
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011 319

A Petri Net-Based Software Synchronizer for
Automatic Measurement Systems

Pasquale Arpaia, Lucio Fiscarelli, Giuseppe La Commara, and Felice Romano

Abstract—A Petri net (PN)-based approach to software syn-
chronization in automatic measurement systems is proposed.
Tasks are synchronized by means of a PN modeling an execution
graph, where nodes represent tasks and arrows among nodes point
out time succession among the corresponding tasks. This allows
software synchronization to be abstracted above the code level
by leaving the test engineer to work at a more intuitive level.
As an experimental case study, the design, the implementation,
and the application to a measurement scenario of the PN-based
synchronizer inside the software framework for testing magnets
at the European Organization for Nuclear Research (CERN) are
illustrated.

Index Terms—Automatic test software, permeability measure-
ment, Petri nets (PNs), software reusability, synchronization.

I. INTRODUCTION

IN AUTOMATIC measurement systems, usually, asynchro-
nous tasks have to simultaneously be ran on the same

platform. A crucial issue is the capability of assuring proper
synchronization to the measurement procedure. Whereas severe
time constraints require a dedicated hardware, at the software
level, the task’s interaction often requires programming strate-
gies capable of dealing with events generated asynchronously
and notified to the processes once a synchronization point is
reached [1]–[3]. Today, software synchronization is a technique
widely used, and emerging application areas for cost-effective
dependable systems will further increase its importance [4].
Typical examples of software synchronization are the follow-
ing: 1) one or more tasks must wait for the termination of other
tasks before starting; 2) events have to be notified to one or
more tasks; 3) a task has to be enabled to start when a particular
event is triggered; and so on.

In the past, various types of “synchronization objects” have
been used in coordinating the execution of multiple threads
and processes. A common type of synchronization object is

Manuscript received November 12, 2009; accepted January 13, 2010. Date
of publication November 1, 2010; date of current version December 8, 2010.
This work was supported by the European Organization for Nuclear Re-
search (CERN) through the agreement K 1464 with the University of Sannio.
The Associate Editor coordinating the review process for this paper was
Dr. Wendy Van Moer.

P. Arpaia and L. Fiscarelli are with the Department of Engineering, Uni-
versity of Sannio, 82100 Benevento, Italy, and also with the Department of
Technology, Group of Magnets Superconductors Cryostats, European Orga-
nization for Nuclear Research (CERN), CH 1211, Genève 23, Switzerland
(e-mail: arpaia@unisannio.it; lucio.fiscarelli@cern.ch).

G. La Commara and F. Romano are with the Department of Engineer-
ing, University of Sannio, 82100 Benevento, Italy (e-mail: Felice.Romano@
cern.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2010.2046602

a mutex (short for mutual exclusion) [5]. A mutex may be
used to guarantee exclusive access to a shared resource, typi-
cally by controlling access to the resource through “lock” and
“unlock” operations. This technique of waiting for a mutex
is often called “blocking” on a mutex because the thread or
process is blocked actually and cannot continue until the mutex
is released. Other types of synchronization objects include
semaphores and queues [5]–[7].

Generally, test engineers managing automatic measurement
systems are not skilled programmers. Thus, often, they find
it difficult to properly implement the execution of software
synchronization by using objects such as mutex, semaphores,
or rendezvous [8]. Therefore, any system and method for
supporting the synchronization of measurement tasks turns out
to be useful. In particular, it would be desirable to abstract
synchronization above the code level so that the test engineer
can work at a more intuitive level.

Recently, a new generation of frameworks supporting soft-
ware production for test applications is arising [9]. In particular,
at commercial level, with TestStand of National Instruments
[10], steps, such as individual tests, measurements, actions, or
commands, can be automated in a sequence but not in parallel
or in event-driven configuration. At research level, in the pro-
posal of the consortium Tango [11], if the test engineer wants
to decompose its application in multiple tasks, then he will be
forced to adequately design a client application by managing
threads, semaphores, and so on. In the Extensible Measure-
ment System of FermiLab [12], the application description
language, a proprietary dialect of Extensible Markup Language,
allows sequences of control events to be described. However,
only common actions, i.e., init or start, can be executed in
parallel.

