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ABSTRACT 

The determination of flame or fire edges is the process of identifying a boundary between the area 

where there is thermo-chemical reaction and those without. It is a precursor to image-based flame 

monitoring, early-fire detection, fire evaluation, and the determination of flame and fire parameters. 

Several traditional edge detection methods have been tested to identify flame edges but the results 

achieved have been disappointing. Some research work related to flame and fire edge detection were 

reported for different applications, however, the methods do not emphasize the continuity and clarity 

of the flame and fire edges. A computing algorithm is thus proposed to define flame and fire edges 

clearly and continuously. The algorithm detects the coarse and superfluous edges in a flame/fire image 

first, and then identifies the edges of the flame/fire and removes the irrelevant artifacts. The auto-

adaptive feature of the algorithm ensures that the primary symbolic flame/fire edges are identified for 

different scenarios. Experimental results for different flame images and video frames proved the 

effectiveness and robustness of the algorithm. 

Keywords– Flame; Fire; Edge detection; Image edge analysis; Image processing; Feature extraction; 

Monitoring; Shape measurement. 

I.  INTRODUCTION 

To meet the stringent standards on combustion efficiency and pollutant emissions, quantitative flame 

monitoring is becoming increasingly important in fossil-fuel fired combustion systems, particularly in 

power generation plants [1]. This has led to a wave of research in advanced flame imaging technologies 

[2, 3] both in the power generation industry and in laboratory research. In fire safety engineering, flame 

image processing is also emphasized as image-based flame detectors are increasingly applied in fire 

detection systems [4-9]. Compared to conventional flame detectors such as those based on optical 

sensing, ionization current detection and thermocouple, image-based flame detectors are deemed more 
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appropriate in fire detection because of their capability for remote detection of a small sized fire, as 

well as having other advantages [10]. 

 

As one of the important steps in flame and fire image processing, edge detection is often the precursor 

and lays a foundation for other processing. There are several reasons why it is necessary to identify 

flame edges. First, the flame edges form a basis for the quantitative determination of a range of flame 

characteristic parameters such as shape, size, location, and stability. Second, the definition of flame 

edges can reduce the amount of data processing and filter out unwanted information such as 

background noise within the image. In other words, edge detection can preserve the important 

structural properties of the flame and meanwhile shorten the processing time. Third, edge detection can 

be used to segment a group of flames. This is helpful for multiple-flame monitoring in some industrial 

furnaces where a multi-burner system is used.  Furthermore, timely determination of flame edges can 

trigger a fire alarm and provide the fire-fighters with information on fire type, combustible substances, 

and exterior of the flame etc. For instance, the movement of a detected flame edge can be used to 

distinguish real and false fire alarms [11]. 

 

A number of methods have been reported for identifying flame edges for the geometric 

characterization of a flame [12, 13] or fire [14, 15].  Adkins [16] developed a software tool to analyze 

fire images, with which one can use a mouse to trace the flame edge. It is a manual edge detection 

method, but it does show the importance and usefulness of the flame/fire edge detection. Bheemul et al. 

[13] introduced an effective method to extract flame contours by detecting the changes of the 

brightness in the horizontal direction line by line over a flame image, but the method is only suitable 

for simple and steady flames. Zhang et al. [5] presented a new method using FFT and Wavelet 

transform for the contour analysis of forest fire images on a video.  Lu et al. [6] proposed an algorithm 
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for early fire detection and test it on video clips. Toreyin et al. [7, 8, 11] succeeded in detecting the fire 

in a real-time video using different methods such as hidden Markov models and wavelet transform. 

