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Improved Initialization for Nonlinear State-Space
Modeling

Anna Marconato, Jonas Sjöberg, Johan Suykens, and Johan Schoukens

Abstract—This paper discusses a novel initialization algorithm
for the estimation of nonlinear state-space models. Good initial
values for the model parameters are obtained by identifying
separately the linear dynamics and the nonlinear terms in
the model. In particular, the nonlinear dynamic problem is
transformed into an approximate static formulation, and simple
regression methods are applied to obtain the solution in a fast and
efficient way. The proposed method is validated by means of two
measurement examples: the Wiener-Hammerstein benchmark
problem, and the identification of a crystal detector.

I. INTRODUCTION

In the instrumentation and measurement community there
is an ever increasing demand for good models. Measuring and
modeling are in fact closely linked together, since modeling
techniques rely on raw data to build an analytical description
of the system from which those data are generated. One can
think of a very well-known example in electrical engineering,
Ohm’s law; this simple model explains the relation between
two measured quantities, the voltage difference at two points
of a conductor and the current flowing between the two points.

Having a look at more recent applications, accurate models
are needed to tackle many problems in electrical engineering:
to describe the behavior of sensors [1], to characterize ∆Σ

modulators and study their stability [2], to better understand
the functioning of wireless transmitters [3], for fault diagnosis
in analog circuits [4], just to mention a few examples.

Moreover, good models are very important in all branches
of engineering, since they can be used to test a device in the
design phase, to develop control units for industrial processes,
and in general to replace expensive and time-consuming
experiments in the analysis and simulation of a given system.

Most real-life systems (like the examples given above) are,
to a certain extent, nonlinear. In particular, to get a thorough
description of a given system, one needs to be able to model
the dynamics as well as the (static) nonlinear behavior.

To address the challenge of identifying nonlinear dynamic
systems, one can consider nonlinear state-space (NLSS) mod-
els (here expressed in the discrete time domain):

x(t +1) = f (x(t),u(t)) (1)
y(t) = g(x(t),u(t)) (2)
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where u(t)∈Rnu and y(t)∈Rny are the given input and output
signal vectors at time instant t, x(t) ∈ Rnx is the unknown
state vector of the system, and f (·) and g(·) are the nonlinear
functions to be estimated.

Among the different model classes that can be used, state-
space models show some advantages: they are general model
structures that allow one to naturally describe system dynam-
ics, and they are particularly suited for multiple input multiple
output (MIMO) systems.

Although state-space models have been extensively studied
and employed in the context of linear system identification
[5], [6], the identification of NLSS models is a far more
complex task. In particular, a difficulty that is encountered
when estimating NLSS models relates to the nature of the
optimization problem. Nonlinear functions f and g are in
general characterized by a number of parameters that need to
be optimized, by minimizing a given criterion. If the problem
is nonlinear in the parameters, an iterative search for the
cost function minimum is performed, e.g. using a Levenberg-
Marquardt technique [5], [6].

Therefore, as for all iterative nonlinear optimization
schemes, good initial values for the model parameters are
needed, so that the time to convergence is reduced, and the
problem of getting stuck in bad local minima is avoided. A
possibility, often used in practice, is to initialize the nonlinear
model with a simple linear description. However, a linear
initialization does not always allow one to converge to a good
local minimum, and therefore more advanced techniques are
needed.

The goal of this paper is to propose a nonlinear initialization
algorithm for the estimation of NLSS models.

As will be explained in more details in the next sections,
good initial values are obtained by transforming the nonlinear
dynamic identification problem in Eqs. (1-2) into a general
nonlinear regression problem:

z(t) = h(ξ (t)) (3)

where ξ (t) and z(t) are the input and output signals respec-
tively, and h(·) is the nonlinear function to be estimated, which
is in general expressed as a basis function expansion [7]. This
setting encompasses many different choices for the nonlinear
basis functions: polynomials, splines, radial basis functions,
sigmoids, and so on.

Note that, since by applying regression methods the initial-
ization procedure is speeded up considerably, different model
structures for f and g can be tested more efficiently.

The main contributions of this paper are:
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• obtaining good starting values for the optimization of
NLSS models;

• identifying separately the linear dynamics and the non-
linear terms in the model;

• cutting the recursion in Eq. (1) to obtain an approximate
(static) version of the estimation problem, to which effi-
cient regression methods can be applied.

