arXiv:0911.5462v1 [cs.CV] 29 Nov 2009

Pigment Melanin: Pattern for Iris Recognition

Mahdi S. Hosseini, Babak N. Araabi, and Hamid Soltanian-Zadeh

Abstract

Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the
light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL,
unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a
chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be
provided by an adaptive procedure using a variational technique on the image histogram. To describe
the patterns, a shape analysis method is used to derive feature-code for each subject. An important
question is how much the melanin patterns, extracted from VL, are independent of iris texture in
NIR. With this question in mind, the present investigation proposes fusion of features extracted from
NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS)
consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates
that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris
recognition rate.

Index Terms

Iris Biometrics, Visible-Light (VL), Near-Infrared (NIR), Pigment Melanin, Eumelanin, Shape
Analysis, Image Enhancement, Regularized (Tikhonov) Filtering and Variational Binarization.

I. INTRODUCTION

RIS recognition is one of the most reliable non-invasive methods of personal identification owing

to the stability of the iris over one’s lifetime. Pioneer work on iris recognition —as the basis of
many commercial systems— was carried out by Daugman [1]. In this algorithm, 2D Gabor filters
are adopted to extract oriented-based texture features corresponding to a given iris image. After
Daugman, other researchers have contributed new methods to arrive at alternative algorithms with
low computational burden, less SNR and more compact codes, e.g. [2], [3], [4], [5], [6] and [7].

Most feature extraction methods have been implemented through multi-resolutional analysis,
e.g. applying Laplacian pyramid construction with four different resolution levels |2]; zero-crossing
representation of 1D wavelet transform at various resolution levels of a virtual circle [3]; 2D wavelet
decomposition [4]; and 1D Discrete Cosine Transform (1D-DCT) [8] by zero crossing of adjacent
patches, 1D-long and short Gabor filters [9], etc. Furthermore, alternative methods have been
introduced based on the idea of local intensity variation in [6] and [7], entropy-based coding strategy
in [10], SVM-based learning approach in [11], cross-phase spectrum in [12], two dimensional Fourier
transform in [13] and multi-lobe differential filters (MLDF) in [14].

The majority of the benchmarks for iris recognition systems rely on Near-infrared (NIR) imaging
rather than using visible-light (VL). This is due to the fact that fewer reflections from cornea in
NIR imaging make the systems robust in recognition. However, compared to VL, NIR eliminates
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most of the related information in pigment melanin that scatters in the iris. This is due to the
chromophore of the human iris, which has two distinct heterogeneous macromolecules called brown-
black Eumelanin and yellow-reddish Pheomelanin [15] and [16].

Wielgus and Sarna [17] determined the amount of melanin in the human iris and the relative
content of iron in the iridial melanin as a function of their color, shade, and the age of their donors
by using electron spin resonance (ESR). This research proved that melanin in iris predominantly
consisted of eumelanin with very similar chemical properties. Menon et. al. [18] discussed the
amount of melanin in the iris pigment epithelium (IPE), which coats the posterior surface of the
iris. This appears to contain mainly eumelnin with 97.6% and 91.7% in the case of blue-green and
brown irides respectively [19].

Eumelanin’s radiative fluorescence under Ultra-Violet (UV) and VL excitation (e.g., 6 x 1076
for VL) [20] influences the Charge-coupled device (CCD) sensor of the camera [21]. Studying the
excitation-emission quantum yields of eumelanin, presented in Figure [I, shows that exciting this
macromolecule under NIR firing leads to almost no emission of quantum yields where the related
chromophors attenuate in NIR imaging.

However, processing of VL images is not as reliable as the NIR images due to the SNR limitation
and artifacts (e.g., reflection and shadows). This can weaken the procedure and, in order to overcome
the limitations of VL imaging, new methods for robust feature extraction are suggested to help iris
biometric systems to achieve accurate identifications. The demands for new developments to reach
high accuracies in huge-size-databanks are not deniable. These demands are critical because there
is additional information in the VL images. It is important to verify whether the features extracted
from the NIR and VL can be combined in order to boost recognition rate as a fusion application
instead of multi-biometric systems where the implementations are expensive.

It is noteworthy that in recent years working with the VL images has become more popular.
Thornton, et al [22] introduced deformed Bayesian matching methodology and applied their algo-
rithm to the CMU database (a VL database) and achieved reasonable results for both accuracy and
computation time. Proenca and Alexandre [23] divided the iris into six regions based on their own
experience and applied Daugman’s recognition method [1] to compare the results.