Petri nets (PNs) are graphical and mathematical modeling
tools applicable in different environments and in measurement
systems. Recently, they have been the focus of scientific interest
in 1) evaluating CAN-bus performance [13]; 2) monitoring
systems based on microcontrollers [14]; 3) failure monitor-
ing systems for protection in distribution network [15], [16];
4) modeling and analyzing test systems [17]; 5) detecting and
diagnosing faults in industrial environment [18]; and 6) some
measuring medical applications [19]. PN algorithms have also
been successfully used in the design of distributed measurement
systems [20] or, more specifically, in modeling its data acquisi-
tion modules [21]. In these applications, they permit to describe
and model information processing systems characterized as
concurrent, asynchronous, distributed, parallel, nondetermin-
istic, and/or stochastic [22]: every part of the measurement
system is easily modeled at high level, leading to a whole

0018-9456/$26.00 © 2010 IEEE

320 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011

Fig. 1. Test engineer and application user roles in a measurement software
framework [25].

library of partial models considering time dependencies within
the system.

In this paper, a PN-based Synchronizer, allowing a simple
construction of an execution graph and easy-to-use methods to
query this graph, is proposed. The Synchronizer allows a test
engineer, even without software skill, to subdivide a generic
measurement application in different measurement tasks, fol-
lowing the divide et impera approach. Having identified the
individual measuring task, he can determine their order of
execution without having to worry about details of their time
synchronization. In fact, the use of PN allows the dynamics of
execution to be followed step by step by making it completely
transparent to the test engineer. In particular, in Section II, the
basic ideas and the design of the Synchronizer are highlighted
with a straightforward example. In Section III, an experimental
case study on the software framework for magnetic measure-
ments [23], [24] at the European Organization for Nuclear
Research (CERN) is reported.

II. PROPOSAL

In the following, 1) the measurement framework background,
2) the basic ideas, 3) the design, and 4) an evolution example of
the proposed PN-based Synchronizer are described.

A. Measurement Framework Background

In Fig. 1, the roles of the test engineer and the applica-
tion user in a generic measurement software framework are
highlighted. In the first phase, the test engineer prepares a
script, where a measurement process is designed, puts this
script in the framework, and obtains an executable measurement
application. In the second phase, the measurement application
user executes the previous measurement application, interacts
with the system by providing the required input and configuring
hardware setup, and finally starts the measurement process on
the devices [25].

A measurement procedure includes actions to be performed
sequentially or concurrently. Assuming that the test engineer
responsible to write the measurement scripts does not have
software skills, suitable tools for scheduling the execution of

measuring tasks in a simple and intuitive way have to be
provided. The proposed Synchronizer helps the test engineer to
think at high level, in terms of the following: 1) “task A has
to be executed first” (root node); 2) “task B has to be executed
after task C” (task node); and 3) “the task D has to be executed
when event E occurs” (event node).

B. Basic Ideas

The main leading concept is to make available to the test
engineer a software component, i.e., the Synchronizer, for
scheduling the execution of a procedure at high level by mod-
eling sequential and parallel executions of tasks, tracing their
dynamic status, and determining the available task, step by
step. This way, a test engineer, even without software skill,
1) subdivides a generic measurement application in different
measurement tasks, and then 2) determines their order of exe-
cution, without having to worry about details of time synchro-
nization.

With this aim, the Synchronizer has been based on a PN,
allowing the dynamics of execution to be organized step by step
completely transparent to the test engineer.

PNs have been used in the literature either for assessing
the performance of systems or for carrying out simulations.
In particular, several years of research have established PN
as a powerful modeling formalism. Their formal semantics
make them suitable for complex concurrent process description
for software performance evaluation [26], [27], for system
simulation [28], and for project modeling and simulation [29]
in the field of communication networks [30] and several other
fields.

In conceiving the Synchronizer, their use turns out to be
useful at exploitation level, as follows:

1) preliminarily, in a static way, to store the execution graph,
defined by the test engineer in the measurement script that
declares when each task has to be executed;

2) successively, in a dynamic way, the active properties of
PNs are exploited for tracing the tasks already executed
and, by leaving the net to evolve, for obtaining the list of
tasks ready for execution.

The major aim of a framework is to simplify software pro-
duction. The Synchronizer simplifies a step-wise decomposition
of a measurement application by allowing measurement task-
level details to be separated from high-level overviews. This
makes the measurement procedure specification easier by using
the divide-and-rule principle.

Therefore, in synthesis, the main basic ideas of the Synchro-
nizer are just the twofold uses of the PNs: 1) at application
level, using PNs inside frameworks for generating measurement
applications in a standalone general-purpose module for task
synchronization, and 2) at exploitation level, in combining
static and dynamic properties for separating static easy task
description from complex concurrent management.