This paper is organized as follows. The considered problem
is presented in more details in Section II, together with an
overview on the state of the art. The different steps of the
proposed identification algorithm are described in Section III.
The proposed method is validated by means of two challenging
measurement problems: the Wiener-Hammerstein benchmark
problem, and the identification of a crystal detector. The
first example will be considered to illustrate the different
aspects of the proposed approach in Section IV. The second
real data problem is discussed in Section V, together with a
comparison of the obtained results with the ones given by other
state-of-the-art methods. Concluding remarks are provided in
Section VI.

II. PROBLEM DESCRIPTION

The nonlinear dynamics in Eqs. (1-2) are assumed to be
modeled as:

f (x(t),u(t)) = Ax(t)+Bu(t)+ fNL(x(t),u(t)) (4)
g(x(t),u(t)) = Cx(t)+Du(t)+gNL(x(t),u(t)) (5)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu and
fNL(·) and gNL(·) have nx and ny outputs respectively.

In this way, once the Best Linear Approximation (BLA)
is estimated (that is, once an initial estimate for the matrices
A, B, C and D is obtained, see Section III for more details),
only the deviation from the linear model needs to be modeled,
which has been proposed by several authors, see e.g. [8] and
[9]. Note that the proposed approach target systems for which
the dynamics can be captured by the BLA and systems that
are assumed to have only one equilibrium point.

The separation between the identification of the linear dy-
namics on one hand, and the estimation of the nonlinear terms
on the other hand allows one to employ ad hoc techniques
specifically conceived to address the two different tasks, and to
combine the advantages of both worlds. In particular, available
linear system identification techniques (in the time or in
the frequency domain) are used to determine the BLA, and
nonlinear regression algorithms are employed to model the
static nonlinearities [10].

An estimate of the (unknown) nonlinear state is first com-
puted, in order to cut the recursion loop in Eq. (1). Thanks to
this step, the NLSS estimation problem is transformed into a
nonlinear regression problem of the form (3).

Note that typically the nonlinear function h(·) is represented
in terms of basis functions, for which one can choose among
a large variety of possibilities: polynomials, splines, piecewise
linear functions, radial basis functions, sigmoids, and in gen-
eral any kind of static nonlinear function that one can think of.
The formulation of the problem that is proposed in this paper
to obtain an initial estimate of the nonlinear terms fNL and

gNL in Eqs. (4-5) is general enough to encompass many model
structures from statistical learning. Support Vector Machines
(SVMs), Least Squares SVMs, and Neural Network (NN)
paradigms such as radial basis function (RBF) networks,
multilayer perceptrons (MLPs), Extreme Learning Machines
(ELMs), and so on, are all examples included in this general
model class.

In the two measurement examples discussed in this paper,
MLPs are considered to estimate the nonlinear terms in the
state-space model in order to provide a simple illustration
of the proposed algorithm, but the same approach could be
followed employing a different nonlinear model structure.

In the classic (nonlinear) system identification framework,
on the basis of a set of N input/output measurement data
{u(t),y(t)}N

t=1, one can build a model characterized by a vector
of parameters θ to describe the behavior of the underlying
system. The obtained model can then be used to predict the
output values ŷ(t,θ). For the algorithm presented here, beside
the parameters characterizing the linear part of the model,
the parameters appearing in the basis function expansion of
the nonlinear terms mentioned above need to be estimated.
Therefore, here θ contains both sets of parameters.

Following the Least Squares approach, optimal values of
θ are found that minimize a least squares cost function V ,
typically the mean square error of the modeled outputs with
respect to the true output values:

θopt = argmin
θ

V (θ)

where

V (θ) =
1
N

N

∑
t=1

(y(t)− ŷ(t,θ))2

Since in most situations the resulting problem is nonlinear
in the parameters, a numerical optimization is needed.

A typical difficulty that is encountered when minimizing the
cost function V (θ) is the presence of a number of local minima
in which the search algorithm may get trapped. Therefore,
choosing the starting values for parameters θ represents a
crucial issue, since the initialization step has a big impact both
on the quality of the final solution and on the time required
for convergence.