In this paper, we introduce a different solution to the problem of VL imaging to explain melanin
chromophore as a relevant pattern for shape analysis. The VL features should not be highly corre-
lated with the NIR features to fuse the two modalities. Our preliminary results on the application
of shape analysis to VL images was presented in [24]. In addition, our group at the University of
Tehran (UTIRIS) published new results on this issue in [25], [26] and [27].

The remainder of this paper is organized as follows. Section II briefly reviews the optical spec-
troscopy of the eumelanin in three main categories: Absorption, Emission, and Excitation. In
Section 3, two categories, shape analysis and its invariant features and regularized Tikhonov fil-
tering with logarithmic enhancement, are studied in order to increase the reliability of accessing
to chromophore melanin in the iris. The proposed method for extraction of melanin patterns is
introduced in Section 4 to produce robust shapes for the shape analysis techniques. Our experi-
mental results for classification are evaluated in Section 5 using UBIRIS and CASIA databanks.
Our data collection is then introduced where each iris has been captured in two different sessions,
NIR and VL. We demonstrate that fusion of the extracted features in two sessions leads to higher
classification accuracy. Finally, Section 6 presents discussions and concludes the work.
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Fig. 1
(A) EUMELANIN ABSORBANCE AS A FUNCTION OF WAVELENGTH. THE SAME DATA IS SHOWN IN A
SEMI-LOGARITHMIC PLOT IN THE INSERT DEMONSTRATING AN EXCELLENT FIT TO THE EXPONENTIAL MODEL; (B)
EUMELANIN FLORESCENCE EMISSION UNDER VARIETY OF EXCITATION WAVELENGTHS FROM 360 NM (SOLID LINE)
TO 380 NM (INNER DOT-DASHED LINE). DATA ARE TAKEN FROM; (C) EUMELANIN SPECIFIC QUANTUM YIELD
MAP: THE FRACTION OF PHOTONS ABSORBED AT EACH EXCITATION WAVELENGTH THAT ARE EMITTED AT EACH
EMISSION WAVELENGTH. DATA ARE TAKEN FROM [20].

II. BiorLoGgicAL RooTs: EUMELANIN OPTICAL SPECTROSCOPY

A brief review of the optical properties of eumelanin under different wavelength firings is pre-
sented in this section. Biophysists have introduced eumelanin as an intelligent predefined acid
macromolecule . Meredith et. al. discussed the optical properties of the eumelanin in three
main categories: absorbance, excitation, and emission. The eumelanin has the absorbance profile
shown in Figure absorbing lower wavelengths more than higher ones with maximum absorbance
for ultraviolet wavelength. Its absorbance decreases exponentially and becomes almost relaxed in
Near-Infrared (750™") with an extreme lower rate.

Regarding emission, the eumelanin emits light when stimulated by UV and VL; see Figure .
The emission depends on the excitation energy, in direct contrast with the Kasha’s rule by
disordering the mirror image rule for the organic chromophores, which states that the emission
spectrum should approximately be a mirror image of the absorbance. The emission profile is close
to the Gaussian function whose maximum is at about 460 nm (2.7 eV).

The excitation pattern at different wavelengths is another key to understanding the way eumelanin
is stimulated. Recent studies have created a full “radiative quantum yield map” showing the
fate of each absorbed photon with respect to the emission; see Figure . This map shows the
complexity and excitation energy dependency of the emission and the presence of a high wavelength
bound on the emission. As it shown, the quantum yields for the NIR firing are attenuated while
preserving quantities for the emission excited in VL. These emitted quantum yields, from 360 nm
to 600 nm, can be captured by a CCD camera, and hence NIR imaging eliminates most pigment
information in the iris where these chromophores mainly consist of the eumelanins.

III. SHAPE ANALYSIS AND IMAGE ENHANCEMENT

The iris includes complex texture due to its pigments, blood vessels, crypts, contractile furrow,
freckles, collarette, and pupillary frills which make it distinguishable from person to person.
Extracting proper features which describe these patterns is useful for iris recognition. Current fea-
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ture extraction methods from the iris are dominated by the wavelets and Gabor filters that were
initially used in the first system introduced by Daugman [1] in 1993 (e.g., [2]-[8]). Several inves-
tigations evaluated the iris recognition methods using large databanks and enhanced the analysis
performance by methods such as cascaded classifiers (e.g., [32]), Bayesian approaches (e.g., [33]),
and model-based methods (e.g., [34]). The chromophore scattering makes the iris pattern complex
and hard to explain. Thus the related feature to melanin cromophore should directly describe the
related patterns. Such patterns can be presented in meaningful shapes to be analyzed by shape
analysis techniques.