In particular, the concept of Execution Graph is utilized,
where we have the following: 1) a node represents a task or an
event; 2) an arrow from task node A to task node B implies that
task node B has to be executed after task node A is completed;

ARPAIA et al.: PETRI NET-BASED SOFTWARE SYNCHRONIZER FOR AUTOMATIC MEASUREMENT SYSTEMS 321

Fig. 2. Working example of the execution graph.

and 3) an arrow from event node E to task node C implies that
task node C has to be executed when event E occurs.

Two key software components, i.e., the Test Manager and the
Synchronizer, are conceived. In particular, the Test Manager is
responsible for the following:

1) starting the execution of each Measurement Task by noti-
fying the Synchronizer;

2) detecting when a measurement task ends its execution by
notifying the Synchronizer;

3) requiring the list of tasks to be executed to the
Synchronizer.

The Synchronizer is responsible for the following:

1) managing a data structure implementing the Execution
Graph;

2) getting the notification of a task start/termination and
evolving the Execution Graph status consequently.

From a dynamic point of view, at each step, we have the
following:

1) The Test Manager asks the Synchronizer for the list of
executable tasks.

2) The Synchronizer checks the status of the Execution
Graph and provides the Test Manager with the list of
executable tasks.

3) If the list is empty and no other tasks are in execution,
then the measurement application is terminated.

4) If the list is empty, but other tasks are in execution, then
the procedure skips to step 7.

5) If the list is not empty, then the Test Manager launches
the execution of each task in the list and notifies the
Synchronizer of each execution.

6) When the Synchronizer receives a notification from the
Test Manager, it evolves the status of the Execution
Graph.

7) The Test Manager waits for the end of a task. Then, the
Test Manager notifies the Synchronizer of this event.

When an event occurs, the Synchronizer evolves the status of
the Execution Graph.

In Fig. 2, a straightforward example, highlighting the work-
ing mechanism of the conceived Execution Graph, is shown as
follows:

1) The measurement begins with the execution of the
task T0.

2) When T0 is completed, the task T1 is executed.
3) When T1 is completed, the tasks T2 and T3 are simulta-

neously started.

Fig. 3. Code lines for the execution graph definition.

Fig. 4. Example of a PN.

4) When the event E1 is triggered, e.g., during the execution
of T1, the tasks T4 and T5 are simultaneously started.

5) And so on.

In the measurement script, the Execution Graph is codified
by the test engineer through the following commands provided
by the Test Manager:

1) ADD_TASK(task name);
2) ADD_TASK_AFTER_TASK(previous task name, fol-

lowing task name);
3) ADD_TASK_AFTER_ EVENT(event name, task name).

With respect to the example pointed out in Fig. 2, the test
engineer, after the definition of the tasks separately, defines the
Execution Graph by means of a set of code lines, as shown
in Fig. 3.

Another leading idea of the proposed Synchronizer is to
model the Execution Graph by means of a PN aimed at si-
multaneously presenting control and data flows in a concurrent
system [8]. Its graphical representation (Fig. 4) is a dual graph
containing two types of nodes called “places” and “transitions.”
Only nodes of different types can be connected by directed arcs.
The places (symbolized as circles or ellipses) represent states,
whereas the transitions (rectangles) simulate events. The places
in the network contain tokens, which are represented by dots.
Displacement and flow of the tokens determine the dynamics in
the system, i.e., its changes in time.

The PN of the Synchronizer is extended by a labeled PN
(LPN) [31] to offer a more consistent way of the measurement
procedure description as well as to simplify its modeling and
analysis. In the LPN, each place and transition has an associated

322 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011

Fig. 5. Architecture of synchronizer’s classes.

label to allow different classes of places and transitions to
be modeled and managed. In synthesis, the LPN allows the
following:

1) a task state (e.g., in execution and terminated);
2) a temporal relation between the execution of two tasks

(e.g., run task T2 after task T1);
3) a relation between a task execution and events (e.g.,

run task T5 after event E1) to be modeled easily and
consistently.

C. Design

On the basis of the foregoing basic ideas, the design of
the proposed Synchronizer is aimed at satisfying the following
requirements:

1) building the execution graph, by adding a node, an event,
or an arrow;

2) querying the execution graph, by determining the exe-
cutables nodes, the end-node, and the loop detection;

3) updating the execution graph, by forcing the execution
graph dynamics: execute a node, terminate a node, freeze
a node, unfreeze a node, notify an event, and set an
executable node.

The foregoing requirements are satisfied by means of the
following classes (Fig. 5):

1) PetriNet, supplying all the basic methods to manage a PN;
2) Place, allowing tokens, labels, and inner and outer arcs to

be managed;
3) Transitions, allowing transitions to be enabled or dis-

abled, as well as labels and inner/outer arcs to be man-
aged;

4) Synchronizer, supplying all the methods to manage the
Execution Graph;

5) Test Manager, supplying all the methods to manage the
execution of measurement tasks.

