first case, the initial information is the lo-
calization of the final goal. This way, the robot has a general
direction of movement toward the goal. In each movement of
the robot, information about the environment is used to build a
binary image that distinguishes the occupied space represented
by value 0 (obstacles and walls) from the free space, with
value 1. The EVT of the known map at that moment gives a gray
scale that is darker near the obstacles and walls and is lighter far
from them. The VFM method gives the trajectory from the pose
of the robot to the goal point using the known information. In
this first way of working, the SLAM algorithm in [2020] is used
to avoid localization errors from being translated into the map
built during exploration.
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Fig. 18. Simulation results with Case 1 with the map built. The red line represents the crossed path, and the blue one represents the calculated trajectory from
the present position to the destination point.

In this first case, the robot has a final goal: in the exploration
process, the robot performs the algorithm in the flowchart
in Fig. 7.

Case II: In the second form of the algorithm, the goal
location is unknown, and the robot behavior is truly exploratory.
We propose an approach based on the incremental calculation
of a map for path planning.

We define a neighborhood window, which travels with the ro-
bot, roughly the size of its laser sensor range. This window indi-
cates the new grid cells that are recruited for update; i.e., if a cell
was in the neighborhood window at a given time, it becomes
part of the explored space by participating in the EVT and fast
marching method calculation for all times. The set of activated
cells that comprise the explored space is called the neighbor-
hood region. Cells that were never inside the neighborhood
window indicate unexplored regions. Their potential values are
set to zero and define the knowledge frontier of the state space,
i.e., the real space in our case. The detection of the nearest un-
explored frontier naturally comes from the EVT calculation. It
can also be understood from the physical analogy with electrical
potentials that obstacles repel, whereas frontiers attract.

Consider that the robot starts from a given position in an
initially unknown environment. In this second method, there is
no direction of the place where the robot must go.

An initial matrix with zeros in the obstacles and value 1 in
the free zones is considered. This first matrix is built using the
information provided by sensors and represents a binary image
of the environment detected by sensors. The first step consists
of calculating the EVT of the obstacles in this image. A value
that represents the distance to the nearest obstacle is associated
with each cell of the matrix. A matrix W of grays with values
between 0 (obstacles) and 1 is obtained. This W matrix gives
us the EVT of the obstacles found up until that moment.

The second matrix is built by darkening the zones that the
robot has already visited. Then, the EVT of this image is
calculated, and the result is the V T matrix.

Fig. 19. Trajectory followed to explore an unknown environment with the
method proposed by the first algorithm.

Finally, matrix WV is the sum of the matrices V T and W ,
with weights 0.5 and 1, respectively, i.e.,

WV = 0.5 ∗ V T + W.

This way, it is possible to darken the zones already visited
by the robot and impel it to go to the unexplored zones. The
whitest point of matrix WV is calculated as max(WV ), i.e.,
the most unexplored region that is in a free space. This point
is chosen as the new goal point. Applying the fast marching
method on WV , the trajectory toward that goal is calculated.
The robot moves by following this trajectory. In the following
steps, the trajectory to be followed is computed, first calculating
W and V T at every moment and, therefore, WV but without
changing the objective point. Once the robot has been arrived
at the objective (i.e., that path calculated is very small), a new
objective is selected as max(WV ).

Therefore, the robot moves by maximizing the knowledge
gain. In this case or in any other situation where there is
no gradient to guide the robot, it simply follows the forward
direction. The exploration process that the robot performs in
the second method is summarized in the flowchart in Fig. 8.
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Fig. 20. Simulation results with Case 2, without the final objective. Trajectory was calculated.

The algorithms laid out in Fig. 7 (i.e., the flowchart of Case 1)
can be inefficient in very large environments. To increase the
speed, it is possible to pick a goal point, put a neighborhood
window the size of the sensor range, run into the goal point, then
look at the maximal initial boundary, and recast and terminate
when one reaches the boundary of the computed region. Similar
improvements can be made to Case 2.

VI. RESULTS

The proposed method has been tested using the manipulator
robot Manfred (see Fig. 11). It has a coordinated control of
all degrees of freedom in the system (the mobile base has
2 DOFs, and the manipulator has 6 DOFs) to achieve smooth
movement. This mobile manipulator uses a sensorial system
based on vision and 3-D laser telemetry to perceive and model
3-D environments. The mobile manipulator will include all
the capabilities needed to safely navigate, localize, and avoid
obstacles throughout the environment.

The VFM method is used for sensor-based planning, directly
working on a raw sensor image of the environment, as shown
in Figs. 9 and 10. These images correspond to a corner of a
corridor of our University.

To illustrate the performance of the exploration method based
on the VFM motion planner proposed, a test (see Fig. 11)
in a typical office indoor environment, as shown in Fig. 12,
has been carried out. The dimensions of the environment are
116 × 14 m (the cell resolution is 12 cm); i.e., the image has
966 × 120 pixels.

The VFM motion-planning method provides smooth tra-
jectories that can be used at low control levels without any
additional smooth interpolation process. Some of the steps of
the planning process between two defined points are shown in
Figs. 13–15. In Fig. 13, the trajectory computed by the VFM
planner is represented (the red line represents the crossed path,
and the blue one represents the calculated trajectory from the
present position to the destination point). In each step, the illu-

minated area in Fig. 14 represents the front-wave propagation
from the present position of the robot to the destination point.
The EVT computation is made on the sensory map that the
robot has in its memory. Finally, Fig. 15 shows the map built
in each step using the SLAM algorithm.

For the cases of exploration that this paper contemplates,
the results of two different tests are presented to illustrate both
cases described for the application of the proposed method in
the same environment. In this case, the size of the image is
628 × 412.

Figs. 16–18 represent the first case for implementing the
exploration method (directed exploration). A final goal is pro-
vided for the robot, which is located with respect to a global
reference system; the starting point of the robot movement is
also known with respect to that reference system. The algorithm
allows for calculating the trajectory toward that final goal with
the updated information of the surroundings that the sensors
obtain in each step of the movement. When the robot reaches
the defined goal, a new destination in an unexplored zone is
defined, as shown in the third image of the figure.

Fig. 19 shows an example of the exploration without know-
ing that the environment applies the first algorithm. The tra-
jectory goes from left to right, and the cusp points correspond
to direction changes when the robot finds a wall that interrupts
the planned trajectory. This figure shows that the algorithm can
generate a trajectory through narrow passages.

The results of one of the tests for the second case of explo-
ration are shown in Figs. 20–22. Any final goal is defined. The
algorithm leads the robot toward the zones that are free of obsta-
cles and simultaneously unexplored (undirected exploration).

VII. CONCLUSION

The results obtained have shown that the logarithm of EVT
can be used to improve the results obtained with the fast
marching method to implement a sensor-based motion planner,
which provides smooth and safe trajectories.
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Fig. 21. Simulation results with Case 2 with front-wave expansion.

Fig. 22. Simulation results with Case 2 with the map built.

The algorithm complexity is O(m × n), where m × n is the
number of cells in the environment map, which lets us use the
algorithm online. Furthermore, the algorithm can directly be
used with raw sensor data to implement a sensor-based local-
path-planning exploratory module.

This paper has presented a new autonomous exploration
strategy. The essential mechanisms used has included the VFM
method [77] that plans the trajectory toward the goal, a new
exploratory strategy that drives the robot to the most unex-
plored region, and the SLAM algorithm [2020] that builds a
consistent map of the environment. The proposed autonomous
exploration algorithm is a combination of the three tools that
can completely construct consistent maps of unknown indoor
environments in an autonomous way.
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