A. Shape Analysis and Invariant Features

Shape is a difficult concept to understand and is invariant through geometrical transformations
such as translation, rotation, size changes, and reflection. A shape description can be achieved
by functional explanation of a figure. This is appropriate for many applications because of its
advantages over other methods such as the following [35]:

o Effective data reduction: a few coefficients of the approximating functions are frequently
needed for a rather precise description.
o convenient description and intuitive characterization of complex forms

Here, three distinct features are proposed and extracted from the iris images: Radius-Vector

Function (RVF), Support Function (SF) and Tangent-Angle Function (TAF).

A.1 Radius-Vector Function (RVF)

A reference point O in the interior of the figure X is selected. Next, an appropriate reference line
[ crossing the reference point O is chosen parallel to the x-axis. The radius-vector function rx(y)
is defined by the distance between the reference point O and the crossing point with the contour
in the direction of ¢ (0 < ¢ < 27) scanning the contour in anticlockwise direction, see Figure
and The contour is obtained by labeling separate contours in an image and calling the related
graph. This can be done in MATLAB using ‘bwlabel’ function. The contour is been scanned from
an arbitrary point to cycle the closed contour in anti-clockwise direction.

We use all points of the figure as potential features and normalize the radius-vector function. For
example, in Fig. 2d, the number of points is normalized to 360 points. The RVF rx(p) has the
following features:

« Invariant under translation: rxi4(¢) = rx(¢) where X + ¢ is X translated by a vector ¢.

« Depends on figure X's size: ry\x(p) = Arx(¢)) where AX is the figure X zoomed by a factor
A. Nevertheless, this limitation can be avoided by normalizing the radius function.

« Variant under reflection: flipping the image through the vertical axis (image in mirror) which
does not happen in iris imaging.

o Depends on the orientation of the figure X : ry () = rx(¢ — a) where Y is figure X rotated
by an angle «

The last two properties will not influence iris characterization since rotation in the polar coordi-
nate system equals translation in the Cartesian coordinate system; see Figure and This
allows us to start to scan the contour from an arbitrary point py.

A.2 Support Function (SF)

For a figure X, let g, be an oriented line through the origin O with direction ¢ (0 < ¢ < 27).
Let g7 be the line orthogonal to g, so that the figure X lies completely in the half-plane determined
by g% with g7 N X # O, which is opposite to the direction of g,. The absolute value of the support
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Fig. 2
(A) DEFINITION OF RADIUS-VECTOR FUNCTION; (B) DEFINITION OF SUPPORT FUNCTION; (C) DEFINITION OF
TANGENT ANGLE FUNCTION; (D) SKETCH OF RADIUS-VECTOR FUNCTION; (E) SKETCH OF SUPPORT
FUNCTION; (F) SKETCH OF TANGENT ANGLE FUNCTION; (G) ORIENTATION OF IRIS IN POLAR COORDINATES;
(#) TRANSLATION OF THE MAPPED IRIS IN THE CARTESIAN COORDINATE SYSTEM CAUSED BY ROTATION IN THE
POLAR COORDINATE SYATEM.

function equals the distance from O to g¥. The support function (SF) Sx(¢) is negative if the
figure lies behind g% as seen from the origin. If O belongs to the figure X, then Sx(¢) > 0 for all
©, see figure and . All of the four features listed above for the RVFE are applicable to the
SF. The SF can be calculated by the following equation [35]:

Sx(p) = max [zx(l)cos(p) + yx (1)sin(¢)] (1)

where L is the perimeter of the figure X and each point zx(l),yx(l) of the contour of X is
associated with a number [. The relation between the polar and Cartesian coordinates of the figure
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can be written as:
wx (1) = rx(l)cos(¢r) (2)
yx (1) = rx(D)sin(e1)
The SF is robust to the local distortions of the boundary because these distortions are small
relative to the object’s perimeter.

A.3 Tangent-Angle Function (TAF)

The third proposed feature is the angle of the tangent line at each boundary point. Let us assume
that the perimeter of the figure X is L. Every point p; on the boundary (contour) of X can be
associated by a number [ (0 <[ < L). The initial point py is considered as the starting point, and
the boundary points are considered in the anticlockwise direction. The orientation of the tangent
line at the point p; is denoted by ¢x(I) and called tangent-angle function; see Figure and
[36].

B. Image Enhancement

Iris images captured in Visible-Light (VL) are affected by noise. Most of the iris areas can be
enhanced and observed correctly by appropriate enhancement tools. After iris extraction, the image
is enhanced by the homomorphic filtering using a logarithmic transformation and a Tikhonov filter
as explained next.