Basically, the class PetriNet provides all the methods neces-
sary to build a generic PN (addPlace, addTransition, and so on)
by using the basic classes Place and Transition.

The class Synchronizer provides all the methods to build and
manage the Execution Graph by using a private PN object.
As an example, the method addRootNode permits to add a
node (task) to be executed as the first, whereas the method
getRootNodes permits to obtain all the root nodes. This way,
the Synchronizer hides the details of the PN and performs high-
level methods for using the Execution Graph. In particular,
three kinds of nodes are provided: 1) the event node, repre-
senting a task to be executed when a particular event occurs;

ARPAIA et al.: PETRI NET-BASED SOFTWARE SYNCHRONIZER FOR AUTOMATIC MEASUREMENT SYSTEMS 323

Fig. 6. Implementation of the execution graph entities (nodes and arrows).

Fig. 7. Generic task manager uses the synchronizer to select an executable task. (a) Interaction diagram. (b) Execution graph. (c) Labeled PN.

2) the task node, representing a task to be executed after another
node (task) is terminated; and 3) the root node, a special task
node to be executed when the measurement application starts.

In Fig. 6, details about the implementation of the event and
task nodes are shown, as follows:

1) The event nodes are characterized by a transition named
“trig” connected by an inner arrow to a place named
“triggered.” One or more outgoing arrows allow the
EventNode to be connected to one or more TaskNodes.

2) The task nodes trace three different states by means of
three places, named “in execution,” “freezed,” and “ter-
minated,” and two transitions, named “start” and “stop.”
Inside the TaskNode, the arrows model the right sequence
of task states, and one or more outgoing arrows allow the
TaskNodes to be connected to other nodes.

3) The root nodes are particular task nodes, characterized by
the fact that it had no incoming arrows. In fact, the task
associated with the root nodes starts at the beginning of
the measurement application.

D. Evolution Example

In this section, a straightforward example, highlighting how
a generic Task Manager can use the Synchronizer, is described.

Furthermore, the LPN dynamic evolution for tracing the
execution status of each task is illustrated by highlighting
specifically how, on demand, the list of tasks available for
execution is provided. Let the sequential and parallel executions
of tasks T1, T2, T3, and T4 be modeled by using the Execution
Graph.

The following actions are carried out [Fig. 7(a)]:

1) When the Task Manager is ready to carry out the Exe-
cution Graph (runTasks), as a first step, the list of nodes
to be executed (getExecutableNodes) is required to the
Synchronizer; at this time, they are the root nodes [only
T1 in Fig. 7(b)].

2) The Synchronizer
a) checks on its LPN if there is a “start” transition

enabled;
b) finds T1 “start” transition enabled;

324 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011

Fig. 8. Generic task manager uses the synchronizer to trace the change of task execution status. (a) Interaction diagram. (b) Execution graph. (c) Labeled PN.

c) returns a list with the task T1 to the task manager
(nodeList[T1]).

3) The task manager notifies the Synchronizer of executing
T1 (execute(nodeList[T1])).

4) The Synchronizer modifies [Fig. 7(c)] the execution status
of T1 (from “ready” to “in execution”) as follows:
a) disabling the “start” transition of T1;
b) adding a token to the “exec” state of T1;
c) enabling the “start” transition of T1.

5) When the task manager catches the termination event of
T1 [Fig. 8(a)], it also notifies the Synchronizer of the
termination of T1.

6) The Synchronizer again modifies [Fig. 8(c)] the execution
status of T1 (from “in execution” to “terminated”) as
follows:
a) removing the token from the “exec” state of T1;
b) disabling the “stop” transition of T1;
c) adding a token to the “wait” state of T1.

7) Moreover, the Synchronizer modifies to “ready” the exe-
cution status of all tasks whose execution starts after the
termination of T1, that is, tasks T2 and T3, as follows:
a) enabling the “start” transition of T2;
b) enabling the “start” transition of T3.

8) And so on, like in the step 1, for T2 and T3.

III. EXPERIMENTAL CASE STUDY

The proposed Synchronizer was experimented at CERN,
inside a research project carried out in cooperation with the
University of Sannio, aimed at realizing a software framework
for supporting a test engineer in developing automatic measure-
ment applications in magnetic testing [23].

In the following, 1) the software framework for magnetic
measurements at CERN; 2) the permeability measurement
scenario; and 3) the corresponding measurement procedure
exploiting the proposed PN-based Synchronizer are illustrated.

