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How to Apply Nonlinear Subspace Techniques to
Univariate Biomedical Time Series
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Abstract—In this paper, we propose an embedding technique for
univariate single-channel biomedical signals to apply projective
subspace techniques. Biomedical signals are often recorded as 1-D
time series; hence, they need to be transformed to multidimen-
sional signal vectors for subspace techniques to be applicable.
The transformation can be achieved by embedding an observed
signal in its delayed coordinates. We propose the application
of two nonlinear subspace techniques to embedded multidimen-
sional signals and discuss their relation. The techniques consist of
modified versions of singular-spectrum analysis (SSA) and kernel
principal component analysis (KPCA). For illustrative purposes,
both nonlinear subspace projection techniques are applied to an
electroencephalogram (EEG) signal recorded in the frontal chan-
nel to extract its dominant electrooculogram (EOG) interference.
Furthermore, to evaluate the performance of the algorithms, an
experimental study with artificially mixed signals is presented and
discussed.

Index Terms—Electroencephalogram (EEG), electrooculogram
(EOG), kernel principal component analysis (KPCA), local
singular spectrum analysis (SSA), removing artifacts, subspace
techniques.

I. INTRODUCTION

IN MANY biomedical signal processing applications, a
sensor signal is contaminated with noise and artifact sig-

nals of substantial amplitude. The latter can sometimes be
the most prominent signal component registered. Noise signals
are often modeled as being additive, normally distributed, and
uncorrelated with the signals of interest. Often, the signal-
to-noise ratios (SNRs) are quite low. Hence, to recover the
signals of interest, the task is to remove both the artifact-related
components and the superimposed noise contributions.

With multidimensional signals, projective subspace tech-
niques can then be favorably used to get rid of most of the
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noise contributions to the signals. However, many biomedical
signals represent 1-D time series. Clearly, projective subspace
techniques are not available for 1-D time series; hence, time
series analysis techniques often rely on embedding a 1-D sensor
signal in a high-dimensional space of time-delayed coordinates
[1]–[3]. Correlations in these multidimensional signal vectors
together with second-order techniques can be used to decom-
pose the signal into uncorrelated components. The multidimen-
sional signal is then projected to the most significant directions
computed using singular value decomposition (SVD) of the
data matrix X or principal component analysis (PCA) of the
covariance matrix C or its related scatter matrix S [4].

Singular spectrum analysis (SSA) [5] used in climatic, me-
teorologic, and geophysics data analysis is the most widely
used technique that follows this strategy. The general purpose
of SSA is to decompose the embedded signal vectors into
additive components. This decomposition can be used to sep-
arate noise contributions from a recorded signal by estimating
those eigenvectors that span the signal subspace. These direc-
tions can be associated with the L largest eigenvalues of the
eigendecomposition. As noise signals spread in all directions,
the remaining orthogonal directions then only represent noise
contributions. Reconstructing the signal using only those L
dominant components can then result in a substantial noise
reduction of the recorded signals.

The time embedding of the sensor signals transforms the
1-D time series into multidimensional signal vectors. This
is a necessary step if subspace projection techniques are to
be applied. However, this step often introduces nonlinearity
into the signal analysis process. Of course, there also exist
generically nonlinear signal processing techniques like kernel
PCA (KPCA) [6], which is often used for denoising. Therefore,
it will be of interest to explore these techniques in their ability
to remove dominant artifacts and/or suppress noise. The kernel
techniques are based on the mapping of the input data by a
nonlinear function. Then, in feature space, a linear PCA is
performed by estimating the eigenvectors and eigenvalues of
a matrix of dot products (kernel matrix).

In this paper, we will present the concept of Local SSA,
which means that after the time embedding, we cluster the
resulting multidimensional signal vectors and apply the linear
signal decomposition technique, i.e., SSA, only locally in each
cluster [7]. However, as embedding can be regarded as a non-
linear signal manipulation, a nonlinear technique like KPCA
should be even more appropriate [8]. To reduce the com-
putational complexity, we present a variant of KPCA whose
parameters are computed using the eigendecomposition of a
low-rank approximation of the kernel matrix.
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The availability of digital electroencephalogram (EEG)
recordings allows the study of procedures that try to remove the
artifact contributions from the recorded brain signals. The pri-
mary goal will be to remove artifacts without distorting the
underlying brain signals. Most of the works (as an example,
see [9]) present solutions based on an analysis of multichannel
recordings. In this paper, a single-channel approach is con-
sidered, and projective subspace techniques for denoising are
applied. Hereby, artifact-related contributions to the recorded
EEG signals will be identified as “the signal,” and the actual
EEG signal is considered a “sort of a broadband noise” to be
separated. The philosophy behind is that artifact signals like
electrooculograms (EOGs) are mostly the dominant signal
contributions, much like real signals contaminated with noise.
Consequently, we can use the projective subspace techniques
referred to earlier to separate such artifacts from “pure” EEG
signals.