Chacon-Murguia and Perez-Vargas [9] managed to detect and analyze fire information on a video 

through the analysis of shape regularity and intensity saturation feature.  Razmi et al. [10] used a 

background subtraction and Prewitt edge detection approach to detecting flames for fire protection 

systems. She and Huang [17] proposed a C-V active contour model for the edge detection of flames in 

a power plant. Qin and Wang [15] also demonstrated an improved Canny edge detector which was used 

to detect moving fire regions in large space fire images. Although each of these methods has its own 

advantages for the given tasks, such as fire detection or shape reconstruction in a complex background, 

or helping to detect an early fire and trigger a fire alarm, they have some limitations. For instance, 

some flame edges detected are unclear, discontinuous, or do not well match the actual flame shape. For 

the purpose of detecting the flame’s size and shape, and consequently, the geometric characteristics, it 

is necessary to attain the clear, continuous, and where possible, closed edge of the flame. 

 

In this research several conventional edge detection methods have been examined to assess their 

effectiveness in flame edge identification. Despite the delicate adjustment of many parameters in the 

use of these methods, results were still unsatisfactory. Edges extracted from non-trivial images are 

often hampered by fragmentation, meaning that the edge curves are not connected, edge segments are 

melted, or false edges that do not correspond to significant phenomena in the image are shown. It is 

therefore desirable to develop a dedicated edge detection method for flame and fire image processing. 

Accordingly, a new computing algorithm is proposed in this paper to process a combustion image and 

to identify flame/fire edges.  
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Section I of this paper is a background introduction and a brief literature review of flame edge 

detection methods. Section II discusses related edge detection methods and their application to flame 

images. Section III proposes a new methodology of detecting edges of flame images with a detailed 

description of each step. Section IV presents experimental results and gives some examples of how to 

use the detected edges for characterizing flames. Concluding remarks and a scope for further research 

is given in Section V. The basic methodology that is applied to develop the algorithms, together with 

preliminary results, was reported at the 2011 IEEE International Instrumentation and Measurement 

Technology Conference [25]. This paper presents a detailed description of the methodology that has 

been developed along with the improvement of the algorithm, more experimental results and detailed 

discussions. 

 

II. CONVENTIONAL METHODS OF EDGE DETECTION AND THEIR APPLICATIONS TO FLAME IMAGES    

A typical edge in an image might for instance be the border between blocks of different colors or 

different gray levels. Mathematically, the edges are represented by first- and second-order derivatives. 

The first-order derivative (i.e., gradient) of a 2D function, f(x, y), is defined as vector [18]:  

∇f = [
Gx

Gy
] = [  

∂y

∂x
∂y

∂x

  ] ，                         (1) 

where Gx and Gy are the gradients in the x and y coordinates, respectively. The magnitude of the vector 

is given by: 

mag(∇f) = √Gx
2 + Gy

2 =  √(
∂y

∂x
)2 + (

∂y

∂x
)2  .    (2) 

The angle α, at which the maximum rate of change occurs, is: 

α(x, y) = tan−1(
Gy

Gx
) .                               (3) 
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Generally the variance of the gray level is calculated with one of these edge-detection operators, or 

kernel operators. The slopes in the x- and y-directions are combined to give the total value of the edge 

strength. The edge-detection operator is then calculated by forming a matrix centered on a pixel chosen 

as the center of the matrix area. If the value of this matrix area is above a given threshold, then the 

middle pixel is classified as an edge [18].  

 

The edge detection methods that have been published may be grouped into two categories according to 

the computation of image gradients, i.e., the first-order or second-order derivatives. In the first category 

edges are detected through computing a measure of edge strength with a first-order derivative 

expression. Examples of gradient-based edge detection operators include Roberts, Prewitt, and Sobel 

operators [23]. The Canny edge detection algorithm [20], an improved method using the Sobel 

operator, is known to be a powerful edge detection method. In the second category, edges are detected 

by searching a second-order derivative expression over the image, usually the zero-crossings of the 

Laplacian or a non-linear differential expression.  

 

In the present research, these common edge detection methods have been applied with appropriate 

parameters to process typical flame images. Despite many parameters being finely and appropriately 

adjusted in the use of these methods, flame edges could not be clearly identified. Fig. 1 (a)-(f) shows 

examples of results obtained by the conventional edge detection methods along with the original image. 

The expected flame edge should be one and only one clear, continuous, and uninterrupted edge. 