The goal of this work is to obtain good initial values of
the parameter vector θ , by combining system identification
techniques to model the dynamics of the system and regression
methods to estimate the nonlinearities. In this way, when fitting
the parameters of model (1-2), one hopes to end up in a good
(local) minimum to increase the quality of the final solution.

A. Related work

An example of NLSS models that have been successfully
applied to identify several real-life systems is given by poly-
nomial NLSS (PNLSS) models [9]. In that approach, the
nonlinear model is initialized simply by a linear model (BLA).

A different approach is followed in [11], where a NN ar-
chitecture characterized by a state-space structure is proposed
and compared with the system input-output structure. Sines
and cosines are used as activation functions in the network.
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State-space models parametrized as feedforward NNs with
one hidden layer and tanh(·) as activation function are pre-
sented in [12] and [13]. For these neural state-space models,
prediction error learning algorithms are discussed. In partic-
ular, as an alternative to the Extended Kalman Filter, the
Kalman gain is directly parametrized in order to obtain simpler
expressions. In this way, the gradient of the cost function
can be computed in a straightforward manner by following
Narendra’s sensitivity model approach. To deal with local
minima problems two different heuristics are proposed: the
initialization of nonlinear neural state-space models as linear
state-space models, and learning complex models starting from
less complex ones, by increasing the number of hidden neurons
in the model.

In order to make the recurrent nature of the problem vanish,
in [14] a method based on kernel canonical correlation analysis
(KCCA) is employed to build the state sequence. The obtained
state is then used together with the available input-output data
to estimate the state-space model. Thanks to a Least Squares
SVMs approach, a form of regularization is embedded within
KCCA.

The use of KCCA is suggested also in [15] for the iden-
tification of nonlinear MIMO Hammerstein-Wiener systems.
A subspace identification technique is used to estimate the
nonlinearities separately from system dynamics.

Other approaches for the identification of NLSS models
include the method proposed in [16], where knowledge on
the state sequence is assumed to be available and is used to
build the data records.

The Expectation-Maximization (EM) algorithm for maxi-
mum likelihood parameter estimation is instead used in [17],
where Extended Kalman Smoothing is employed in the ex-
pectation step to get an estimate of the state.

More recently, a combination of multilayer perceptron NNs,
the EM algorithm and particle smoothing is suggested in [18]
for joint parameter and state estimation.

Other examples of techniques that employ the EM algorithm
in a maximum likelihood framework, and that use particle
smoothing are presented in [19] and [20]. The same authors
propose in [21] a different approach that makes use of Fisher’s
identity and particle smoothing for gradient computation.

Gaussian processes are used in [22] for inference and
learning, again using EM.

B. Advantages and novelty of the proposed method
The identification method presented in this paper for the es-

timation of NLSS models, and more specifically the proposed
initialization algorithm, shows a number of differences and
novel aspects compared with the other approaches mentioned
above:
• the separation between the linear dynamics and the static

nonlinearities in the formulation of the problem allows
one to identify the different parts independently, in a more
effective way;

• the initialization scheme is based on a combination of
ideas coming from different worlds - system identification
and nonlinear regression/statistical learning - exploiting
the advantages of both;

• the BLA is used to incorporate dynamics in methods that
are essentially designed to model static nonlinearities;

• the proposed algorithm is a general scheme that can
be used in combination with many different choices of
nonlinear model structures.

III. PROPOSED ALGORITHM

In this section, the proposed method for the estimation
of NLSS models is presented. First of all, the initialization
algorithm is explained, then the next steps of the method are
discussed, followed by the description of the considered model
structure. Finally, some comments on time saving issues are
provided.

A. Initialization scheme

The proposed scheme for the initialization of NLSS models
consists of three main steps:

1) obtain a linear model to capture the dynamics of the
system;

2) estimate the nonlinear state;
3) model the nonlinearities.
In this section all the different steps are described in details.

1) Obtain a linear model: First of all, the nonlinear input-
output behavior is approximated with a linear model, by
estimating the BLA [6]. Among the possible choices of linear
models that one can use, the BLA is defined to be optimal in
least square sense. More in details, in the set of linear models
G , the BLA is defined as the model G such that:

GBLA = argmin
G∈G

E {|y(t)−G(u(t))|2}

where u(t) and y(t) are the input and output of the nonlinear
system and E is the expected value with respect to the
input [6], [23]. In this way matrices Â, B̂, Ĉ and D̂ can be
determined, obtaining the following linear model:

x(t +1) = Âx(t)+ B̂u(t) (6)

y(t) = Ĉx(t)+ D̂u(t) (7)

The linear model can then be used to get an approximation
of the nonlinear state, as discussed in the next paragraph.