II. PROJECTIVE SUBSPACE TECHNIQUES

Time-series analysis techniques often rely on embedding 1-D
sensor signals in the space of their time-delayed coordinates.
Embedding can be regarded as a mapping that transforms a 1-D
time series x = (x[0], x[1], . . . , x[N − 1]) into a multidimen-
sional sequence of K = N − M + 1 lagged vectors

xk = [x[k − 1 + M − 1], . . . , x[k − 1]]T , k = 1, . . . ,K.
(1)

The lagged vectors xk lie in a space of dimension M
and constitute the columns of the trajectory matrix X =
[x1 · · ·xK ], (N > M), i.e.,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x[M − 1] x[M ] · · · x[N − 1]
x[M − 2] x[M − 1] · · · x[N − 2]
x[M − 3] x[M − 2] · · · x[N − 3]

...
...

...

x[1] x[2] · · · x[N − M + 1]
x[0] x[1] · · · x[N − M ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Note that the matrix has identical entries along its diagonals.
Any multidimensional signal xk is projected onto the di-

rections (eigenvectors) related to the largest eigenvalues of the
covariance matrix or the related scatter matrix. The matrix can
be computed in the input space (SSA or Local SSA) or after
transforming the data by a nonlinear function (KPCA). The
reconstruction (and the reversion of the nonlinearity for KPCA)
using the same group of eigenvectors leads to X̂. Notice that,
in general, the elements along each descending diagonal of
X̂ will not be identical, like in case of the original trajectory
matrix X. This can be cured, however, by replacing the entries
in each diagonal by their average, obtaining again a Toeplitz
matrix Xr. This procedure assures that the Frobenius norm of
the difference (Xr − X̂) attains its minimum value among all
the possible solutions to get a matrix with all the diagonals
equal [1].

The 1-D signal x̂[n] is then obtained by reverting the em-
bedding, i.e., by forming the signal with the mean of the values

along each descendent diagonal of X̂ [7]. Note that in the exam-
ple considered later, if x̂[n] corresponds to the extracted EOG,
then the corrected EEG is computed as y[n] = x[n] − x̂[n].

A. Local SSA

Local SSA basically introduces a clustering step into the SSA
technique [7] and operates in input space. A normal SSA is
obtained by skipping the clustering step, i.e., choosing q = 1.
With Local SSA, after embedding, the column vectors xk,
k = 1, . . . , K, of the trajectory matrix are clustered using any
clustering algorithm (like k-means [10]). After clustering, the
set of indices of the columns of X is subdivided into q disjoint
subsets c1, c2, . . . , cq . Thus, the subtrajectory matrix X(ci) is
formed with Nci

columns of the matrix X, which belong to the
subset ci of indices. Note that the model parameter q is naturally
bounded from above by the number of data available. However,
any reliable estimate needs a sufficient number of data points
in each cluster, limiting the number of clusters to be much less
than the number of available data. The following steps 1)–4)
need to be repeated for every i = 1, . . . , q.

1) A covariance matrix is computed in each cluster using
zero-mean data obtained via

Xc = X(ci)

(
I − 1

Nci

jci
jTci

)
(3)

where jci
= [1, 1, . . . , 1]T is a vector with dimension

Nci
× 1, and I is a Nci

× Nci
identity matrix.

2) Next, the eigenvalue decomposition of the covariance
matrix is computed, i.e.,

C(ci) =
1

Nci

XcXT
c =

1
Nci

Sc = UDUT. (4)

Afterward, denoising can be achieved by projecting the
multidimensional signal into the subspace spanned by
the eigenvectors corresponding to the Lci

< M largest
eigenvalues.

3) The number of significant directions can be found by
using a maximum-likelihood estimation of the parameter
vector of the covariance matrix C(ci) of each cluster. This
parameter vector θ comprises the most significant eigen-
values and corresponding eigenvectors and the variance
of the noise, which is estimated by the average over the
discarded eigenvalues. The number of relevant directions
k = Lci

can be estimated using a minimum description
length criterion. It results from the value that minimizes
the following expression [11]:

MDL(k) = −L(θ̂) +
1
2
P ln N, k = 0, . . . ,M − 1 (5)

where N = Nci
is the number of observations available

to estimate the covariance matrix, and f(X(ci)|θ̂) de-
notes the conditional probability density parameterized
by θ̂. This log-likelihood function L(θ̂) = ln f(X(ci)|θ̂)
represents the accuracy of representation of the data
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Fig. 1. Trajectory of (a) a sinusoid and (b) its noisy counterpart embedded in time-delayed coordinates M = 2. Graph (c) represents the Local SSA result, and
graph (d) shows the corresponding trajectory obtained with KPCA. In graph (e), a subset of data points of the noisy sinusoid [graph (b)] is shown, which is used
in Greedy KPCA [graph (f)]. (a) Sinusoid. (b) Sinusoid + noise. (c) Local SSA. (d) KPCA. (e) Subset R. (f) Greedy KPCA.

with the parameter vector and depends on the discarded
eigenvalues, e.g.,

L(θ̂) = N(M − k) ln

⎡
⎢⎢⎢⎣

M∏
i=k+1

λ
1/(M−k)
i

1
M−k

M∑
i=k+1

λi

⎤
⎥⎥⎥⎦ . (6)

The negative log-likelihood −L(θ̂) is recognized to be
a standard measure of training error. However, it has
been reported that the simple maximization of this term
tends to result in the phenomenon of overfitting. Thus,
the second term in (5) was added as a regularization term
to penalize complexity. The value of P is related to the
number of parameters in θ and the complexity of its
estimation. Considering real-valued signals, the value of
P is computed according to

P = k + 1 + Mk − k2/2 − k/2

= − k2/2 + k(M + 1/2) + 1. (7)

A simple alternative to this elaborate model-order selec-
tion is to fix the number of relevant directions instead.
In some applications, even a single direction Lci

= 1
suffices.

