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On the calibration
of direct-current current transformers

Luca Callegaro, Cristina Cassiago, and Enrico Gasparotto∗†

Abstract

Modern commercial direct-current current transformers (DCCT) can measure currents up to the
kA range with accuracies better than1× 10−5. We discuss here a DCCT calibration method and
its implementation with commercial instruments typicallyemployed in low resistance calibration lab-
oratories. The primary current ranges up to2 kA; in the current range below100A the calibration
uncertainty is better than3× 10−7. An example of calibration of a high-performance DCCT speci-
fied for primary currents measurement up to900A is discussed in detail.

1. INTRODUCTION
Direct-current current transformers (DCCT) are the most accurate dc high-current sensors commer-
cially available [1], reaching specified relative accuracies in the10−5 range and integral nonlinearities
below10−6. The verification of such high performances and the calibration of the DCCT ratio require
metrological facilities capable of handling high currents, with high accuracy and automated operabil-
ity [2–5].
Ultimate current ratio accuracy is achieved in cryogenic current comparators (CCC) [6]. In a CCC, ratio
accuracy is obtained by constraining the magnetic flux (generated by the current being compared) within
superconducting shields. An extremely high sensitivity isachieved with a superconducting quantum
interference device (SQUID) flux sensor. Even though CCCs capable of handling currents up to100A
have been realized [7], these devices are research instruments not available in calibration laboratories.
Ferromagnetic-core, room-temperature current comparators (CC) are current ratio devices which can
achieve ratio errors lower than10−7 [8], and can be self-calibrated through step-up procedures[9,
10] with similar levels of uncertainty. Thus, a CC can be employed as current ratio standard in a
DCCT calibration setup. Although complex and expensive instruments, high-current CC are common
in electrical calibration laboratories, since they are part of commercial resistance ratio bridges employed
for the measurement of low-value resistors. These instruments include also current sources, detectors,
and firmware for automated operation.
The calibration of the DCCT ratio with a reference current ratio standard (possibly having a different
nominal ratio) can be performed by different methods. Recent papers [11,12] describe a method based
on the comparison of the voltages developed by the secondarycurrents of the devices being compared
on calibrated resistance standards.
Here we present a simple method that allows the calibration of the ratio of a DCCT by using commercial
components, originally designed for the calibration of low-value resistors. This method does not require
calibrated resistance standards; the accuracy, dependenton the primary current, is better than3× 10−7

for currents below100A. An example of calibration of a DCCT having a1500 : 1 nominal ratio for
currents up to900A is reported.
The implementation is being employed in the EURAMET.EM-S35High DC current ratio supplemen-
tary comparison [13], in which INRIM acts as co-pilot laboratory.

2. CALIBRATION METHOD
Fig. 1 shows the schematic diagram of the calibration setup which includes three current ratio devices:
the DCCT under calibration, an automated current range extender EXT and a current comparator ratio
bridge CC.
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Figure 1: Schematic diagram of the DCCT calibration setup. Sis a high-current source, EXT is an automated
current range extender and CC is a dc current comparator. TheammeterAD monitors the DCCT outputID, while
AC measures the currentIC which is the input quantity of the measurement model(2).

2.1. OPERATION OF CURRENT RATIO DEVICES
The operation of the three current ratio devices, sketched in Fig. 2, is based on the same principle.
m+ 1 windings are wound around a ferromagnetic core. Each winding k hasNk (k = 0 . . .m) turns,
and a currentIk flows through it. The magnetic fluxΦ in the core is given byRΦ =

∑m

k=0
NkIk,

whereR is the core magnetic reluctance.Φ is measured by a fluxgate detector [1,14,15] whose output
constitutes the error signal of a feedback control. The output of the control drives current sourceI0,
connected to winding0, to null the flux. The conditionΦ = 0 yields the ampere-turns balance equation∑m

k=0
NkIk = 0.

In normal operating conditions, DCCT and EXT have only two (m = 1) active windings. The output
I0 of the controlled current source constitutes the device output current; hence, the currentI1 is scaled
down with the turns ration1,0 = N1/N0 asI0 = n1,0I1.
In the CC, instead, more windings (m ≥ 2) are simultaneously active; the currentsIk (k = 0 . . .m) are
compared, weighted by their respective turn numbersNk; the measurement ofI0 gives the CC reading,
that is, the residual unbalance between the currentsI1 . . . Im to be compared.