2) Estimate x̂LS: A crucial aspect in the proposed approach
is based on the fact that if the state x(t) would be exactly
known, the problem of obtaining a nonlinear model could be
solved much more easily by estimating f and g individually
and as static mappings. Since the nonlinear state is in practice
not available, one would like to obtain an approximation of
x(t), to be able to obtain initial estimates of f and g.

In particular, using the available data {u(t),y(t)}N
t=1 and

the BLA estimates Â, B̂, Ĉ, D̂ obtained in the previous step,
the nonlinear state is approximated as a trade-off between the
linear model and the data fit, by solving the following Least
Squares (LS) problem:
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x̂LS(t) =arg min
{x(t)}

∑
t
(y(t)−Ĉx(t)− D̂u(t))2

+λ ∑
t
(x(t +1)− Âx(t)− B̂u(t))2

=arg min
{x(t)}

Ey +λEx (8)

The first term Ey of the cost function represents the data fit,
while the second term Ex represents the linear model fit; λ is
the trade-off parameter that needs to be tuned to change the
emphasis given on the two criteria. By tuning λ a deviation
from the linear state (resulting from the BLA estimates Â,
B̂, Ĉ, D̂) is allowed, to take into account the nonlinear terms
in Eqs. (4-5). In practice, the optimal value for the trade-off
parameter λ is chosen from a grid of values as the one mini-
mizing the root mean square error, RMSE, (on the validation
data) of the obtained initialized nonlinear models. The tuning
of the trade-off parameter λ will be illustrated in more details
on the Wiener-Hammerstein example in Section IV.

Problem (8) could be replaced by a Kalman filter which
would change the approximation slightly [24].

3) Estimate nonlinear functions f and g: Once the estimate
{x̂LS(t)}N

t=1 of the nonlinear state is available, one obtains the
following approximate static problem:

x̂LS(t +1) = f (x̂LS(t),u(t))+ rLS(t) = Âx̂LS(t)+ B̂u(t)+

+ fNL(x̂LS(t),u(t))+ rLS(t) (9)
y(t) = g(x̂LS(t),u(t))+ eLS(t) = Ĉx̂LS(t)+ D̂u(t)+

+gNL(x̂LS(t),u(t))+ eLS(t) (10)

where rLS(t) and eLS(t) are error terms resulting from the
fact that here the approximated nonlinear state is introduced
in the problem. Eqs. (9-10) represent two static regression
problems that can be solved independently employing simple
regression methods. Note that at this stage the recursion in the
state equation is not present anymore, since the state sequence
is now assumed to be ‘known’. Therefore, both functions
fNL(x̂LS(t),u(t)) and gNL(x̂LS(t),u(t)) can be estimated as
basis function expansions.

B. Simulation of the initialized model and optimization

The two estimated nonlinearities f̂NL and ĝNL can then be in-
cluded in a general NLSS structure; at this point the dynamics
are again taken into account, and one can simulate the obtained
initialized nonlinear model to assess its performance. In other
words, the recursion in the state equation is included again,
switching back from the approximate initialization obtained
using (9-10) to (4-5), which is the original problem one wants
to solve.

Finally, the obtained initial estimate of the nonlinear model
can be further fitted to data, using an iterative nonlinear
optimization routine, e.g. the Levenberg-Marquardt algorithm.

C. Model structure

To describe the NLSS model, the model structure repre-
sented in Fig. 1 is used. In Fig. 1(a) the representation of

Linear 
Model

NL

+

+

+

(a)

Linear 
Model

NL

+

(b)

Fig. 1. Model structure used to describe (a) the state equation, (b) the output
equation, in the case of one input, one output and nx states. The nonlinear
block is added in parallel to the linear model.

state equation (1) is given in the case of having one input,
one output and nx states. In the block scheme the inputs are
the states x̂1

LS(t), x̂
2
LS(t), . . . , x̂

nx
LS(t) and the input u(t), while the

outputs are the states x̂1
LS(t +1), x̂2

LS(t +1), . . . , x̂nx
LS(t +1). The

nonlinear block is added in parallel to the linear model, so that
the update for the states consists of a linear plus a nonlinear
part, see Eq. (4). The same structure is used to describe the
output equation (2) in Fig. 1(b).