4) The eigenvectors related to the largest eigenvalues are
used in the reconstruction process. Considering the

matrix U with Lci
eigenvectors in its columns, the re-

constructed vectors in each cluster are obtained as

X̂(ci) = UUT Xc +
1

Nci

X(ci)jci
jTci

. (8)

This reconstruction has to be separately done for each
cluster.

The clustering is reverted by forming an estimate X̂ of the
reconstructed noise-free trajectory matrix using the columns
of the extracted subtrajectory matrices X̂(ci), i = 1, . . . , q,
according to the contents of subsets ci.

B. Illustrative Example

Fig. 1 illustrates the application of Local SSA to decompose
a noisy sinusoid [Fig. 1(b)] into two components. The sinusoid,
embedded with M = 2, has an elliptic trajectory in 2-D space,
as shown in Fig. 1(a). Applying Local SSA using q = 10
clusters and projecting the data in each cluster onto the direc-
tion related to the largest eigenvector, after reconstruction, the
2-D trajectory of X̂ represents a piece-wise approximation of
the original trajectory [see Fig. 1(c)]. Note that the projective
subspace denoising that was globally applied, i.e., applying
normal SSA, will result in a straight line that corresponds to
the direction of maximum variance of the data, which would
correspond to the long axis of the ellipsoid.

Authorized licensed use limited to: b:on Instituto Politecnico de Coimbra. Downloaded on April 12,2023 at 10:34:23 UTC from IEEE Xplore.  Restrictions apply. 



2436 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

As the trajectory is inherently nonlinear, we will next con-
sider a generically nonlinear projective subspace method, i.e.,
KPCA, which is a nonlinear extension of PCA. Note that unlike
linear PCA, KPCA allows extracting a number of principal
components that exceeds the dimensionality of the input data
as the data are first mapped into a higher dimensional space.
Notice that having K ≥ M examples of data with dimension
M , working in input space, the maximum number of nonzero
eigenvalues will also be M , as can be seen by computing either
the covariance matrix or the matrix of dot products. In KPCA
instead, the kernel matrix in the feature space will have a size
of K × K, and the number of nonzero eigenvalues can often be
higher than M .

C. Subspace Projections and Kernel Matrices

In subspace methods, denoising is achieved by projecting the
data onto basis vectors, as expressed in (8). Without loss of
generality, let us consider that the datum X only forms one
cluster q = 1, and that it is centered. Then, (8) simplifies to
X̂ = UUT X = UZ. The projections are then obtained as

Z = UT X. (9)

As explained in the last section, the matrix of basis vectors
U = [u1, . . . ,uL] is formed with L eigenvectors of the covari-
ance matrix or of a scatter matrix, which correspond to the L
largest eigenvalues. However, the values of the projections can
also be computed using the matrix of dot products, which is
called the kernel matrix K = XT X. It has the same nonzero
eigenvalues as the scatter matrix S = XXT . Alternatively,
considering an SVD of the data set and using R > L nonzero
singular values, we can write

X = UD1/2VT (10)

where D is a diagonal matrix with ordered eigenvalues (λ1 >
λ2 > · · · > λL > · · · > λR) of the kernel matrix K or of the
scatter matrix S, and V and U represent the R eigenvectors
of the kernel and scatter matrices, respectively. Considering the
SVD approximation using only the L most significant singular
values and substituting them into (9), the L projections are
obtained as

Z = D1/2VT . (11)

Then, the projections are related to the eigenvectors of the
kernel matrix. Furthermore, the combination of (9) and (11)
leads to UT X = D1/2VT . Multiplying both sides of this
equality by VD−1/2, and considering that the columns of the
eigenvector matrices are orthogonal, the basis vector matrix
reads

U = XVD−1/2 = XA. (12)

This relation shows that each eigenvector uj of U can be
represented as a linear combination of the data vectors xk. The
coefficients of this linear combination form the components of
the column vectors aj of A.

Note now that the projections used in projective subspace
techniques can be expressed via dot products of data vectors.
To see this, simply substitute (12) into (9), which yields

Z = UT X = AT XT X. (13)

The matrix K = XT X is just the kernel matrix previously
mentioned. Thus, whenever a problem can totally be phrased in
terms of dot products, kernel methods can be applied.

D. Kernel Subspace Techniques

Kernel subspace techniques are projective methods in feature
space created by a nonlinear transformation of the data. The
data are mapped into a high (and possible infinite) dimensional
space defined by a nonlinear function. However, the mapping
into feature space is avoided by using kernel functions, which
implicitly define a dot product in feature space computed using
data in input space [6]. Then, every data manipulation (or every
algorithm) can efficiently be computed as long as it can be
translated into a sequence of dot products.