A. Software Framework for Magnetic Measurements at CERN

The software flexible framework for magnetic measurements
(FFMM) [23], [24] was designed on the basis of the following
central ideas: 1) Achieve flexibility by reusing the code: rapid
variations in measurement requirements due to the frequent
occurrence of different small batches of tests are satisfied by
reusing already existing modules as much as possible. 2) This
reusability is achieved by object-oriented and aspect-oriented
[32], [33] approaches and modularity: a suitable design of the
code allows modules to be reused. 3) Incremental building of
module libraries: once modules can be reused, a finite applica-
tion domain will be saturated in a finite time. 4) Standardization
of software structure and modules: a definition of code structure
and patterns gives rise to the production of standard modules
to be reused easily. 5) Predefinition of a software structure
of the test program, organized in standard modules: such an
organization provides the user with templates to be filled for
generating new codes.

Among the basic standard modules of FFMM, a PN Synchro-
nizer was designed according to the foregoing approach.

B. Permeability Measurement Scenario

In the following, a case study aimed at illustrating how the
proposed Synchronizer supports the FFMM in implementing
the method of the split-coil permeameter [34] for measuring the

ARPAIA et al.: PETRI NET-BASED SOFTWARE SYNCHRONIZER FOR AUTOMATIC MEASUREMENT SYSTEMS 325

Fig. 9. Layout of the permeability measurement setup.

Fig. 10. Current cycles.

magnetic permeability is described. The split-coil permeameter
consists of two coils wound in a toroidal shape, which can be
opened to allow wrapping a toroidal specimen of the material
under test. One coil is needed to excite the field and another coil
to capture the flux.

A PC (Fig. 9), hosting FFMM with the Synchronizer, is
linked to a data acquisition board [35] to control the voltage-
controlled power supply of the excitation coil of the split-coil
permeameter by the analog output. A crate, connected to the pc
through the PCI extensions for instrumentation (PXI), contains
the following:

1) a fast digital integrator (FDI [36]), which is a CERN pro-
prietary general-purpose digitalization board, configured
for coil signal acquisition and numerical integration;

2) a CERN proprietary encoder board for managing the
encoder pulses and feeding the trigger input of the FDIs;

3) a further FDI to acquire the excitation current.

C. Measurement Procedure

The specimen is gradually magnetized by using a current
waveform (Fig. 10) made by a series of linear ramps and
plateaux with an exponential increasing amplitude (cycles). A
current cycle consists of an initial plateau, a linear ramp with
constant ramp rate, and a final plateau.

After the set up of the devices, the measurement algorithm
consists of the following steps:

1) demagnetization of the specimen [34];
2) start acquisition of flux and current;
3) start generation of one cycle of the signal controlling the

power supply;
4) wait for the completion of the actual current cycle;
5) stop the acquisition of the flux;
6) start the generation of the next current cycle and go to 3)

or, if the maximum value of current is reached, stop the
acquisition;

7) data conversion.

In such a measurement procedure, several tasks have to be
executed with time constraints. This is easily introduced into
an FFMM script by using the new features of the Synchronizer.
The test engineer, first, has to separately write the short high-
level procedures describing each step of the whole measure-
ment algorithm in the tasks by exploiting the related tools of
the FFMM [37]. Then, for the synchronization, he easily adds
each task to the execution tree, as shown in Fig. 11, without
worrying about the time synchronization of parallel or series
tasks.

As an example, to add a task to be executed after
another task, the test engineer has to use the statement
ADD_TASK_AFTER_TASK(first_task, second_task), as shown
in the case study (Fig. 11) for the Set_Next_Cycle task sched-
uled in series to the Demagnetization task. Otherwise, if the
test engineer wants to arrange the start of the execution of one
task after an event produced by another task and then to let
both tasks active in parallel, he has to exploit the statement
ADD_TASK_AFTER_EVENT(event, second_task), as shown in
Fig. 11 for the Current_Cycle task scheduled after the event
next_cycle.

The measurement algorithm, which was previously described
step by step, is codified in the script, as just explained, and
the related Execution Graph is shown in Fig. 12. The first
task to be active is the Demagnetization. At the end of this
task, the execution passes to the Set_Next_Cycle task (series
execution). Set_Next_Cycle sets up the actual cycle of current
and starts the Current_Cycle by throwing the event next_cycle.
Current_Cycle first starts the task Start_Acquisition that
enables the acquisition of flux and current, then begins the

326 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011

Fig. 11. FFMM script fragment defining the execution graph.