The image intensities consist of two components: a) the source illumination incident on the
scene being viewed and b) the reflectance of the objects in the scene [37]. These components are
denoted by i(z,y) and r(z,y), respectively. The multiplication of these two components is the
image intensity f(z,y), i.e.,

f(z,y) =i(z,y)r(z,y) (3)

where 0 < i(z,y) < oo and 0 < r(z,y) < 1. The two components can be separated by taking the
logarithm of f(x,y):

log (f(z,y)) = log (i(z,y)) +log (r(z,y))

(4)

I R
fEnhanced — oxp [Normalized (I + R)]

The R element of an iris image is highly correlated with the back flash of the light from the
cornea. By normalizing the logarithm of the image intensities simply scaling (I + R) € [0, 1] and
taking the exponential of the normalized value, the reflectance variations can be attenuated; see
Figure [3(a)H3(c)l

The VL iris images consist of light reflection and shadows. The homomorphic filtering enhances
the specularities in the iris. However, there is still high frequency noise that can be miss-classified
as chromophors. The nature of high frequency is a sparse representation in the Fourier domain, and
proper regularization filtering can delete such noises. The Regularaized Tikhonov Filter [38] is a
powerful tool to separate such smooth chromophore variations from high frequency noise. Equation
is known as general Tikhonov regularization:

f = argmin {||Af —b[l; + N LS} (5)

where ¢ is the space norm (here ¢ = 2), L is a linear operator on the original signal. So the added
term is called the regularization term and The problem is to reconstruct the sharp unknown image
F from a given blurred image B (f and b are the vectorized tensors, vec(F)). The added term
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Fig. 3
(A) ORIGINAL COLOR IMAGE OF THE IRIS; (B) GRAY SCALE IMAGE; (C) ENHANCED IMAGE BY HOMOMORPHIC
FILTERING; (D) FILTERED IMAGE THROUGH FREQUENCY USING REGULARIZED TIKHONOV VALUE AND VISUAL
IMPROVEMENT; (E) AMPLITUDE OF THE FOURIER TRANSFORM OF THE IMAGE IN C; (F) AMPLITUDE OF THE
FOURIER TRANSFORM OF THE TIKHONOV FILTERED IMAGE IN D; (G) TIKHONOV FILTER FOR A VARIETY OF
REGULARIZATION PARAMETERS.

reduces the effect of noise on the results. The regularization parameter A (here A = 0.8) controls
the a priori knowledge regarding the residual norm. The final solution can be expressed as:

o2

k= o? + \? (6)
where o; is a singular value of the blurring matrix A. Figureshows the behavior of the Tikhonov
filter for a range of regularization parameters (0 < A\ < 3). The practical implementation of the
above filter is more convenient in Fourier domain which is introduced by Hansen et al [39]. In
this method, the singular values are considered by the elements of the Fourier transform of the
image and a point spread function as a smoothing operator, e.g., the Gaussian function. Then, the
Tikhonov regularization is done by:

BGT _ f_l fQD {PSF}* ’ f2D {B}
2D\ Fop {PSF}* - Fop {PSF} + A2

(7)

where Fyp stands for the 2-Dimensional Fourier transform operator, B the input image, PSF
point spread function operator (variance of the operator here is 02 = 25) and BT is the output of
the generalized-Tikhonov filter.

IV. PROPOSED METHOD

In our proposed method we rely on pattern of melanin pigments and the shapes generated by
them in VL iris images, as individual identifiers. In this section we define and explain how to extract
our proposed features.
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A. Image Binarization

A block diagram of the proposed algorithm for feature extraction is shown in Figure [dl A simple
approach to produce binarized-shapes is to cut the surface of an image by fixed threshold values.
However, reflections and specularities from the cornea affect the image and make the platform
sensitive to light intensities. The amount of luminance of camera-flash directly integrates with grey
values and can shift the histogram of image. This affects the binarization of image and changes the
pattern of generated shapes. Nonetheless, this amount of illumination is an injected-value and we
can adaptively threshold the intensity surface of image by sliding along the injected-luminance to
achieve robust threshold values, see Figure [l for Histogram Variation & Finding Proper Threshold
block.

To generate robust shapes, a bell-shaped Gaussian function is fitted to the histogram. The
histogram is considered Gaussian because of the limited variation of color in a unique iris. As an
exception in some images, the color of the iris consists of different shadows which cause more than
one peak in the histogram. Nevertheless, among the defined peaks, only one is dominant and all
of them can be fitted properly with a Gaussian, see Figure ] for Histogram Variation € Finding
Proper Threshold block. The tip of Gaussian defines one of the thresholds. Two horizontal lines
that divide the Gaussian from zero level to tip into three equal levels, provide four more thresholds,
Figure [dl Equation [§] defines the binarization:

I <I<t)=1

SlicedImage’ = { TI<i-! & I>8)=0 (8)

where ¢ relates to i*" extracted threshold value, ° = 0, t = 1, and i = 1,2,...,6. In fact,
the number of gray values in intensity histogram between two consecutive thresholds represents the
shape formed by intensities lying between those two thresholds. One may conjecture that these
shapes are a reflection of Eumelanin chromophores patterns discussed in Section II. It is possible
to define more threshold values, similar to those defined, particularly around the mean of Gaussian
distribution. However, one should bear in mind that this will increase the size of the code strip. The
other possibility is to concentrate around the mean of Gaussian with a fixed number of threshold
values, which can be problematic when the Gaussian function is rather flat with a large variance,
since we might lose other areas that are not small in quantity.