However, as the results have shown, the edges identified using these methods are often disconnected 

and fragmented (Fig.1 (b)-(f)); some of the methods can only identify a part of the flame edge (Fig.1 

(b)-(d)), or wrongly identify small edges that are obviously not the edges of the main flame (Fig.1 (e)). 
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The results have therefore suggested that it is not always possible to obtain ideal edges from real life 

images of moderate complexity, thus complicating the subsequent task of interpreting the image data. 

      

(a) The original 
image  

(b) Sobel method (c) Prewitt 
method 

(d) Roberts 
method 

(e) Canny 
method 

(f) Laplacian 
method 

Fig. 1 Representive results using the common edge detection methods and Laplacian  method. 

 

There are some other algorithms proposed for the flame/fire edge detection for various applications 

[10-17]. Although we are unable to test all these methods, the published results have shown that these 

methods are not suitable for our purpose.  It is therefore desirable to develop a dedicated edge detection 

method for flame/fire image processing. 

 

III. A NEW EDGE DETECTION ALGORITHM FOR FLAME IMAGE PROCESSING 

 

In general, a flame region has a stronger luminance in comparison to its ambient background, and the 

boundary between the flame region and its background is mostly continuous. Furthermore, in most 

cases, there is only a main flame in the image; otherwise, the image can be segmented so that each 

segmented area contains only one main flame. Accordingly, a computing algorithm is proposed where 

these features are used to identify flame edges.  The basic strategy is to detect the coarse and 

superfluous edges in a flame image, then identify the flame’s principle edges and remove irrelevant 

ones. The algorithm can be divided into following logical steps:  

Step 1: Adjusting the gray level of a flame image. 
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The first step is to adjust the gray level of a flame image according to its statistical distribution. 

Consider a discrete grayscale image {x} and let ni be the number of occurrences of gray level of i, the 

probability of the occurrence of a pixel of gray level i in the image is [21]: 

Px(i) =  p(x = i) =  
ni

n
, 0 ≤ i ≤ L ,      (4) 

where L is the total number of gray levels in the image, n the total number of pixels in the image, and 

px(i) the histogram for pixels with i, normalized to [0,1]. Also the cumulative distribution function 

(CDF) corresponding to px can be defined as: 

CDFx(i) =  ∑ px(j) i
j=0 ,      (5) 

which is also the accumulated normalized histogram of the image.  

Next, create a transformation of form y = T(x) to produce a new image {y}, such that its CDF will be 

linearized across the value range with a constant number K, i.e. 

CDFy(i) =  iK .        (6) 

To map the values back to their original range, the following transformation is applied to the result: 

y′ =  y × (max{x} − min{x}) + min{x}.       (7) 

Step 2: Smoothing the image to eliminate noise. 

The second step is to filter out any noise in the image before locating and detecting any edges. A 

Gaussian filter can be achieved using a simple mask. Gaussian smoothing [26] is performed using 

standard convolution methods after a suitable mask is selected. The larger the width of the Gaussian 

mask, the lower the detector's sensitivity to the background noise in the flame/fire image, but a large 

mask may also make the detected flame/fire edge so precise that the localization error in the detected 

flame/fire edges also increases slightly with the Gaussian width. After certain tests and comparison the 

Gaussian mask, as shown in Fig.2, is used in the implementation. 

http://en.wikipedia.org/wiki/Grayscale
http://en.wikipedia.org/wiki/Cumulative_distribution_function
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Fig. 2 Discrete approximation to Gaussian function. 

Step 3: Using the Sobel operator for finding basic edges.  

Finding basic edges is achieved by finding the gradients of all the pixels in the image so as to highlight 

the regions with high gray level contrast at their edges. The algorithm then tracks the edge along these 

regions and suppresses any pixels that are not at the peaks of the gradients. If the magnitude of the 

gradient is above high threshold TH, it is deemed an edge. And if the magnitude is between the two 

thresholds, i.e., the TH and TL (low threshold), it is set to zero unless there is a path from this pixel to a 

pixel with a gradient above the TL.  