D. Time saving

This paper presents a nonlinear initialization algorithm for
the estimation of NLSS models. Another possibility, which is
often used in system identification, to initialize a nonlinear
model before the optimization step is to use a simple linear
initialization. Note that by ‘linear initialization’ we mean that
a nonlinear model is estimated by starting from a linear model
in parallel with nonlinear terms that are initialized to zero; all
parameters (of both the linear and the nonlinear part) are then
optimized [8].

As will be illustrated in the next section with the Wiener-
Hammerstein example, a linear initialization does not always
guarantee convergence to a good local minimum of the cost
function. In most cases, when starting from a linear model,
the optimization routine gets stuck in bad local minima.

Moreover, by starting from better initial estimates, the time
to convergence needed when fitting the model parameters will
be reduced (or, dually, given the same amount of computa-
tional time the final fitted model is likely to be characterized
by lower error values).

Beside this advantage, there are also other aspects of the
initialization algorithm presented in this work that allow one
to reduce the computational time.

Firstly, time can be saved since one can choose to per-
form model (structure) selection already after the initialization
phase. This is obviously not the case if a linear initialization
is applied, since all initialized linear models result in the same
error value. This means that with the proposed scheme, if a
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number of the possible nonlinear models can be discarded after
initialization, one would not need to optimize all initialized
models to be able to determine their performance. This aspect
will be discussed further in Section IV.

Secondly, here the initial estimates of the nonlinear func-
tions f and g are computed separately, i.e. if many nonlinear
model structures need to be tried out this approach allows one
to carry out all estimations in much less time.

IV. WIENER-HAMMERSTEIN BENCHMARK PROBLEM

We illustrate the different aspects of the proposed initializa-
tion algorithm for NLSS models on the Wiener-Hammerstein
benchmark example. One-hidden-layer MLPs with tanh(·) as
neuron activation function are chosen to model the nonlinear
terms. The considered model structure is then the one depicted
in Fig. 1, where the two nonlinear blocks (NL) are two MLPs.

During the training phase, the parameters of the MLP are
typically first randomly initialized so that the active regions
of the neurons span the input space, and then optimized, e.g.
by means of the backpropagation algorithm [25]. Therefore,
in the following many different initial MLP configurations are
considered, to show also the effect of this variability source
on the obtained model performance.

A. Description of the data

The data are generated from a nonlinear electronic system,
characterized by a Wiener-Hammerstein structure. The two
linear blocks are a third order Chebyshev low-pass filter with
0.5 dB ripple and cut-off frequency at 4.4 kHz, and a third
order inverse Chebyshev low-pass filter with a -40 dB stop
band from 5 kHz, respectively. The static nonlinearity is built
using two resistors and a diode.

The goal is to identify a model to describe this nonlinear
dynamic system, based on a set of real input/output measure-
ments. A difficulty that pops up in the identification of this
system is given by the fact that it is not straightforward to
model the nonlinear part of the system, since this is not directly
accessible from either the input or the output.

The data were collected by exciting the system with a
filtered Gaussian input signal (cut-off frequency at 10 kHz).
The sampling frequency is equal to 51.2 kHz. A very large
dataset is available1 (188000 input/output samples) to estimate
and validate the model, but in this work shorter records are
considered to reduce the computational load. To illustrate the
different aspects of the proposed algorithm, an estimation set
of 2500 samples is considered to build the NLSS model, and
a validation set of 10000 samples is used to evaluate the
performance of the obtained model on fresh data. A very large
validation set is chosen in order to eliminate the stochastic
variations in this step, so that the model quality is clearly
visible. In real life applications, one would instead choose to
use a larger portion of the available data to estimate the model.

1Download at http://tc.ifac-control.org/1/1/Data%20Repository/sysid-2009-
wiener-hammerstein-benchmark.