Consider again (13) and assume that the data have been
mapped into a high-dimensional space by the mapping φ :
x → φ(x). The projections of the mapped data set Φ are then
obtained as

Z = UT Φ. (14)

Note that now the columns of the matrix U form a basis
of feature space. This basis can as well be written as a linear
combination of the mapped input data, i.e.,

U = ΦBA. (15)

With KPCA, the relation ΦB = Φ holds, whereas with
Greedy KPCA, only a subset of the mapped data is considered,
which yields ΦB = ΦR. Note that the column vectors zj of
Z depend on the dot products ΦT

Bφ(xj). However, to avoid an
explicit mapping into feature space, all the data manipulations
are achieved by dot products [6], and the kernel trick is applied.
For instance, using an radial basis function (RBF) kernel, the
dot product between a vector φ(xi), which belongs to subset
B, and φ(xj) is computed using a kernel function that only
depends on the input data, i.e.,

k(xi,xj) = φT (xi)φ(xj) = exp
(
−‖xi − xj‖2

2σ2

)
. (16)

To recover the noise-reduced signal, after denoising in fea-
ture space, the nonlinear mapping must be reverted (i.e., the
pre-image in input space must be estimated).

Denoising using kernel methods, thus, comprises the follow-
ing two steps after the computation of the projections in feature
space:

1) the reconstruction in feature space;
2) the estimation of the preimage of the reconstructed point

φ̂(xj) = Uzj , where zj represents the projections of a
noisy point xj .
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These two steps can be joined together by minimizing the
Euclidean distance of the image φ(p) of a yet unknown point p
from φ̂(xj), i.e.,

d̃(2) =
∥∥∥φ(p) − φ̂(xj)

∥∥∥2

=
(
φ(p) − φ̂(xj)

)T (
φ(p) − φ̂(xj)

)
. (17)

The central idea of the fixed-point method [6] consists of
computing the unknown preimage of a reconstructed point in
the projected feature subspace by finding p, which minimizes
d̃(2). If an RBF kernel is considered, then the iterative procedure
is described by the following equation [12]:

pt+1 =
XB(g♦kpt

)
gT kpt

(18)

where ♦ represents a Hadamard product, and g = Azj . The
components of the vector kpt

= k(XB ,pt) are given by the
dot products between φ(pt) and the images ΦB of the training
subset XB . The algorithm must be initialized, and p0 ≡ xi is a
valid choice [13], [14]. The points pk then form the columns of
X̂, i.e., the noise-free multidimensional signal in input space.
The application of the method is illustrated in Fig. 1(d) and (f),
where we can see that the denoised trajectory is smoother than
the trajectory obtained with Local SSA. In the feature space,
the data were projected (and reconstructed) using L = 4 or L =
7 directions, respectively, using KPCA or Greedy KPCA. The
latter corresponds to using a low-rank approximation of the full
kernel matrix only and will be discussed next.

1) Low-Rank Approximation of a Kernel Matrix: Applying
kernel methods, an eigendecomposition of the related kernel
matrix, and particularly the most significant eigenvalues and
corresponding eigenvectors is often required. For large train-
ing data sets, the corresponding kernel matrix K becomes
prohibitively large. Consequently, its eigendecomposition is
often impractical in real data applications. In such cases, an
appropriate dimension reduction must be achieved. Few papers
[15], [16] discuss the application of the Nyström extension
method to compute a low-rank approximation of the kernel
matrix K̃ = VDVT , where only the R largest eigenvalues and
corresponding eigenvectors are computed. The method is based
on the fact that the kernel matrix can be written in the following
block notation [16], [15]:

K =
[

Kr Krs

KT
rs Ks

]
. (19)

Considering that the full matrix has a dimension of K × K,
the upper-left block matrix Kr has a dimension of R × R, the
upper-right block matrix Krs has a dimension of R × S, and
the lower-right block matrix Ks has a dimension of S × S,
where S = K − R. This notation implicates that the mapped
training data set of dimension K is divided into two subsets of
size R and S = K − R, respectively. The matrix Kr represents
the kernel matrix within subset ΦR (with R vectors), Krs is the
kernel matrix comprising subsets ΦR and ΦS , and Ks is the
kernel matrix of the subset ΦS .

The low-rank approximation is written using the block
matrices Kr and Krs according to [16], [15]

K̃ =
[
Kr

KT
rs

]
K−1

r [Kr Krs]. (20)

It can be shown that the lower block is approximated by
Ks ≈ KT

rsK
−1
r Krs. The Nyström extensions for the R eigen-

vectors V corresponding to the R largest eigenvalues are
obtained as

VT = HT [Kr Krs]. (21)

The matrix H is computed using eigendecompositions of
R × R matrices, where R is the size of subset ΦR. Different
approaches were considered to form the R × R matrices. In
[16], only the block Kr is considered, whereas in [15], a
matrix related to both of the upper blocks of the kernel matrix
is computed in addition. The main difference between both
approaches is that the eigenvectors are either nonorthogonal
[16] or orthogonal [15].

