
Temperature Distribution Reconstruction by 
Eigenfunction Interpolation of Boundary 

Measurement Data 

Abstract—This paper treats the inverse problem of evaluating the 
temperature distribution over time in a composite solid material 
which unlike most of the other publications can have an 
arbitrary geometry. This approach is capable of evaluating the 
temperature over all the points within the domain of a non-
homogeneous object at every time instance. The method utilizes 
measurements in just few points of the peripheral surface of the 
geometry. The collected data are applied to estimate the weight 
coefficients of the numerically computed eigenfunctions of the 
problem which in turn leads to reconstruction of the temperature 
distribution everywhere. 
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I. INTRODUCTION 

Monitoring and control heating processes require the 
possibility to infer in real time the temperature distribution, 
versus time and space, in the oven cavity region from the 
direct measurement of the local temperature measured in few 
spots located on the boundary or in proximity of the heating 
cavity. The temperature distribution reconstruction based on a 
small number of direct measurement point can be classified as 
an inverse problem, which is strongly underdetermined. 
Physical prior knowledge is thus necessary in order to be able 
to successfully invert the data and obtain the necessary 
temperature distribution. 

Since the geometry and the material properties of the 
oven’s components are well known and the physics of the 
heating process can be modeled by a proper set of partial 
differential equations (PDE) we can use this prior information 
for defining a set of basis function for the function space 
where the sought temperature distribution is defined. 

In general the solution of the real physical problem cannot 
be attained analytically because of the complex geometry of 
real ovens and the composite, multilayered, anisotropic 
materials used for this kind of process. 

In this paper we are proposing to interpolate the 
temperature spatial distribution using the physical problem 
eigenfunctions as interpolator base. The eigenfuntions, and the 
associated eigenvalues, are evaluated numerically using a 

commercial 3D multiphysics finite element method (FEM) 
code, customized for such type of computation. 

Initially a simple problem, with known analytical solution, 
has been talked in order to be able to verify the numerical 
solver ability to compute the correct set of eigenfunctions. 
These results are presented in this extended abstract while the 
analysis of a real geometry will be introduced in the 
conference paper.  

In literature the problem of heat conduction in an object 
made of materials with different densities, heat capacities and 
thermal conductivities is accounted as a very appealing 
subject. Unfortunately the majority of the presented solutions 
consider one dimension problems and the minority have 
described two or three-dimensional cases [1], [2]. However, 
the exact analytic solutions can only be derived for simple 
geometries as Salt [3] which has considered Cartesian system 
or Abdul Azeez and Vakakis [4] using cylindrical coordinates. 

In [1] a two layer cylinder has been considered and the 
analytical solution for transient heat is presented taking 
advantage of symmetry of the problem the dimension is 
reduced to 2D axi-symmetric problem. The method of 
separation of variables is used in order to derive the solution 
but, still there are lots of difficulties finding the complex 
independent eigenvalues of the separated ordinary differential 
equation (ODE). Therefore, in this paper for analyzing the 
temperature distribution over a complex geometry -in general 
3D- a FEM model has been implemented in order to 
numerically compute the eigenvalues and corresponding 
eigenfunctions. The temperature value in every point during 
time can be then reconstructed based on the evaluated 
eigenfunctions and related time dependent weight coefficients. 
In order to verify the results of the methodology the geometry 
described in [1] is selected and simulated, the results presented 
in the result section are consistent with the derived analytical 
solution. Since in the real situation the temperature data are 
acquired by sensors and the model parameters are not 
perfectly known, the robustness of the method has been tested 
and verified in presence of corrupting signals and parameters 
with stochastic noise. 
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In the following the methodology for setting the inverse 
problem and identifying the interpolating functions is 
introduced in section II; the first numerical result and 
performance analysis for a simple test case are presented in 
section III. The conclusion and a summary of activities that 
will be performed for the final conference paper are provided 
in section IV.  