The Sobel operator performs a two-dimensional spatial gradient measurement over the image. Then the 

approximate absolute gradient magnitude (edge strength) at each point can be found. It uses a pair of 

3x3 convolution masks, one estimating the gradient in the x-direction (columns) and another estimating 

the gradient in the y-direction (rows). The Sobel operator is expressed as follows [18]:  

Mx =  [
−1 0 1
−2 0 2
−1 0 1

],                                                (8) 

 My =  [
−1 −2 −1
0 0 0
1 2 1

].                                              (9) 

 

Step 4: Adjusting TH and TL for better results.  
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Better results are achieved by giving the first pair of TH and TL initial values according to the apriori 

results of similar flame images, and then adjusting the values for a better result. The ‘better’ result is 

assessed by how many edges there are: the more edge pixels detected in the edge image, the better the 

parameters are. Another threshold TE is also set to restrict the total number of edges, i.e., if the number 

of edge pixels exceeds the TE, the automatic adjustment will be terminated. At this point, a preliminary 

image with edges identified is obtained from the original flame image. It is designated as a Preliminary 

Edge Image (PEI).  

Step 5: Removing unrelated edges in the PEI.  

5a) Select any edge point in the PEI, remove that point from the PEI, allocate a new temporary edge 

image and plot the point onto the temporary edge image. 

5b) Use the selected point as the center and search in a 33 area. Store the location of all the 

neighboring pixels if they are edge pixels. In eight neighboring pixels, operations are taken for the 

following three different cases,  

─ If there is no neighboring pixel, the selected point is an isolated point, and should be removed from 

the PEI. Terminate the search and go to Step 5d).  

─ If there is one neighboring pixel, the selected point is an end point. It should then be removed from 

the PEI, plotted onto the temporary edge image, and added into the endpoint list. Start the new search 

from the found neighbor and go to Step 5c).  

─ If there are two or more than two neighboring pixels, the selected point is a normal transition point in 

an edge line or an intersection with more than three bifurcations. Set one of the neighboring points as 

the new search center and start a new search. Store the other positions as unchecked conjunction points, 

and then go back to Step 5b).  

Fig.3 illustrates how the tracing step moves forward if the old search center is replaced by a new search 

center.  For instance, in the left image of the figure, pixel ‘5’ is the center selected. Suppose an edge 
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point at pixel ‘9’ is found, then remove pixel ‘5’ from the PEI to the temporary edge image, and pixel 

‘9’ will be the new search center. In this way, the search moves forward pixel by pixel. 

 

Fig. 3 Illustration of movement of the edge search. 

5c) Check the conjunction points. If all the conjunction points have been searched as a center, one 

temporary edge image is then completed. Compute the lengths of any two end points in the temporary 

edge image and pick out the longest one. Then go to Step 5d. 

5d) If all the pixels in the PEI are moved to the temporary edge image, then go to Step 6.  

Step 6: Achieving a clearly defined edge. 

Select the pixels of the longest edge in the final edge image which should have the same size as the 

original image. The flow chart of the whole process is given in Fig.4.  
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1.) Adjust the gray 
level according to 
the statistical 
distribution

2.) Noise 
elimination 

3.) Use the Sobel 
operator to find 
the basic edge

Neighbor 
number=0?

End

Start

5a.) Select any 
point from the PEI 
as a search center

5b.) Find the 
neighbors of the 
search center 

Isolated point, 
remove this point

Search from one 
of the neighbors, 
but remember the 
other neighbors 
as unprocessed 
conjunction 

points  

Find one end 
point

5c.) Check the 
conjunction point

Conjunction point 
number=0?

Neighbor 
number=1?

Get one temporary 
edge image

Compute the 
maximum length of 

any two end 
points

5d.) Are all the pixels 
from the PEI removed?

6.)Find the one with 
the longest edge from 
the temporary edge 

images, and output it

Search from one 
of the 

cconjunction 
points, set this 
conjunction point 

as the search 
center

Y

N

N

Y

Y

N

N

Y

Enough edges?

