Loading [a11y]/accessibility-menu.js
Spatial Selectivity of Linear Electrostatic Sensor Arrays for Particle Velocity Measurement | IEEE Journals & Magazine | IEEE Xplore

Spatial Selectivity of Linear Electrostatic Sensor Arrays for Particle Velocity Measurement


Abstract:

The signal quality and accuracy of the spatial filtering method for solid particle velocity measurement based on a linear electrostatic sensor array (LESA) are dependent ...Show More

Abstract:

The signal quality and accuracy of the spatial filtering method for solid particle velocity measurement based on a linear electrostatic sensor array (LESA) are dependent on the spatial filtering characteristics of the LESA and particle distribution in a pneumatic conveying pipeline. In this paper, the charge induced on a circular LESA with different geometric sizes from a single particle having a unity charge is mathematically modeled. Furthermore, a dimensionless computation model of the sensitivity of the LESA is suggested based on a fitted cosine function to the finite-element calculation results of the mathematical model, and the spatial filtering characteristics and spatial selectivity of the LESA are quantitatively investigated based on the computation model. Experimental work was performed on a purpose-built particle flow test rig to verify the dimensionless computation model and the modeling results. Results obtained reveal that the LESA acts as a narrow-bandpass filter in the temporal and spatial frequency domains, and its spatial selectivity is closely related to the number, spacing, and width of the electrode. These results provide an important basis for the performance improvement and optimized design of the LESA for particle velocity measurement.
Published in: IEEE Transactions on Instrumentation and Measurement ( Volume: 62, Issue: 1, January 2013)
Page(s): 167 - 176
Date of Publication: 29 August 2012

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.