2) Computing a Reduced Set of Eigenvectors: The two
kernel-based approaches, i.e., KPCA and Greedy KPCA, re-
spectively, arise from two distinct strategies to deal with the
eigendecomposition of the kernel matrix (K) of the data set. In
KPCA, the matrix A of mixing coefficients is computed using
the largest eigenvalues (D) and corresponding eigenvectors
(V) of K [17]. This results in a matrix of eigenvectors

U = ΦVD−1/2 (22)

which form the basis for a global representation of the data
vectors.

In Greedy KPCA instead, a low-rank approximation of the
kernel matrix is considered. This leads to an eigendecomposi-
tion with eigenvector matrices of reduced size. In this paper,
we are interested in solutions that lead to orthogonal eigenvec-
tors VT V = I. In [15], a solution that uses as starting point
the eigendecomposition of the block matrix Kr is proposed.
The latter is formed by randomly selecting either elements
of the training set or rows/columns of K. This result is used
to transform the data and compute a new R × R matrix, whose
eigendecomposition will also contribute to the eigenvector ma-
trix. Here, we instead use the proposal in [18], which is based
on the incomplete Cholesky decomposition using a symmet-
ric pivoting scheme. The incomplete Cholesky decomposition
leads to

C = [L L−T Krs]. (23)

The matrix L represents a triangular matrix that corresponds
to the complete Cholesky decomposition of Kr = LT L. Notice
that the identification of the matrix L naturally arises with the
pivoting scheme and does not need to be known in advance.
Therefore, the pivoting index of the incomplete Cholesky
decomposition [18] leads to the selection of ΦR from the
training set.

Considering that the kernel matrix can be approximated by the
incomplete Cholesky K̃=CTC, its low-rank approximation
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can also be derived from an R × R matrix defined by

Q = CCT = VqDVT
q . (24)

Note that the matrix C can be centered before performing the
eigendecomposition, dealing that way with an approximation of
the centered kernel matrix. The result of this eigendecomposi-
tion as well as the decomposition of Kr leads to

H = L−1VqD−1/2. (25)

Substituting this result into the eigenvector equation
[see (21)] yields

V =
[
Kr

KT
rs

]
L−1VqD−1/2. (26)

It can easily be shown that the Nyström extension to the
eigenvector matrix V has R orthogonal eigenvectors.

Again, the mapped data set can be approximated by applying
an SVD decomposition, where only the R most significant sin-
gular values and the corresponding eigenvectors are considered.
This leads to the following representation of the projections in
feature space:

Z = D1/2VT =VT
q L−T [Kr Krs]

=VT
q L−T ΦT

R[ΦR ΦS ]. (27)

Comparing the previous result with (14), the basis vector
matrix can be written as

U = ΦRL−1Vq. (28)

Note that the R vectors form an orthonormal basis in feature
space, i.e., UT U = I. The eigenvectors in the matrix Vq

should be placed according to their corresponding eigenvalues.
The first column should have the eigenvector corresponding to
the largest eigenvalue and so on. Furthermore, the matrix can
have L < R columns to enable projections of the data onto the
directions related to the L largest eigenvalues.

3) Implementation of Greedy KPCA: A very efficient im-
plementation for the incomplete Cholesky decomposition algo-
rithm exists (accessible in [19]), having as input the training
data set X, σ of the RBF kernel, and a threshold to control the
approximation error of the decomposition. As described in [18],
the matrix C is iteratively formed, i.e., starting with one row up
to R when the error is less than the threshold. The error ε is
approximated as ε ≈ tr(Ks − KT

rsK
−1
r Krs) [20]–[22]. Note

that using an RBF function, the trace is obtained as tr(K) =
K, where K denotes the size of the data set. The outputs of
the algorithm are the index of the pivoting scheme and the
matrix C. The former allows identifying the subset ΦR that
will contribute to form R orthogonal basis vectors [see (28)].
However, there are approaches [16] where the low-rank approx-
imation of the kernel matrix is obtained by randomly selecting
a training data set. The parameters of the model depend on the
eigendecomposition of the kernel matrix of the training set,
which are also used to form the basis vectors as it is used in
the KPCA approach [see (22)]. In the simulations to be dis-

cussed, the Cholesky decomposition was applied with training
sets formed with the complete data set (with J vectors) and ran-
domly selecting K < J vectors. In the latter case, the remain-
ing data can be considered a test set (J − K vectors) as it does
not contribute to the parameters of the model. Furthermore, in
[23], instead of using an error threshold to stop the Cholesky
decomposition, a maximum number of pivots was used.

III. RESULTS

Two projective subspace techniques are evaluated using arti-
ficially mixed real data. Artificial data are used to quantify the
performance of the algorithms and, in particular, the influence
of the embedding dimension M . The algorithms were applied
to every signal of the artificial data set, and the performance
measures were taken between the corrected EEG and the orig-
inal. For illustration purposes, the algorithms are also applied
to a frontal EEG data set with a high-amplitude EOG artifact.
In this paper, the complexity of the approaches will also be
discussed.