4.) Adjust the 
threshold

Y

N

 

Fig. 4 Flow chart of the flame edge detection algorithm. 
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In order to speed up the process of finding proper TH and TL, a Least-Mean-Squares (LMS) algorithm 

is used, which is a class of adaptive filters by finding the filter coefficients that relate to producing the 

least mean squares of the error signal between the desired result and the actual result. The idea is to use 

steepest descent to find filter weights which minimize a cost function. From the method of the steepest 

descent, the weight vector equation is given by [24], 

w(n + 1) = w(n) +
1

2
μ[−∇(E{e2(n)})]    ,    (10) 

where μ is the step-size parameter which controls the convergence characteristics of the LMS algorithm; 

e
2
(n) is the mean square error between the former output y(n) and the reference signal which is given 

by, 

e2(n) = [d∗(n) − whx(n)]
2
       (11) 

 

The gradient vector in the above weight update equation can be computed as 

∇w(E{e2(n)}) =  −2r(n) + 2R(n)      (12) 

Where r(n) and R(n) are  covariance matrices which are defined as follows:  

r(n) = x(n)d∗(n),      (13) 

R(n) = x(n)xh(n).      (14) 

And then the weight update can be given by, 

w(n + 1) = w(n) + μx(n)[d∗(n) − xh(n) w(n)],     (15) 

so,  

w(n + 1) = w(n) + μx(n)e∗(n).     (16) 
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In this application the two parameters, TH and TL, need to be auto-adjusted. Give initial TH and TL 

according to the apriori results and set one of the parameters as fixed in order to adjust the other one. 

For example, suppose TH is fixed, then TL is adjusted in every step. The Euclidean distance of a curve’s 

start point Cs and end point Ce, noted as D, is used as the output to judge the effectiveness of the new 

TL. The coordinates of Cs (Sx, Sy) and end point (Ex, Ey) should be stored in the memory in the tracing 

process. Thus D can be computed as: 

 D =  √(𝐸𝑥 − 𝑆𝑥)2 + (𝐸𝑦 − 𝑆𝑦)2 .    (17) 

After the LMS computation process, a suitable TL is chosen. If D is small enough, the computation 

process terminates; if D is still greater than the desired value, a further LMS computation process is 

applied to TH. 

Fig. 5 shows some of the results with the proposed method given the fixed TH and TL. It can be seen 

that a pair of proper thresholds are necessary for the integrated flame edge. As explained in Step 4, the 

first pair of TH and TL values are selected according to the apriori results of similar flame images.  The 

apriori TH and TL will work in most situations, but there are exceptions as the scenario may change, and 

the flame may change enough to make the previous threshold invalid. Fig. 5(f) shows a closed curve 

and the Euclidean distance between the start point and the end point is zero, which is regarded as the 

best result that in the checked TH and TL region. Obviously, if D=0, no other adjustment of TH and TL is 

necessary, thus the auto-adaptive process is over. If D is still big enough, as that in the situation of Fig. 

5(c) and Fig. 5(e), a further adjustment has to be executed. The TH and TL should be adjusted in a 

greater scale. When D becomes very small, say, less than 20 pixels, the TH and TL should be adjusted 

through finer steps.   
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(a) The original image  (b) TL=0.098, TH =0.98 (c) TL =0.098, TH = 0.29 (d) TL =0.098, TH =0.49 

    

(e) TL =0.2, TH = 0.29 (f) TL =0.39, TH =0.98 (g) TL =0.49, TH =0.98 (h) TL =0.2, TH =0.49 

Fig. 5 Illustration of longest curve in a flame image with minimum D. 