0.1 0.5 1 5 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.050.05

 value

R
M

SE
 [V

]

0.1 0.5 1 5 10
0

10

20

30

40

50

60

70

80

90

100%

Ex

Ey + Ex

Ey

Ey + Ex

Fig. 2. Wiener-Hammerstein example. Initialized NLSS models (gray
crosses): RMSE values on the validation set, for different values of λ (50
initial MLP configurations, number of neurons for fNL and gNL equal to 3).
The relative weight (in percentage) of the two error criteria Ey and Ex is also
shown (right side axis) for the different λ values.

B. Initialization

1) Estimate of the linear model: The BLA is computed to
obtain a first (linear) description of the system. A 6th order
linear state-space model is obtained, characterized by a RMSE
value of 60 mV on the validation set.

2) Estimate of the nonlinear state: Eq. (8) is used to
estimate the nonlinear state sequence. The main issue here
concerns the tuning of the trade-off parameter λ . First of
all, one needs to determine a suitable range of values for λ .
This is done by balancing the weight of the two criteria Ey
and Ex in the trade-off, i.e. by choosing several values of λ

for which either Ey or Ex is dominant, or both are equally
important. In this example, λ is chosen among these values:
0.1,0.5,1,5,10. The effect of changing λ on the importance
of the two criteria is shown in Fig. 2. The choice is made
for example by selecting the value for which the RMSE of
the resulting initialized NLSS model on the validation set is
minimized.

The obtained results on the validation set are plotted in
Fig. 2, for 50 different random initial configurations of the
MLPs.

The lowest RMSE values are obtained for λ = 0.1, so if
one decides to tune λ after the initialization phase, without
optimizing all initialized models, this will be the chosen value.
As will be shown later in the part dedicated to the optimization,
the final performance of the optimized models does not seem
to depend much on the specific value chosen for λ (see Fig. 3).

However, for each λ , the variability due to the different
MLP configurations has a significant impact on the perfor-
mance of the resulting NLSS models, so in general one might
need to initialize a number of different models, and check their
performance once all parameters have been optimized. Note
that this issue would not be present if a different choice of the
basis functions in the estimation of the nonlinear terms was
considered.

http://tc.ifac-control.org/1/1/Data
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n f = ng 1 2 3 4
RMSE [V] 0.0410 0.0256 0.0197 0.0196

TABLE I
WIENER-HAMMERSTEIN EXAMPLE. INITIALIZED NLSS MODELS:
LOWEST RMSE VALUES OBTAINED ON THE VALIDATION SET FOR

DIFFERENT VALUES OF n f AND ng (λ = 0.1).

0.1 0.5 1 5 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 value

R
M

SE
 [V

]

Fig. 3. Wiener-Hammerstein example. Optimized NLSS models (black
crosses): RMSE values on the validation set, for different values of λ (50
initial MLP configurations, number of neurons for fNL and gNL equal to 3).
The results for the initialized models are repeated here for a comparison (gray
crosses).

3) Estimate of the nonlinear terms: To complete the initial-
ization step, the two nonlinear terms fNL and gNL needs to be
estimated, by solving the static regression problems in Eqs. (9-
10). As already mentioned, MLPs are used here to model the
two nonlinearities, so for both fNL and gNL the number of
neurons in the hidden layer (n f and ng respectively) needs to
be specified. Again, this is a model selection problem that can
be solved at initialization.

Table I shows the RMSE (on the validation set) obtained by
using different values for n f and ng (for the sake of simplicity,
here n f = ng). For each number of neurons, 20 different MLP
configurations are considered, and the lowest RMSE value is
shown in the table, to give an indication of how low the error
can be pushed with models of increasing complexity.

At this stage, the model obtained with 3 neurons can be
considered the best one, since the small gain in performance
using 4 neurons does not justify the corresponding increase
in the number of parameters. Table II shows that the same
reasoning holds also for the optimized models resulting from
these initializations.

C. Optimization

Although, as already pointed out, the choice of λ , n f and
ng can be done after the initialization step, all the initialized
models considered above have been optimized, to illustrate
the main properties of the proposed algorithm. The obtained
results are summarized in Fig. 3 and Table II.