B. Object Selection and Matching Algorithm

The binarized images (see figure 4| for Image Binarization block) contain several disconnected
objects. Each shape represents the related intensity values between two finite thresholds. The
bigger objects resukt in more robust extracted features. This is because of confliction between
noises and true Eumelaning shades. To mitigate this conflict, we select larger shapes in order to
increase the probability of related pigments in represented shapes. Two disconnected objects in
each binarized template are considered. The first and the last templates are eliminated (see Figure
for Object Selection block) because they show the lowest and the highest intensities (often relate
to shadows and reflected noises).

Three features, defined in Section 3: RVF, SF and TAF, are applied to the selected objects. In
sum, four templates and two objects per template is considered. With three features per object, we
have 24 code-strips, where altogether represent every iris image. Figure [5| shows how the features
are sorted and inserted together.

Unlike the other generated binarized code for iris, e.g. IrisCode(© |[l], this feature code is
defined as a gray value. The number of samples per feature is an important challenge which can
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AT FIRST, CAPTURED IRIS IMAGE IS ENHANCED BY LOGARITHMIC AND REGULARIZED TIKHONOV FILTER. I\IEXT7
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9
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Fig. 5
DEFINITION OF SORTING THE PRODUCED FEATURES, E.G. SF; DEFINES THE it" OBJECT FROM j'* TEMPLATE. N
IS THE NUMBER OF SAMPLE PER FEATURE.

influence the accuracy of matching algorithm. The size of iris image which is mapped to Cartesian
coordinates has 256 x 512 pixels from captured 600 x 800 pixels iris image (we select the lower half
ring of iris). We found that N = 100 samples are sufficient to describe each feature. Fach gray

value of ShapeCodeIris is defined by 8-bit memory (2% = 256 level) ), so the size of each code for
an iris image is calculated by:

Size of {ShapeCodeIriS} =MxNxB (9)

where M is the number of features (here equals 24), N the number of samples used to introduce
each feature as discrete signal (here equals 100) and B is the number of bits to define each gray
value (here equals 8). To compare two shape codes, the nearest-neighbor method from [8] is used
to calculate product of the sums (POS) of individual sub-feature Hamming distances (HD). In
addition, the third parameter is added to define the number of bits regarding the depth of levels:

1M
MysB N (SE, @ SF2,)
HD = | ] N x B

i=1

(10)

where SF' stands for SubFeature The equation defines the number of code-strips. In the related
equation, the two sub-features are XORed and normalized by the size of code. So the Hamming
distance (HD) is normalized between [0, 1]. We used POS-HD to make our proposed method
comparable with other iris recognition methods, which mostly used this method for matching.

Proposed method can be challenged by occlusion of pupil or partial iris information. In this case,
the conversion of extracted iris in Cartesian coordinate using fixed mask size (256 x 512) can blurs
the image where information in radial axis is re-generated. This effect can influence the accuracy
of the classification by generating distorted shapes. Another difficulty may be caused by fake 1D,
e.g. contact lenses. In the case of optical contact lenses, proposed method is resistant to such
distortions, which is merely an additional layer to Cornea.

V. EXPERIMENTAL REUSLTS

In all experiments, Daugman’s method [1] have been used to extract irises and convert them from
polar coordinate to Cartesian. We used threshold pre-processing prior to extraction to maximize the
contrast between iris and non-iris regions. This threshold is selected adaptively using gray image
histogram. We considered the lower half of iris to reduce the occlusion effects. Such irregularity will
damage the shape of extracted contour and can affect curves driven from feature code. However,
we can consider the whole iris ring and increase the reliability of the system.
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TABLE I
1-FAR CLASSIFICATION RESULTS FOR DIFFERENT SCENARIOS OF TRAIN (TR) AND TEST (TE) FOrR UBIRIS &
CASIA
UBIRIS CASIA