II. METHODOLOGY

The problem of heat equation can be considered as special 
case of general Strum-Liouville problems. Equation (1) shows 
a Strum-Liouville initial value boundary problem (IVBP) 
which for the sake of simplicity is written as one dimensional 
equation in the following, however, x can be expanded to a 
vector of m dimensions [5]:  

 

 (1) 

Now if 𝜔(𝑥) is replaced with 𝜌(𝑥)𝑐(𝑥) and 𝑃(𝑥) = 𝑘(𝑥) 
and 𝑅(𝑥) = 0 , the equation will turn to heat equation with 
varying density (𝜌), specific heat (c) and thermal conductivity 
(𝑘) with general boundary condition which by choosing 𝛼 and 
𝛽  can be used to describe either Dirichlet or Neumann 
boundary conditions. If the spatial operator L is defined as:  

 (2) 

Then the eigenvalue problem will be: 
            (3) 

It’s been proven in the literature [6] that the preceding 
eigenvalue problem (3) has finitely many real eigenvalues 
(𝜆1,… ,𝑛 ) and corresponding orthogonal eigenfunctions 𝜑1,…,𝑛 . 
Hence any square integrable function in m-dimensional space 
can be expressed as weighted summation of these n 
independent orthogonal bases such as: 

(4) 

where T represents the temperature distribution over the m 
dimensional space and 𝛼𝑘(𝑡)  are time dependent weight 
coefficients which are unknown. It is not possible to evaluate 
all the eigenvalues however, the first few smallest eigenvalues 
and related eigenfunctions will be enough to approximate the 
temperature quite precisely [5]. The last but not the least would 
be implementing a method in order to estimate the weight 
coefficients 𝛼𝑘(𝑡) . Numerically this can be done using an 
inversion method by measuring the temperature at few 
available points on the surface of the structure followed by 
solving an inverse problem which will be explained in more 
details during the given solution to a simple case study. The 
general steps of the solution for a two dimensional geometry 
would be as the following: 

 
                                                              (5) 

If the temperature is measured at j points: 

(6) 

where  𝑥1,𝑗 , 𝑥2,𝑗 represent the spatial position of where the 
𝑗th sensor is located. The preceding equations can be written in 
the matrix form. Hence at a specific time 𝑡 =  𝑡̅ we have: 

(7) 

with 

(8) 

 

Equation (7) can be inverted using the minimum norm 
solution in order to estimate the values of 𝛼𝑘 : 

(9) 

Once the coefficients are estimated the temperature 
distribution can be reconstructed as: 

(10) 

III. RESULTS

As a first test case was considered the simple physical 
system shown in Fig. 1 composed by two layer cylinder [1].A 
very short heating pulse carrying energy of   𝑄 =100 𝑊 𝑚2�  
with a radius of 𝑑𝑝 is radiated to the lower layer of the object. 
The boundary conditions at the top and bottom surfaces are 
considered as Neumann boundary conditions with the heat 
transfer coefficient of ℎ1,2= 50 W m2. K�  also for boundaries at 
𝑟 = ∓𝑅0 , ℎ is assumed to be zero. The object is supposed to 
have an initial condition of zero K  and constructed from a 
Titanium layer with 𝜌1 =4940 Kg

m3� , 𝑐1 =710 J
Kg. K� , 𝑘1 =

7.5 W
m. K�  while 𝜌2 =8700 Kg

m3� ,  𝑐2 =385 J
Kg. K�  and 𝑘2 =400

W
m. K�  . 

Figure 1.  (a) Sample geometry in 3D; (b) 2D cross section of the sample 

Figure 2. The hollow triangles stand for the measured points and the solid ones 
are the points where temperature is reconstructed 
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are considered for the copper layer located over it. The pulse 
is radiated with a radius of 𝑑𝑝= 5 mm and the radius of the 
sample is 𝑅0 = 25 mm . In addition for the sake of 
demonstration the thickness of the materials are assumed to be 
𝑑1 = 𝑑2 = 0.5  mm. 

The first six smallest eigenvalues are selected and three 
points on the top surface are measured which can seen in Fig. 
2. The heat transfer simulations and eigenfunction evaluations
are done using Comsol Multiphysics and Matlab is employed
for the remaining mathematical computations.