The main conclusion is that, for this example, the choice
of λ is not too critical, since it does not affect much the
final performance of the optimized models. It is rather the

n f = ng 1 2 3 4
RMSE [V] 0.0129 0.0045 0.0034 0.0032

TABLE II
WIENER-HAMMERSTEIN EXAMPLE. OPTIMIZED NLSS MODELS: RMSE
VALUES ON THE VALIDATION SET AFTER OPTIMIZING THE 4 INITIALIZED

MODELS OF TABLE I, FOR DIFFERENT VALUES OF n f AND ng .

variability due to the different MLP configurations that can
yield models with a higher RMSE (Fig. 3).

However, all initialized models improve the result obtained
by the BLA, and with the proposed initialization scheme
it is possible to obtain (after optimization) NLSS models
characterized by low RMSE and low complexity in terms
of number of parameters. As for the computational aspects,
in this example (run using MATLAB, on a PC with a i7-
2600 3.40 GHz processor) the nonlinear initialization takes
approximately 8 seconds, to be compared with a processing
time of 40 minutes needed for the optimization routine.
Therefore, the initialization step, even when repeated several
times, can be considered inexpensive.

Note that similar conclusions can be drawn also when
testing the proposed approach on examples where stronger
nonlinearities (such as the absolute value) are present in the
system. In those cases, the only difficulty seems to be the
fact that it is not always possible to perform model selection
already at initialization, and one then needs to optimize several
nonlinear models before selecting the optimal one.

D. Comparison with linear initialization

To demonstrate the advantage of using the proposed algo-
rithm to initialize NLSS models, two situations are compared:
• Linear/Random initialization: the MLP parameters as-

sociated to the neuron amplitudes are set equal to 0,
while all other MLP parameters (associated to the neuron
positions) are randomly generated;

• Linear/MLP initialization: the proposed initialization is
performed (with λ = 0.1) to determine the MLP param-
eters associated to the neuron positions, but the MLP
parameters associated to the neuron amplitudes are set
equal to 0.

For both initializations, 50 different MLP configurations are
considered, with n f = ng = 3.

All models resulting from these two initializations are linear
models (i.e. they have the same performance as the BLA),
but in one case (Linear/MLP) one exploits the power of the
proposed algorithm to fix the positions of the neurons. The
mean value and the standard deviation (in V) of the RMSE
results (on the validation set) obtained after optimizing all
models are listed below:
• Linear/Random: mean 0.0443, std 0.0008;
• Linear/MLP: mean 0.0068, std 0.0054.
This shows that if no information is given about the po-

sitions of the MLP neurons, the optimization routine gets
always stuck in a bad local minimum. Only when the proposed
algorithm is exploited to determine (at least) the neurons
positions, it is possible to converge to lower RMSE values.



7

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Time [ms]

A
m

pl
itu

de
 [

V
]

Fig. 4. Crystal detector example. Averaged input signal (for the estimation
data set).

A final remark on the initialization: the algorithm discussed
in this paper seems to be powerful (in comparison with a
linear initialization) in those cases in which the basis functions
describing the nonlinearities are characterized by parameters
expressing the ‘position’, i.e. like in the MLP example. For
‘position-free’ models, e.g. polynomial models, a linear ini-
tialization might be effective enough for the optimization to
converge to a good local minimum.

V. IDENTIFICATION OF A CRYSTAL DETECTOR

In this section, the task is to model the input/output rela-
tionship of a Agilent-HP420C crystal detector, a device that is
often used in microwave applications to measure the envelope
of a signal [26].

A. Description of the data

The excitation signal consists of 5 measured periods of
a Gaussian noise sequence (each period is made of 50000
samples, at a sampling frequency of 10 MHz) characterized by
a slowly increasing amplitude. A first data set was generated
by considering a bandwidth of 800 kHz and is used to
estimate the model, while a second data set, used for validation
purposes, was generated with a similar excitation signal with
bandwidth equal to 400 kHz. The 5 different periods of the
excitation signal are used in the first step of the initialization
when estimating the BLA to reduce noise and transient effects,
while later on, for the estimation of the nonlinear model, the
averaged input signal (over 5 periods) is considered.

The input signal (averaged over 5 periods) used for estima-
tion is shown in Fig. 4.

The noise on the input and output measurements is esti-
mated to have a standard deviation of 0.23 mV, to be compared
to a RMS value of 15.2 mV for the input, and 13.6 mV for
the output (after removing the DC offset).