Scen. S.#1 S.#2 Scen. | Vr. #1
4Tr, 1Te | 95.90% | 94.92% | 6Tr, 1Te | 65.74%
3Tr, 2Te | 94.02% | 93.70% | 5Tr, 2Te | 60.65%
2Tr, 3Te | 90.50% | 89.42% | 4Tr, 3Te | 52.47%
1Tr, 4Te | 81.70% | 81.37% | 3Tr, 4Te | 47.69%

- - - 2Tr, 5Te | 43.15%
- - - 1Tr, 6Te | 30.25%

O O = W DN —

A. Study on UBRIS and CASIA V.1

The proposed algorithm is evaluated on two famous datasets in this section. The first dataset is
UBIRIS [40], consists of 1877 images of 241 individuals, 1214 images from the first and 663 images
from the second session. Each person has five captured images in different time sequences. This
dataset is highly noisy due to several noise factors such as eyelids, eyelashes, glasses, the pupil
(e.g. distortions through iris segmentation), motion blur, lighting and reflections [23]. The second
dataset used is CASIA V.1 [41] which contains 756 NIR images from 108 eyes pertaining to 80
individuals. Each eye holds seven captured images presented in two different sessions with different
time sequences (one month interval).

Regarding UBIRIS and CASIA V.1, four and six different Scenarios could be introduced for the
classification problem illustrated in Table [Il The “train” and “test” data are selected randomly.
The related scenarios come from considering more than one image for training purposes. If we
consider 'k’ images (1 < k <n) out of 'n’ images per individuals (here n = 5 for UBIRIS) for
training purpose, then we will have 'nk’ choices for testing purpose. The pattern of such selection is
uniformly at random and there is no priority in train-image selection. Having more than one image
for training purpose, we compare the test image to all train ones and chose the nearest neighbor in
that class.

Melanin chromophore in an NIR image attenuates while it preserves in VL. These chromophores
scatter in iris in a gradual variation manner. The proposed feature extraction method uses a vari-
ation approach to binarize iris image. It fits Gaussian profile on image histogram and extracts the
related threshold values for binarization. Indeed, the noise factors in VL images are distinguishable
from Melanin chromophore scatter, since such noises are represented in high frequencies by nature,
while such chromophores distribute in lower frequencies band. Tikhonov regularization can solve the
problem by ignoring high frequencies. As for NIR images such as CASIA.v1, due to disappearance
of such chromophores, the information remained in such images are about textures, where usually
contain high frequency information. Tikhonov filter deletes much of high frequency information;
and since there is no chromophore related information, there remains very low information to be
analyzed. That is why our method is not suitable for NIR images but it is a strong tool to code VL
images.

The identification accuracy of the system is illustrated by the False Acceptance Rate (FAR) in
figure @ for both datasets. Comparing classification results in both sessions of UBIRIS (figure
and and mixture of both sessions, one can see that the efficiency of the proposed algorithm
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TABLE II
UTIRIS DATASET DEFINITION

VL-Session NIR-Session
Camera CANON EOS 10D + MACRO LENS ISG LIGHTWISE LW
Right Eye Left Eye Right Eye  Left Eye
Number of Individuals 79 79 79 79
Number of Images per Iris 5+1 5+1 5+1 5+l
Total number of images 770 770

is consistently high through noise factors, where the second session of UBIRIS contains more noise
factors than the first session, while the same accuracy is achieved in both sessions. The number
of subjects in the first session is almost 2 times bigger than the second one, that is 241 and 125
individuals respectively (the number of subjects in 2nd Session of UBIRIS is 132, but we could
only extract iris accurately from 125 subjects). Proenca and Alexandre [23] applied Daugman’s
method [1] on UBIRIS dataset, where they selected only 80 .from 241 individuals to maintain
the size of the dataset comparable with that of CASIA. They did not, however, explain how they
selected these individuals. Probability distribution of intraclass and interclass hamming distances
for all 241 individuals are shown in Figure [6(e)], |6(f)| and |6(g)!

B. UTIRIS Database Collection

The results of UBIRIS led to good accuracy due to the knowledge that the following database is
a hard set to implement recognition algorithms. In contrast, the results for CASIA are poor, given
the fact that CASIA contains fewer noisy images compared to UBIRIS. Shape analysis algorithm
is highly dependent on pigment melanin. In order to study the effect of the above phenomenon,
we decided to gather our own database in the University of Tehran, called UTIRIS, which consists
of VL and NIR Iris images taken from the same individuals. UTIRIS consists of two sessions with
1540 images, half of which captured in a visible-light session and the other half captured in a NIR
illumination session. Both sessions hold 158 eyes pertaining to 79 individuals (Right and Left eyes),
Table [[I] explains the related dataset.