A. Artificial Data Set

In this paper, a strategy, which was proposed in [24], was
pursued, where each signal is obtained by linearly adding two
signals: an EEG and an EOG. The data set was organized so
that it can also be easily characterized by visual inspection. The
artificial mixed data set was obtained by using the following.

1) Twelve EEG segments of 10-s duration, sampled at
250 Hz and with reference to scalp electrode Cz, were
selected by three specialists. The segments are grouped
into four types according to the visibility/dominance of
one of the characteristic events: Type A—delta activity
(0.5–4 Hz); Type B—theta activity (4–8 Hz); Type C—
alpha band (8–13 Hz); and Type D—beta activity
(13 Hz–25 Hz).

2) EOG artifacts were extracted from EEG frontal channels
not belonging to the same recordings (or subjects) used
to select EEG. The SSA (q = 1) algorithm with L = 1
was used to extract the artifact. By visual inspection,
the signals were recognized as clearly defined artifacts
not showing any EEG-relevant information. In total, ten
segments (of 10-s duration) with ocular artifacts were
selected. The segments have a variable number of eye
blinks (1–7), and in some examples, ocular movements
are also present.

Fig. 2 shows an example for each type of EEG segment and the
corresponding artificially mixed signals.

B. Parameters of Evaluation

The artificial mixtures are used to study the influence of
the parameters on the performance of both algorithms. The
comparisons will be made both in time and in frequency by
using the correlation coefficient and the coherence function, re-
spectively. The comparison will be made between the corrected
EEG (y[n]) and the original EEG (o[n]).

The correlation coefficient evaluates the similarity of the two
signals, and its value is independent of scaling or mean (m)

Authorized licensed use limited to: b:on Instituto Politecnico de Coimbra. Downloaded on April 12,2023 at 10:34:23 UTC from IEEE Xplore.  Restrictions apply. 



TEIXEIRA et al.: HOW TO APPLY NONLINEAR SUBSPACE TECHNIQUES TO UNIVARIATE BIOMEDICAL TIME SERIES 2439

Fig. 2. Subsegments (3 s) of (left) the original EEG and (right, last row was
clipped for visual proposes) the artificial mixture. (Top to bottom) Segment
type: (first) Type A-Delta, (second) Type B-Theta, (third) Type C-Alpha, and
(fourth) Type D-Beta.

differences. The absolute value ranges from 0 to 1 and is defined
according to

ccoy =

N−1∑
n=0

(o[n] − mo) (y[n] − my)

σoσy
(29)

where σ represents the standard deviation of the N amplitude
values of the signal. The coherence function has values in the
range of 0–1 and is computed using the periodograms. Given
the discrete Fourier transform (DFT) of the ith subsegment
of each signal Oi and Yi, the coherence of the mth bin in
frequency is defined as

cfoy(m) =

∣∣∣∣ I∑
i=1

Y ∗
i (m)Oi(m)

∣∣∣∣
2

I∑
i=1

|Oi(m)|2
I∑

i=1

|Yi(m)|2
. (30)

In the experimental results to be discussed, the segments are
divided into overlapping subsegments (50% of overlap), and
the DFT is computed with a resolution of 1 Hz. Furthermore,
the coherence values are presented for each of the four charac-
teristic EEG bands by averaging the bins within the frequency
range of the band.

C. Evaluation of Performance

The subspace techniques discussed so far are applied to
multidimensional signals resulting from an embedding of the
recorded time series x[n] into their delayed coordinates. Then,
the embedding dimension M is a choice to be made before
the application of both subspace techniques. In SSA-related
literature [1], [7], it is referred that M should be higher than
a threshold computed according to fs/fo, where fo is related
to the frequency of the artifact, and fs is the sampling rate.
A similar criterion was used in [25] to find the embedding
dimension for an algorithm based on independent component
analysis. After embedding, each segment of the data set is
represented by a multidimensional data set xk, k = 1, . . . , J ,
and will be the input of both algorithms, and the output is the

extracted artifact x̂[n], which will be subtracted from the mixed
signal to obtain the corrected EEG (y[n]).

1) Local SSA: In what concerns the Local SSA, to have a
correct estimate of the covariance matrix in each cluster, we
should have enough data in each cluster. This constitutes a
practical upper bound to the number of clusters. In each cluster,
the MDL criterion was used to select the subspace dimension to
reconstruct the EOG signal. Note that the MDL criterion works
best if enough data are available in each cluster [11]. Then,
a heuristic was considered to assign the number of clusters:
the clustering step is repeated until a reliable decomposition is
achieved in each cluster. Starting with a maximal number of
clusters, qmax = 10, checking afterward if all the clusters end
up with a cardinality higher than M , in which case the signal
subspace dimension in each cluster is chosen as Lci

< (M/2).
If both criteria are not met, then the number q of clusters is
decreased, and the process is repeated. Using this strategy, the
only parameter to be assigned by the user is M . Fig. 3 shows the
mean correlation coefficient of the algorithm changing M from
6 to 96. The level of performance also depends on the dominant
frequency range of the original EEG: from 0.9 (Type D) to
0.4 (Type A), being more reliable for segments with dominant
frequencies ranging far from the frequency contents of the
artifacts. However, it is possible to find a unique M for all types
of segment. The number of clusters automatically assigned for
the data set varied between 2 and 9 and does not depend on the
EEG segment used to generate the artificial mixture. Rather, it
is related to the artifact. If the segment only has one or two
blinks and no baseline drifts, then the number of clusters is 2.
However, for an increasing number of blinks and baseline drifts
or ocular movements, the number of clusters also increases.