The first six eigenfuctions are demonstrated in Fig. 3 with 
their corresponding eigenvalues. Due to the fact that geometry 
is symmetric with respect to z axis the minus values of r are not 
present in the plots.  

After few tens of seconds the temperature of the system 
will be significantly low, however, the temperature distributed 
in upper layer will be more due to the lower heat capacity of 

the copper. One should notice as mentioned before the 
eigenfunctions corresponding to higher eigenvalues will decay 
in time hence as it is shown in Fig. 3.a the shape of 
eigenfunction related to smallest eigenvalue namely 𝜆  = 
0.0291 almost fully describe the long term behavior of the 
system.   

The results of reconstructed temperature distribution along 
with the real temperature distribution are shown in Fig.  4. The 
two points are chosen to be different from the points where the 
weight coefficients were evaluated from. 

The first point is considered on the surface with (r,z) = (0.-
0.5) mm and the second point is taken to be inside the 
geometry located at (r,z) = (10,0) mm. In addition the 
temperature values in the measured spots are intentionally 
corrupted with a strong noise of 10%  in order to take in to 
account the real case difficulties in utilizing sensors and to 
monitor whether the algorithm is robust or not. 

 

 

 

Figure 3. The shape of the first six eigenfuctions over the sample’s domain. (a) 𝜆1 = 0.0291; (b) 𝜆2 = 1.388; (c) 𝜆3 = 4.290; (d) 𝜆4 = 8.02; (e) 𝜆5 = 11.692; 
(f) 𝜆6 = 14.711
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Figure 4. Real and estimated temperature neglecting the data corruption. (a) at point (10,0); (b) at point (0,0) 

Figure 5. Real and estimated temperature considering the data corruption. (a) at point (25,0.5); (b) at point (10,0) 

The plots in Fig. 4 depict the temperature values over an 
interval of 50 s. It should be noticed that since the selected 
point in Fig. 4.b is exactly located at the center of the 
radiated instantaneous pulse and the time steps that is 
considered for reconstructing the weight coefficients are one 
second which is quite large compared to interval of the pulse 
which is about fraction of half a second. Although, the 
consistency with the real temperature is quite clear from the 
first second onward. In Fig. 5 the temperature is estimated 
using the corrupted data in two points. The first one Fig. 5.a 
corresponds to one of the points that was utilized to compute 
the weight coefficients while the Fig. 5.b renders the 
temperature at the same point as in Fig. 4.a. 

As a second example an induction cook top having a 
more complex geometry has been studied. It is believed that 
to have an efficient cooking procedure the temperature 
should be maintained at a certain level. Hence, in general 
producers are interested to have a quite accurate estimation 
of the temperature during time at the top surface of the work 
piece -where the to be cooked material will be placed 
eventually- in order to be able to design control circuit 
boards. 

 In this case the problem is solved in 3D and the axi-
symmetric feature of the geometry is ignored intentionally. 
The steel work piece having a thickness of ℎ𝑤 = 2 mm and a 

radius of 𝑟𝑤 = 85  mm is placed on a glass surface with 
ℎ𝑔 = 5 mm and 𝑟𝑔 = 170  mm.   The copper heat-coil 
consists of 15 turns, each carrying a current of 30 A, 
alternating at 15 kHz. Outer radius and inner radius of the 
coil are 𝑟𝑜𝑐 = 85 mm 𝑟𝑖𝑐 = 10 mm respectively. Ferrite disc 
has it’s outer radius 𝑟𝑜𝑓 = 85 mm and inner of 𝑟𝑖𝑓 = 5 mm. 

Fig.6 shows the cross section of the considered geometry. 
The work piece relative permeability and electrical 
conductivity are 𝜇𝑅 = 60 , 𝜎 = 4.032. 106 S m⁄  where these 
properties for ferrite are 𝜇𝑅 = 1000 and 𝜎 = 100 S m⁄  . A 
thermal insulator layer is considered to prevent the heat 
exchange between the created joule heating inside the coil 
and the glass. The alternating current produces alternating 
magnetic field in the work piece which induces currents due 
to the Lenz’s law. 