Images in VL Session have been captured in high resolution with 3 megapixels where they have
been down-sampled by a factor of 2 in each dimension to have the same size as NIR captured
images. As mentioned in the beginning, Daugman segmentation method is used to extract the iris.
The iris radius is approximately extracted about 120 pixels in polar coordinates, where all mapped
to 150 pixels in Cartesian rectangular pixels with 1° circular arc to resolve in Cartesian coordinates.
The rectangular region is (150 x 300) for lower-half iris. Although the irises have been captured in
high resolution, the images are highly noisy due to focus, reflection, eyelashes, eyelids and shadow
variations, all of which make the iris matching a more difficult task. Figure [7| shows some highly
noisy difficult to code -as a result difficult to match- sample images along with segmentation results.

As mentioned, iris pigment epithelium (IPE) contain mainly eumelnin with 97.6% and 91.7%
in the case of blue-green and brown irises respectively [19]. As it is shown in Figure [§] among six
different varieties of iris colors, irises with green-blue colors lose more information in NIR imaging
than brown, where the reason goes back to the higher content of eumelanin.

At first step, we used our proposed method on UTIRIS to extract ShapeCodceIriS from each eye
in both sessions. The number of scenarios for train and test is similar to UBIRIS, Table [ TThe
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Fig. 6
(A) CLASSIFICATION ON 18T SESSION OF UBIRIS; (B) CLASSIFICATION ON 2ND SESSION OF UBIRIS; (C)
CLASSIFICATION RESULTS ON LARGER DATABASE OF UBIRIS(1ST + 2ND); (D)CLASSIFICATION RESULTS ON
CASIA V.1; (E) PROBABILITY DISTRIBUTION UBIRIS.S1; (F) PROBABILITY DISTRIBUTION ON UBIRIS.S2;
(@) PROBABILITY DISTRIBUTION ON UBIRIS.(S1+4S2); (H) PROBABILITY DISTRIBUTION ON CASIA V.1
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Fig. 7
UTIRIS NOISY SAMPLE IMAGES CONTAINING INTERCLASS VARIATIONS OF FOCUS, REFLECTION, EYELASHES,
EYELIDS AND SHADOWS INCLUDING DAUGMAN’S IRIS SEGMENTATION RESULTS ON EACH

) VL-1 ) NIR-1
) VL-3
' ' ,

) NIR-3 (g) VL-4 (h) NIR-4
(i) VL-5 ) NIR-5 (k) VL-6 (1) NIR-6

(d) NIR-2

Fig. 8
SIX DIFFERENT IRIS IMAGE FROM UTIRIS. FROM GREEN TO RED AND THEIR APPEARANCE UNDER BOTH VL
AND NIR STIMULATION
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results of classifications are shown in Figure [9] by red dashed and green solid plots for NIR and
VL sessions, respectively. As it is shown, the accuracy results per false acceptance rate (FAR) for
VL session suppress the results for NIR session, where the reason goes back to the elimination of
pigment melanin in NIR session.

In the next step, we applied a second feature extraction method on UTIRIS to compare the results
with our own algorithm. We used Poursaberi’s method [42], where they used Daubechies2 wavelet
to extract features from enhanced iris image. The results are shown in Figure [9 by black dot and
blue dashed-dot plots, where the accuracy on VL session suppresses the NIR session’s results due to
high content of information on VL session (as discussed above). Although the accuracy results of
one false acceptance rate for Poursaberi’s method remain higher than our proposed algorithm, the
accuracy results of the proposed shape analysis suppress Poursaberi’s outcomes at the beginnings
of the false acceptance rate, e.g. three false accepted rates (3 FAR). The second advantage of our
proposed method is faster convergence with the increase in false acceptance rate.

An important goal of working on a database like UTIRIS is to analyze the correlation of informa-
tion contained in VL and NIR sessions. In fact, the following argument can be studied on several
horizons. One method is to concatenate the feature codes of VL with NIR:

pConcatinated _ { pVL pNIR } (11)

The rationale behind the concatenation is as follows: all features analyzed in VL and NIR have the
same characteristics where it comes from the same feature extraction method (Shape analysis and
Daubechies2 Wavelet) for both sessions. Our concern in this paper was on Eumelain spectroscopy
and its effects on NIR and VL imaging, while we introduce new approach for extracting such related
information. In this case we studied complementary information contain in NIR and VL for better
results. However, one can perform better fusion analysis for better accuracies, e.g. [43].

Recently, Kumar [44] presented a comparative study of the performance from the iris identifi-
cation using log-Gabor, Haar wavelet, DCT and FFT based features. There results provide higher
performance from the Haar wavelet and log Gabor filter based phase encoding. They have imple-
mented their proposed method on CASIA v.1, where the combination of both encoders is most
promising, in terms of performance and the computational complexity.