Fig. 12. Execution graph of the case study on permeability measurement.

generation of the actual current cycle, and then stops the
acquisition by throwing the event stop_cycle. The task
Stop_Acquisition triggers a new execution of Set_Next_Cycle
that restarts the loop up until the last scheduled current cycle or
enables the Data_Conversion to format the output data.

In Fig. 13, the result of the measurement is graphically shown
by referring to a series of current cycles starting from 0 up
to 10 (A) and their corresponding magnetic field from 0 to
6000 (A/m).

The right trend of the hysteresis curve of the iron specimen
highlights the validity of the proposal.

IV. CONCLUSION

PNs have been shown to be an appropriate formalism to man-
age asynchronous measurement task scheduling. The method

presented in this paper turns out to be suited to assuring a
proper software synchronization to the test procedure because
it allows the temporal dimension to be abstracted from a flat
description of the sequences of events by discovering the ac-
tual temporal relations between the events. In particular, the
proposed Synchronizer allows a test engineer, without soft-
ware skill, to schedule concurrent, sequential, and event-based
tasks through an intuitively approach by thinking, into the
time domain, in terms of simple relation like “after that” or
“at same time of.”

This approach was tested on-field in the permeability mea-
surement of FFMMs at CERN. The main advantage is the
simplification of the measurement script and the speeding up of
its making. As a consequence, the test engineer can concentrate
his attention on the measurement matters and not care about
software design and programming details like threads and

ARPAIA et al.: PETRI NET-BASED SOFTWARE SYNCHRONIZER FOR AUTOMATIC MEASUREMENT SYSTEMS 327

Fig. 13. Hysteresis curve of the material.

semaphores. The corresponding satisfying results motivated a
wide use of the proposed Synchronizer in other measurement
layouts at CERN.

ACKNOWLEDGMENT

The authors would like to thank F. Cennamo for his use-
ful suggestions and L. Walckiers, M. Buzio, V. Inglese, and
G. Montenero for their precious collaboration.

REFERENCES

[1] R. K. Gupta, C. N. Coelho, and G. De Micheli, “Synthesis and sim-
ulation of digital systems containing interacting hardware and soft-
ware components,” in Proc. 29th ACM/IEEE Des. Autom. Conf., 1992,
pp. 225–230.

[2] G. Graunke and S. Thakkar, “Synchronization algorithms for shared-
memory multiprocessors,” Computer, vol. 23, no. 6, pp. 68–69, Jun. 1990.

[3] C. von Praum, H. W. Cain, J. Choi, and K. D. Ryu, “Conditional memory
ordering,” in Proc. 33rd IEEE ISCA, 2006, pp. 41–52.

[4] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia,
“An aspect oriented-based architectural framework for synchroniza-
tion in measurement systems,” in Proc. 16th IMEKO TC4 Symp.,
Sep. 2008.

[5] A. Birrell, J. Guttag, J. Horning, and R. Levin, “Synchronization
primitives for a multiprocessor: A formal specification,” in Proc. 11th
ACM Symp. Operating Syst. Principles, Austin, TX, Nov. 8–11, 1987,
pp. 94–102.

[6] D. Reed and R. Kanodia, “Synchronization with event counts and se-
quencers,” MIT Lab. Comput. Sci., Cambridge, MA, 1977.

[7] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Sched-
uler activations: Effective kernel support for the user-level management of
parallelism,” ACM Trans. Comput. Syst. (TOCS), vol. 10, no. 1, pp. 53–79,
Feb. 1992.

[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[9] J. Bosch, “Design of an object-oriented framework for measure-
ment systems,” in Domain-Specific Application Frameworks,
M. Fayad, D. Schmidt, and R. Johnson, Eds. Hoboken, NJ: Wiley,
1999, pp. 177–205.

[10] B. Stoyanov, S. Stefanov, J. Beyazov, and V. Peichev, “Contemporary
methods and devices for automatic measurement,” Problems Eng. Cybern.
Robot., vol. 57, pp. 79–86, 2006.

[11] [Online]. Available: http://www.tango-controls.org/
[12] J. M. Nogiec, J. Di Marco, S. Kotelnikov, K. Trombly-Freytag,

D. Walbridge, and M. Tartaglia, “Configurable component-based software
system for magnetic field measurements,” IEEE Trans. Appl. Supercond.,
vol. 16, no. 2, pp. 1382–1385, Jun. 2006.

[13] L. Ding and Y. Shen, “Real time performance analysis and evaluation
of CAN bus with an extended Petri Net model,” in Proc. IEEE I2MTC,
Singapore, May 5–7, 2009, pp. 1081–1084.