The induced eddy current on the bottom surface of the 
work piece is responsible for heat generation. The convective 
cooling boundary condition with ℎ = 10 W m2. K�   is assigned 
to the top surface of the work piece and glass. 

The eigenvalues and eigenfuntions are evaluated 
numerically in both work piece and glass domains in 3D 
using Comsol Multiphysics software. In order to be 
consistent with previous case study the number of evaluated 
eigenvalues is fixed to 6. However, the number of boundary 
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Figure 6. Cook Top geometry cross section diagram 

measurement points is varied among 3, 5 and 8. Although 
many different measurement spots can be defined for 
positioning the sensors, here for the sake of comparison a 
circle of 50 mm radius has been chosen and the points are 
considered on the perimeter of this circle having equal 
distance from each other. Having the measured data in hand, 
the  temperature is evaluated on the top surface of the work 
piece located 7 mm above the measured surface.  The 6 
computed eigenfunctions along with their corresponding 
eigenvalues plotted in Fig. 7. 

It is obvious from Fig. 7 that the eigenfunction 
corresponding to the smallest eigenvalue is related to steady 
state response of the system. An 80 point grid is defined on 
the top surface of the work piece and the simulation has been 
done for 600 s. 

The infinity norm of error -between the reconstructed 
temperature among all the grid points and the corresponding 
actual temperatures- over all grid points of the work piece is 
computed. Fig. 8 depicts the relative maximum error with 
respect to the average temperature of all grid points at each 
60 s. As it can be observed the relative error for all the three 
groups of measurement points reduces to almost 4% at 
𝑡 = 600 s. However, in order to take in to account the noise 
in data acquisition process and robustness of the method to 
perturbations a normal distributed random noise is added to 
the measured data having a mean of 𝜇 =0 ℃ and a standard 
deviation of 𝜎 = 2 ℃. This time reconstructed temperature is 
created using the coefficients which are computed from 
noisy boundary measurements. The procedure has been 

Figure 7. The first six eigenfuctions evaluated at top surface of the workpiece. (a) 𝜆1 = 9𝑒 − 4; (b) 𝜆2 = 0.001515 (c) 𝜆3 = 0.001515(d) 𝜆4 = 0.001577; (e) 
𝜆5 = 0.001661; (f) 𝜆6 = 0.001661 

 (a)     (b)    (c) 

 (d)    (e)  (f)



Figure 8.  Estimated temperature with 3, 5 and 8 measurements

repeated for 100 times for each 60s time interval and the 
infinity norm of the error between the actual temperature and 
reconstructed temperature ‖𝑒‖∞ is calculated  and averaged. 

Fig. 9.a indicates the relative averaged maximum error 
over the 100 repetitions, where Fig. 9.b plots the standard 
deviation of averaged infinity norm as a function of time. It 
is clear from Fig. 9 that with increasing the number of 
measurement data the maximum error in the reconstructed 
temperature of the surface decreases while the accuracy 
becomes higher. 

IV. CONCLUSIONS AND FUTURE WORK

This paper tries to develop the description of the basic 
steps of the method through applying it firstly to a simple 
example followed by a more complex example in three 
dimensional space.  Based on the results one should keep in 
mind that although via this method even with few 
measurement points an acceptable relative error level can be 

reached but in the presence of corrupting noise extra care 
should be taken since the fewer the measurement points the 
higher the standard deviation will be. Hence the more 
reliable and accurate results are achieved at the expense of 
higher computation burden due to exploiting higher number 
of sensors. Therefore one should consider in advance the 
minimum accuracy of the reconstructed temperature that is 
desired. 

 It worth mentioning that while the method seems to be 
applicable in different configurations, it will be even more 
interesting to perform further tests in order to optimize the 
effect of choosing the number and the positioning of the 
necessary sensors. In addition the sensitivity test regarding to 
the displacement of the work piece should be evaluated. 
Trying different boundary condition such as radiation will 
also be among the future work. 
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Figure  9. (a) The mean of maximum error of the surface at each 60s (b) The standard deviation of maximum error of the surface at each 60s
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