Here, combined features extracted by the shape analysis technique from the NIR and VL sessions.
The results of classifications are shown in figure [9] with the brown solid-circle. The results of fusion
of Poursaberi’s method on both sessions are shown by the cyan solid-square, where it can be easily
determined that our proposed method with the fusion of data suppresses Poursaberi’s method.
Besides, the results of both methods are highly improved.

As the last experiment, we fused both methods, adding both dataset on VL and NIR, where
the results for classifications are extremely improved. The best answer is obtained from the fourth
scenario (4-train and 1-test) by reaching an accuracy of 99.27% and it completes the classification
accuracy to 100% by accepting more than two false rates (2 FAR), see figure[J|the pink solid-diamond
plots. We gathered all results for one false acceptance rate (1 FAR) on Table [[TI}

The results of classification for the concatenated case are highly improved. The features contained
in both sessions present different patterns and textures. This consequence was almost predictable,
where we noted in previous sections that NIR imaging eliminates most pigment melanin due to
lack of emission by the following macromolecules under NIR firing. We realized that the textures
previewed in NIR imaging are mostly related to soft tissues of the iris, called sphincter and radial
muscles [45].
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Classification Results on UTIRIS for 1 Train & 4 Test
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Fig. 9

(A)-(D) CLASSIFICATION RESULTS (FAR) FOR DIFFERENT SITUATIONS OF TRAIN & TEST DATA SELECTION. THE
BLACK DOT, BLUE DASH-DOT, RED DASHED, GREEN SOLID, CYAN SOLID-SQUARE, BROWN SOLID-CIRCLE AND PINK
SOLID-DIAMOND PLOTS, RESPECTIVELY, DETERMINE POURSABERI’S METHOD ON NIR, POURSABERI’S METHOD
ON VL, OUR PROPOSED METHOD ON NIR, OUR PROPOSED METHOD ON VL, POURSABERI’'S METHOD ON THE
FUSION OF NIR+VL, OUR PROPOSED METHOD ON THE FUSION OF NIR+VL AND FUSION OF OUR METHOD
PLUS POURSABERI’S METHOD ON NIR+VL DATASETS; (E) PROBABILITY DISTRIBUTION OF MATCH AND
NON-MATCH CLASS FOR POUSABERI’S METHOD NIR+VL; (F) PROBABILITY DISTRIBUTION FOR MATCH AND
NON-MATCH CLASS FOR PROPOSED METHOD NIR+VL (G) PROBABILITY DISTRIBUTION FOR MATCH AND
NON-MATCH CLASS FOR POUSABERI’S AND PROPOSED METHOD FUSION
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TABLE III
1-FAR CLASSIFICATION RESULTS FOR DIFFERENT SCENARIOS DEFINED ON UTIRIS

Scenario Shape Analysis Method Wavelet Daubechies2 Concatination of Both
NIR VL NIR+VL | NIR VL NIR+VL NIR+VL
1 50.33% | 59.15% | 77.12% | 57.19% | 60.46% | 73.20% 89.22%
2 67.62% | 70.26% | 87.89% | 71.59% | 75.33% | 85.90% 96.26%
3 70.95% | 78.72% | 90.20% | 77.36% | 82.09% | 90.20% 95.95%
4 76.71% | 84.06% | 94.93% | 89.13% | 86.23% | 96.38% 99.28%

Probability distributions of fusion cases for Poursaberi’s method, the proposed method and the
augmentation of both are shown in Figure , where the distribution of match-class and
non-match-class leads to good separability in data fusion. Figure indicates the results of fusing
data, where the correct classification rate is highly improved. We get 99.28% accuracy in the first
step of false acceptance and reach 100% accuracy in the second step. This shows that data fusion
can be the key issue for the scalability of Iris recognition methods to larger databases. This analysis
provides some leads towards classification problems in large size databases.

VI. CONCLUSION

Our proposed method is highly resistant to noise in the VL images. The proposed algorithm
encodes the pattern of pigment melanin in the VL image independent of textures in the NIR image.
It also extracts invariant features from the VL and the NIR images whose fusion leads to higher
classification accuracy. However, this method uses a large strip-code in the order of thousands
of bits contrary to the previous methods. For example, Daugman uses 2,048-bits codes while our
code is in the order of 10 thousands (e.g., 19,200 bits). Three features were proposed: RVF; SF;
and TAF. Some other facts, e.g. number of shapes, number of samples (N) can be variable due to
complexity of each defined binary template. As a conclusion, VL imaging should be considered to
trusted-zones of iris biometrics where the patterns of pigment melanins are highly meaningful and
can produce a valuable encoded data for classification and complementary features to NIR images.
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