B. Obtained results

For the initialization of the NLSS model, first of all the
BLA is estimated nonparametrically to capture the dynamics
of the system [6], then a first order parametric linear model
is obtained and transformed into state-space form. The BLA
results in a RMSE equal to 1.5 mV and 1.1 mV on the
estimation and validation set, respectively.

The nonlinear state xLS is then approximated solving the
problem in Eq. (8). Here the optimal value for the trade-off

Model Estimation RMSE Validation RMSE
Best Linear Approximation 1.50 1.10
Initialized nonlinear model 0.72 0.65
Optimized nonlinear model 0.26 0.27

TABLE III
CRYSTAL DETECTOR EXAMPLE. RMSE VALUES (IN mV ) OBTAINED BY

THE CONSIDERED MODELS.
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Fig. 5. Crystal detector example. Error (in mV) on the validation set for
the BLA (black), the initialized nonlinear model (light gray) and the fitted
nonlinear model after optimization (dark gray).

parameter λ is chosen to be 0.01 (corresponding to Ey/(Ey +
Ex) less than 1%), although also in this example the choice
of λ does not seem to have a significant impact on the final
result.

To estimate the nonlinear functions f and g, the model
structure in Fig. 1 is considered, with the difference that
now only one state is present, since a first order model is
sufficient to describe the linear dynamics. One-hidden-layer
MLPs with tanh(·) as activation function are used to estimate
the nonlinear terms, and the choice of two neurons for fNL
and one neuron for gNL results in an initialized nonlinear
model that significantly improves the performance of the BLA
(RMSE equal to 0.65 mV on the validation data).

Starting from the initial estimates, all model parameters are
then optimized using a Levenberg-Marquardt algorithm. This
finally results in a fitted nonlinear model characterized by a
RMSE equal to 0.27 mV on the validation set.

All obtained results in terms of RMSE on estimation and
validation data are summarized in Table III.

Fig. 5 shows the error obtained on the validation set by the
different models. The optimized NLSS model can capture well
the nonlinear behavior of the device, as indicated by the fact
that the large spikes that characterize the linear model error
are not present anymore in the nonlinear model error.

The results obtained by applying the proposed initialization
scheme to the identification of the crystal detector can be
considered very good. If compared with the error of the
BLA, the initialized NLSS model gives a RMSE value on the
validation data which is almost 50% lower. Moreover, starting
from this initial parameter estimate, the performance of the
nonlinear model is further improved in the optimization step,
and the final nonlinear model error is very close to the noise
level (0.23 mV).

In the final part of this section, the obtained results are com-
pared with the performance of other nonlinear identification
methods that have been applied on the same problem.
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C. Comparison with other methods

A physical description of the crystal detector is developed
in [27], where the internal structure is modeled as a nonlinear
feedback, with a Wiener-Hammerstein branch in the feedback
loop, for which the nonlinear block is a 9th order polyno-
mial. This model (characterized by 14 parameters) results
in a RMSE value of 0.30 mV. Therefore, the NLSS model
obtained with the proposed algorithm performs better, and its
complexity is only slightly higher (17 parameters).

The PNLSS approach [9] has also been applied on the same
problem, resulting in a RMSE of 0.26 mV (slightly better than
the proposed algorithm), at the cost of a higher complexity (53
parameters).

Finally, a different method based on the identification of a
nonlinear LFR block structure gives a RMSE of 0.286 mV
(with 11 parameters) [28].

It can be concluded that the proposed NLSS identification
algorithm yields very good results in terms of both RMSE and
complexity.

VI. CONCLUSION

In this work a novel initialization scheme for the identi-
fication of NLSS models has been presented. The approach
was successfully applied on two measurement examples. The
proposed initialization procedure has several advantages, as
(i) it is a general scheme that can be used in combina-
tion with different choices of nonlinear model structures;
(ii) the separation between system dynamics and nonlinear
terms makes it possible to identify them independently; (iii)
many nonlinear model structures can be tested rapidly on the
obtained regression problem; (iv) two different fields - system
identification and nonlinear regression/statistical learning - are
brought together, combining the advantages of both.

A direction for future research could be to gradually impose
more structure on the obtained NLSS models, e.g. by rotation
of the state, to reveal the underlying structure of the considered
system. Another possibility could be to start up the nonlinear
initialization with a larger number of basis functions, and then
select a smaller set during optimization, for instance by adding
a regularization term in the cost function.
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