2) Greedy KPCA: An RBF kernel with σ = maxi(‖xi −
xmean‖), i = 1, . . . , J , is applied, where xmean denotes the
mean of the data set. The multidimensional data resulting
from the embedding of each segment are used as training set
(K = J), and the Greedy KPCA was applied using an imple-
mentation adapted from [19], where the threshold to stop the
algorithm was ε ≤ 0.01J . Note that the number of data vectors
depends on the embedding dimension. After the eigendecom-
position of matrix Q, the number of directions L was chosen to
maintain 0.95% of the variance of the data in the feature space.

To study the dependence of the performance on the subspace
dimension M , the correlation coefficient ccoy between the orig-
inal and corrected EEGs was also considered. Fig. 3 shows the
result, and we can verify that to achieve a stable behavior, the
embedding dimension M can be smaller than the Local SSA.
However, the level of performance is worse than that achieved
with Local SSA in spite of having a similar tendency. The
number of pivots needed to fulfill the error criterion changes
for the different segments. Table I shows the range of values
for each type of segment when M = 46. The number of pivots
is related to the type of artifact, not to the EEG segment used
in the mixture. Note that the size of the training data set for
each segment is J = 2456, and the R median value is < 100
in all cases. The maximum values only occur for a segment
that has simultaneously ocular artifacts and baselines drifts.
Furthermore, notice that the maximal values of L reveal that
less than 1/4 of the computed eigenvectors of Q are used. This
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Fig. 3. Mean correlation coefficient (ccoy) versus embedding dimension (M): (left) Local SSA and (right) Greedy KPCA. Segment type: (�) type A,
(�) type B, (◦) type C, and (∇) type D.

TABLE I
GREEDY KPCA (MIN—MINIMUM; MED—MEDIAN; MAX—MAXIMUM)

Fig. 4. Corrected versions resulting from the application of (left) Local SSA
and (right) Greedy KPCA. (Top to bottom) Segment type: (first) Type A-Delta,
(second) Type B-Theta, (third) Type C-Alpha, and (fourth) Type D-Beta.

fact may indicate that the Cholesky decomposition could have
had an earlier stop without affecting the performance.

3) Greedy KPCA Versus Local SSA: To compare distortions
in time and frequency of both algorithms, the outputs of the Lo-
cal SSA with M =76 and the Greedy KPCA with M = 46 were
used. Fig. 4 shows the output of the algorithms for the segments
illustrated in Fig. 2, and we can verify the difference on perfor-
mance of the algorithms, namely, for Type C segments, where
the alpha bursts almost disappear from the Greedy KPCA out-
come. For Local SSA, the only visible distortion is on Type A
segments, where some slow waves are not visible on the
outcome. Furthermore, the algorithm SSA (q=1 with L=1)
varying M from 6 to 96 in steps of 5 was also applied to each
segment, and for comparison purposes, the corrected EEG ver-
sion with the highest correlation with the original was selected.

Fig. 5 shows a comparison of the correlation coefficients
between the output of the algorithms and the original for the
segments in the data set. The level of distortion is related to the
segment type. The correlation coefficient decreases as the EEG

frequency content is closer to the frequency of artifact. How-
ever, in all the cases, Local SSA performs better than Greedy
KPCA and SSA. The analysis in the frequency range confirms
these results. Note that whatever is the segment, the beta band
is always the least distorted, i.e., the coherence function cfoy

always has a value close to 1, and the standard deviation (across
segments) is very small (see vertical line in Fig. 6). The alpha
band also has values of around 0.9 in the three cases for Local
SSA, whereas for the other algorithms, the values have a
broader range. In particular, the Greedy KPCA has 0.4 for
segments Type C, whereas the other algorithms have 0.9. The
values of coherence for segment Types A and B of the Local
SSA vary between 0.4 and 0.6, whereas the Greedy KPCA is
0.1–0.4.

In most of the cases, the SSA algorithm shows a performance
similar to Local SSA. However, notice that the embedding
dimension M was not fixed in this paper; rather, it was kept
variable, and the output was chosen according to the correla-
tion between the corrected and original signal. This way, this
implementation is not useful in any practical application, as the
artifact-free original signal is not available.

D. Analyzing a Frontal Channel

In this paper, the two suggested projective subspace tech-
niques will be illustrated using a data segment from a real signal
of 12-s duration and a sampling rate of 128 Hz, which was
recorded from a frontal EEG channel (Fp1-Cz) contaminated
with a very prominent EOG artifact. This segment was used in
previous works [23], [17] to illustrate the use of different KPCA
subspace algorithms. The computational complexity of KPCA
depends not only on the size of the kernel matrix but also on
the procedure to estimate the preimage [14] of the data points
obtained after denoising the mapped data in feature space. To
cope with the problems arising from the size of the kernel
matrix, the data window can be subdivided into segments of
proper size. However, the size of the segment has to be adapted
to the structure of the recorded signal so that each segment
contains the characteristics of the artifact signal to be separated.
This leads to the study of greedy approaches, and in [23], the
two alternatives for the Nyström approach are combined to
decrease the computational load.