IV. RESULTS AND DISCUSSIONS  

After implementing the algorithm as described in Section III, thousands of flame images were 

processed using the algorithm so as to evaluate its effectiveness. Most of the flame images were taken 

for propane Bunsen flames burning in open air. Some of the images were attained from the internet 

with courtesy of permission of use. The desktop computer used has a 2.66GHz Intel® Quad CPU and  

can detect the edges of about 120 flame images of 141×161 pixels in one minute. Fig. 6 shows typical 

processed flame images with edges identified. In comparison with the test results presented in Fig. 1, it 

can be clearly observed that the developed algorithm can successfully detect clear edges of the flame 

and disregard unrelated artifacts, which common edge detection methods cannot achieve. The proposed 

method makes it much easier to distinguish the flame region from the background. The algorithm can 

also be used to extract the edges of more complex flames such as turbulent diffusion flames or flames 

of pool fires [14]. The clearly defined flame edges will form a basis for subsequent processing of the 

flame images for example, flame size computation, flame background removal, and determination of 

other flame parameters [3]. 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 6 Some of the flame edge detection results. 

(Left column: original images; right column: images with identified edges. (a) Diffusion propane-flame, (c) 

Partially-premixed pronane-flame, (e) Small scale pool fire[17]. Note that the image in (a) is reproduced from  

Fig. 1). 

Many flame videos are also tested for continuous edge detection so as to evaluate the robustness of the 

system. Fig. 7(a) shows a series of frames acquired from a flame video. Fig. 7(b) and Fig. 7(c) illustrate 

the edge detection results using both the Canny edge detection method and the proposed algorithm. It is 

clear that the flame edges detected using the Canny edge detection method are unclear and 

discontinuous, whilst the results obtained using the proposed algorithm show clear and continuous 

edges with parameters automatically adapted.  
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(a) Frames in a flame video 

 

(b) Detected flame edge from the video sequence using the Canny edge detection method 

 

 (c) Detected flame edge from the video sequence using the proposed method 

Fig. 7 Edge detection result for a flame video. 

With a clearly defined flame/fire edge, various flame/fire parameters can be easily computed for the 

shape description. For instance, the flame area can be counted by the number of pixels inside the flame 

edge; the chain coding of a flame edge can be used to describe a 2D flame/fire shape; the perimeter of a 

flame can be achieved by the total number of pixels of the detected flame edge boundary. Fig. 8 is an 
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example of the uninterrupted computing of the flame perimeters from a flame video. It would be 

difficult to obtain this result without the clear edge detection. Using the proposed edge detection 

algorithm further work can be done to characterize the geometric features of flames/fires, and 

consequently establish their relationship with combustion conditions such as air/fuel inputs and 

emissions.   

 

Fig. 8 The uninterrupted computing of the flame perimeters from a flame video. 

To assess the anti-noise effect of the algorithm, different types of random noise are added to the flame 

images before the images are processed. Fig.9 shows an example of processing results with pepper and 

salt noise added.  Fig. 9(b) is the flame edge detected from the original flame image Fig. 9(a) whilst Fig. 

9(d) illustrates the flame edge detected from the flame image with pepper and salt noise added. It can 

be seen that the shape detected in Fig. 9(d) is almost identical to the shape detected in Fig. 9(b). 
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(a) Original image (b) Processed image of (a) (c) Original image with salt 

and pepper noise added 

(d) Processed image of (c) 

Fig. 9 An example of noisy and processed flame images. 

 

V. CONCLUSIONS 

 

After flame characteristics are analyzed, a new flame edge detection method has been developed and 

evaluated in comparison with conventional methods. Experimental results have demonstrated that the 

algorithm developed is effective in identifying the edges of irregular flames. The advantage of this 

method is that the flame and fire edges detected are clear and continuous. Furthermore, with the change 

of scenarios, the parameters in the algorithm can be automatically adjusted. The clearly defined 

combustion region lays a good foundation for subsequent quantification of flame parameters [27], such 

as flame volume, surface area, flame spread speed and so on. It is envisaged that this effective flame 

edge detection algorithm can contribute to the in-depth understanding and advanced monitoring of 

combustion flames. Meanwhile, the algorithm provides a useful addition to fire image processing and 

analysis in fire safety engineering. The work presented was aimed for the processing of flame and fire 

images captured in laboratories. Further work is required to evaluate the performance of the algorithm 

in real-life flame detection scenarios.  
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