[14] M. R. Frankowiak, R. I. Grosvenor, and P. W. Prickett, “A Petri-net based
distributed monitoring system using PIC microcontrollers,” Microprocess.
Microsyst., vol. 29, no. 5, pp. 189–196, Jun. 1, 2005.

[15] V. Calderaro, V. Galdi, A. Piccolo, and P. Siano, “DG and protection
systems in distribution network: Failure monitoring system based on Petri
nets,” in Proc. Bulk Power Syst. Dyn. Control—VII. Revitalizing Opera-
tional Rel., iREP Symp., Aug. 19–24, 2007, pp. 1–7.

[16] C. N. Hadjicostis and G. C. Verghese, “Power system monitoring us-
ing Petri net embeddings,” Proc. Inst. Elect. Eng.—Gener., Transmiss.
Distrib., vol. 147, no. 5, pp. 299–303, Sep. 2000.

[17] Z. Huiqin, G. Jun, X. Youbao, and L. Wei, “Modeling and analysis of a
testing system using hybrid petri net,” in Proc. 8th ICEMI, Aug. 16–18,
2007, pp. 1-465–1-470.

[18] W. Xiaoli, C. Guangju, X. Yue, and G. Zhaoxin, “Fault detection and
diagnosis based on time Petri net,” in Proc. 8th ICEMI, Aug. 16–18, 2007,
pp. 3-259–3-263.

[19] G. Lindner, M. Heiner, and T. Kobienia, “Deadlock detection in a distrib-
uted implementation of a visualization system for medical measurement
signals,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 14–17, 1996,
vol. 3, pp. 2299–2304.

[20] R. Lukaszewski and W. Winiecki, “Petri nets in measuring systems
design,” IEEE Trans. Instrum. Meas., vol. 57, no. 5, pp. 952–962,
May 2008.

[21] P. Bilski and R. Lukaszewski, “Petri nets model of DAQ block in the mea-
surement system,” in Proc. IEEE Int. Workshop Intell. Data Acquisition
Adv. Comput. Syst.: Technol. Appl., Dortmund, Germany, Sep. 6–8, 2007,
pp. 268–273.

[22] Y. E. Papelis and T. L. Casavant, “Specification and analysis of
parallel/distributed software and systems by Petri nets with transition
enabling functions,” IEEE Trans. Softw. Eng., vol. 18, no. 3, pp. 252–261,
Mar. 1992.

[23] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L. Deniau, V. Inglese,
G. Spiezia, S. Tiso, and L. Walckiers, “A software framework for flex-
ible magnetic measurements at CERN,” in Proc. IEEE Instrum. Meas.
Technol. Conf., May 1–3, 2007, pp. 1–4.

[24] P. Arpaia, L. Bottura, V. Inglese, and G. Spiezia, “On-field validation of
the new platform for magnetic measurements at CERN,” Measurement,
vol. 42, no. 1, pp. 97–106, Jan. 2009.

[25] P. Arpaia, M. Buzio, L. Fiscarelli, V. Inglese, and G. La Commara, “Au-
tomatically generated user interfaces for measurement software frame-
works: A case study on magnet testing at CERN,” in Proc. XIX
IMEKO World Congr., Fundam. Appl. Metrology, Lisbon, Portugal,
Sep. 6–11, 2009.

[26] M. Woodside, Software Performance Evaluation by Models. Berlin,
Germany: Springer-Verlag.

[27] G. Topic, D. Jevtic, and M. Kunstic, Petri Net-Based Simulation
and Analysis of the Software Development Process. Berlin, Germany:
Springer-Verlag.

[28] M. Zhou and K. Venkatesh, Modeling, Simulation, and Control of
Flexible Manufacturing Systems: A Petri Net Approach. Singapore:
World Scientific, 1999, ser. Series in Intelligent Control and Intelligent
Automation.

[29] S. Kumanan and K. Raja, “Modeling and simulation of projects with Petri
nets,” Amer. J. Appl. Sci., vol. 5, no. 12, pp. 1742–1749, 2008.

[30] J. Billington, M. Diaz, and G. Rozenberg, Application of Petri Nets to
Communication Networks. New York: Springer-Verlag, 1999.

[31] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: A tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,” IEICE Trans. Inf. Syst.,
vol. E80-D, no. 3, pp. 315–325, 1997.

[32] P. Arpaia, M. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia, “An
aspect oriented programming-based approach to software development
for measurement system fault detection,” Comput., Standards Interfaces,
vol. 32, no. 3, pp. 141–152, Mar. 2010. DOI: 10.1016/j.csi.2009.11.009.