In this section, we applied the subspace techniques using
the same strategy described for the artificial data set. Fig. 7
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Fig. 5. Boxplots of correlation coefficients (ccoy) for SSA, Local SSA, and Greedy KPCA algorithms. (a) Type A. (b) Type B. (c) Type C. (d) Type D.

Fig. 6. Coherence values in the different frequency bands for (gray bar) SSA, (black bar) Local SSA, and (white bar) Greedy KPCA. (a) Type A. (b) Type B.
(c) Type C. (d) Type D.

shows the output of the Local SSA for which the number of
clusters was automatically assigned to q = 4. For this signal
taking q = 6, the power line interference (50 Hz) is extracted
with the EOG artifact, as shown in [23]. The Greedy KPCA

was applied using both strategies described in Section II-D3.
Using the complete data set and an error threshold to stop the
incomplete Cholesky decomposition leads to the selection of
R = 53 pivots. Fig. 8 (third trace) illustrates this choice by
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Fig. 7. Local SSA (M = 41, q = 4). (Top to bottom) Original, artifact, and
corrected EEGS.

Fig. 8. Greedy KPCA (M = 25). (Top to bottom) Original, pivot selection
(R = 20), pivot selection (R = 53), artifact, and corrected EEG.

plotting the first row of the data matrix ordered according to
their time argument. For the other alternative, the training set is
formed with 25% of the data, and the Cholesky decomposition
is performed up to a maximum of R = 20 pivots. Fig. 8 (second
trace) indicates the localization of the pivots in the latter case,
and it can be verified that they match the same regions of the
signal. The corrected signal and the EOG signal are very similar
to the signals obtained with KPCA applied to subsegments of
4 s, as described in [23]. The correlation coefficient between
the corrected EEGs of the different algorithms is in the range
of 0.91–0.95, and between the extracted artifacts, it is 0.99 for
every possible combination of signals.

Fig. 9 shows the frequency contents of the corrected EEG
by the discussed algorithms in comparison to the original. The
output of the Local SSA algorithm coincides with the original
for frequencies higher than 10 Hz. Moreover, the Greedy KPCA
with R = 20 pivots is the best versions, as verified in the
figure.

Fig. 9. Power spectral density (in decibels per hertz) versus frequency
(in hertz) of the original EEG (-) and corrected EEG by Local SSA (◦), Greedy
KPCA with 20 Pivots (•), and Greedy KPCA (∇).

IV. CONCLUDING REMARK

Artifact reduction in EEG recordings [26] is a very important
problem that needs to be addressed in a systematic way. Such
artifacts can often be found only in certain channel recordings,
like EOG artifacts in frontal channel recordings. Hence, it is of
practical interest to be able to efficiently remove such artifacts
from single-channel recordings without the need to do a full
multichannel analysis. Thus, we have been studying the feasi-
bility of projective subspace techniques to address the problem
using a single-channel approach. We consider such projections
either in input space or in a high-dimensional feature space,
after a nonlinear mapping of the data from the input space to the
feature space. We have proposed the Local SSA to adapt a linear
technique to nonlinear problems in input space and also to adapt
a generically nonlinear technique, namely KPCA, to deal with
very-high-dimensional problems of prohibitive computational
complexity. This leads us to propose Greedy KPCA based on a
Nyström extension of low-rank approximations to the kernel
matrix. Numerical simulations using artificially mixed data
reveal that both techniques are feasible to remove the high-
amplitude ocular movements and blinks. Local SSA shows a
better performance as the corrected EEG exhibits less distor-
tion in all the frequency bands. However, it was shown that
both approaches have a similar performance in what concerns
frequency distortions in the frequency range of beta and alpha
bands. The frontal EEG signal analysis confirms these results.
Concerning computational complexity, Local SSA suffers from
the burden imposed by the recursive procedure to choose the
number of clusters (q), whereas in Greedy KPCA, it is the size
of the training set that renders the choice of the pivots a slow
process. The hybrid approach applied to the real example might
then be an alternative that must further be studied as well as the
stopping criterion of the Cholesky decomposition.

Both algorithms (Local SSA and Greedy KPCA) are incor-
porated in the EEGLAB [27] environment. This open-software
tool based on MATLAB offers visualization facilities that will
allow accomplishing a clinical evaluation task. However, the
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new facilities (plugins) need to be improved to cope with the
long segments of the signal. Our goal is to use this facility in
the visualization of critical segments of signals from a database
of epileptic patients recorded in long-term monitoring sessions
and study the impact of the application of the algorithms. In the
described scenario, the algorithm can be applied in parallel to
channels that suffer from high-amplitude artifacts. This could
be useful to detect the onset of a focal seizure.
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