[33] P. Arpaia, M. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia, “Aspect
oriented-based software synchronization in automatic measurement sys-
tems,” in Proc. IEEE IMTC, 2008, pp. 1718–1721.

[34] K. N. Henrichsen, “Permeameter,” in Proc. 2nd Int. Conf. Magnet Tech-
nol., Oxford, U.K., 1967, pp. 735–739.

[35] [Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/1037
[36] P. Arpaia, A. Masi, and G. Spiezia, “A digital integrator for fast accurate

measurement of magnetic flux by rotating coils,” IEEE Trans. Instrum.
Meas., vol. 56, no. 2, pp. 216–220, Apr. 2007.

[37] P. Arpaia, M. Buzio, L. Fiscarelli, V. Inglese, and G. La Commara,
“Measurement-domain specific language for magnetic test specifica-
tions at CERN,” in Proc. IEEE I2MTC, Singapore, May 5–7, 2009,
pp. 1716–1720.

328 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011

Pasquale Arpaia was born in Napoli, Italy, on
February 2, 1961. He received the M.D. and Ph.D.
degrees in electrical engineering from the University
of Napoli Federico II, Napoli.

He was a member of the Scientific and Admin-
istration Council of the new thematic University
of Science and Technology, University of Napoli
Federico II. Since 2001, he has been an Associate
Professor with the University of Sannio, Benevento,
Italy. Since August 2005, he has been a Project
Associate with the Large Hadron Collider (LHC),

European Organization for Nuclear Research (CERN). He was a Consultant
on the EU IV Framework Program “Standard Measurement and Testing” and
an Evaluator for EU INTAS projects. With H. Schumny, he was responsible
for the Promoting Committee of the EUPAS Project of the IMEKO TC-4
“A/D and D/A Metrology” WG and is a voting member of the IEEE IM
TC-10 “Waveform Measurement and Analysis” and of the IEC TC-47. He
was also the Associate Editor for the Subject Areas “Quality and Statisti-
cal Methods” and “Test” of the IEEE TRANSACTIONS ON ELECTRONICS

PACKAGING AND MANUFACTURING. He is Editor of the Subject Area “Digital
Instruments Standardization” for the Elsevier Journal Computer Standards and
Interfaces. He organized several international meetings in the field of electronic
measurements and European cooperation. His main research interests include
digital instrumentation and software frameworks for magnetic measurements
in particle accelerators, evolutionary diagnostics, ADC modeling, testing, and
standardization, measurement systems on geographic networks, and statistical-
based characterization of measurement systems. In these fields, he published
more than 130 scientific papers in journals and national and international
conference proceedings.

Lucio Fiscarelli was born in Benevento, Italy,
in June, 1979. He received the M.D. degree in
telecommunication engineering in October 2008
from the University of Sannio, Benevento. He is
currently working toward the Ph.D. degree with the
Department of Engineering, University of Sannio,
Benevento, Italy. His thesis on the development of
the flexible framework for magnetic measurements
was carried out in the Department AT/MTM, CERN,
from June 2008 to October 2008.

He is developing his research activities with the
Department TE/MSC, CERN. His main research interests include software-
based measurement systems and magnetic measurements on particle acceler-
ators.

Giuseppe La Commara was born in Napoli, Italy,
on September 14, 1971. He received the M.D. de-
gree in software engineering from the University of
Napoli Federico II, Napoli.

From 1999 to 2005, he worked on several Euro-
pean research projects with Tecnoret Research Cen-
tre. In 2005, he began a scientific collaboration with
the University of Sannio, Benevento, Italy. From
2007 to 2009, he also was an Unpaid Associate with
the Large Hadron Collider (LHC), European Orga-
nization for Nuclear Research (CERN). His main

research interests include software frameworks for magnetic measurements in
particle graphical interface automatic generation, domain-specific language,
and model-driven engineering.

Felice Romano was born in Pomigiano d’Arco
(Napoli), Italy, on January 10, 1980. He received the
M.D. degree in computer science from the University
of Napoli Federico II, Napoli, Italy.

From the 2005 to 2006, he was an Intern with
the “Software Testing and Quality Assurance” Team,
Software Design Center, STMicroelectronics. In
2007, he was a Consultant in the design, develop-
ment, and maintenance of J2EE-based software with
Reply S.P.A. In 2008, he began a scientific collabora-
tion with the University of Sannio, Benevento, Italy.

In 2009, he also was an Unpaid Associate with the Large Hadron Collider
(LHC), European Organization for Nuclear Research (CERN).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