2.2. CIRCUIT DESCRIPTION
The input windings of both DCCT and EXT are connected in series and driven by the primary current
IP generated by the high-current dc source S. The DCCT and EXT output currents are respectively
ID = GDIP andIE = GEIP, whereGD is the DCCT current gain (that is, the measurand) andGE is the
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Figure 2: The operating principle of the instruments employed in the calibration setup.m + 1 windings, withNk

(k = 0 . . .m) turns each, are wound around a ferromagnetic core (black thick line). The flux detectorΦ, through
an automatic control (not shown), steers the current sourceI0 until Φ = 0; a generic loadRL can be connected to
the source.

EXT current gain.
ID and IE are connected to two input windings of CC, each havingND andNE turns. ID is also
measured by a high-accuracy ammeter AD.
The CC compensation currentIC, linked to the CC winding withNC turns, is measured by the ammeter
AC; when operating properly, the CC balance equation is

NEIE +NDID +NCIC = 0. (1)

In (1), the sign of turn numbersNx can be either positive or negative and is set by the winding direction.
When in all current ratio devices each core flux is drawn to zero by the corresponding automated control,
the balance equation of the whole circuit becomes

GD =
IC

IP

NC

ND
−GE

NE

ND
. (2)

2.3. MEASUREMENT MODEL
To derive an accurate measurement model, two major nonidealities of the devices employed should be
considered:

OFFSET
All instruments based on the fluxgate technique suffer from acertain degree of dc offset, caused by the
magnetization hysteresis and relaxation of the ferromagnetic core. This offset, of the order of10µA per
unit input turn [14], depends on temperature, measurement history and time drifts. To compensate this
offset, the readingIC in (2) is substituted with∆IC = IC − IC0, whereIC is the reading taken at the
nominal primary currentI (n)

P of interest, andIC0 is the reading with null primary current,IP = 0.

RATIO ERRORS
The actual current ratios of CC can differ from the corresponding turn ratios. We callnCD andnED the
current ratios of whichNC/ND andNE/ND are the corresponding nominal turn ratios.



Figure 3: A photo of the implementation of the calibration method. See Sec. 3. and Fig. 1 for the identification of
the labels.

Taking into account the above nonidealities, (2) can be rewritten as

GD =
∆IC

IP
nCD −GE nED, (3)

The relative gain errorδGD with respect to the nominal gainG(n)
D is

δGD =
GD −G(n)

D

G(n)
D

. (4)

3. IMPLEMENTATION
Fig. 3 shows an implementation of the schematic diagram of Fig. 1. It employs the following instru-
mentation:

DCCT The device under test, for which the results reported in Sec.4. were obtained, is a LEM
mod. ITN 900-S ULTRASTAB high-performance current transducer [16]. It handles primary
currents|IP| ≤ 900A with a nominal current ratioGD = 1/1500. The specified accuracy
is better than2× 10−5 (including offset), the linearity better than1× 10−6, maximum load
resistance2.5Ω. Fig. 4 shows the DCCT mounted on the primary busbar.

CC Guildline mod. 9920 direct current comparator [14]. This instrument is particularly versatile since
it provides several fixed windings having decadic (1 to 1000) number of turns and one winding
with an adjustable number of turns through decade rotary switches; moreover, it allows a full
reconfiguration of the connections between the windings andthe internal electronics. The settings
used in the calibration of the particular DCCT under test are: ND = −100 (fixed winding),
NE = 150 (decade winding), andNC = 1 in order to achieve the highest sensitivity in the
measurement ofIC.

EXT Two different extenders were employed, depending onIP:

• Measurement International mod. MI 6011B range extender. Primary current|IP| ≤ 100A,
nominal ratio1/1000, relative accuracy< 1× 10−7.

• Measurement International mod. MI 6012M range extender.|IP| ≤ 2 kA, nominal ratio
1/1000, relative accuracy< 2× 10−6.

The above specifications were validated in the standard operating setup for low-valued resistor
measurements [17].

S Two different sources were employed, depending on the primary currentIP:



Figure 4: The DCCT under calibration mounted on the primary current busbar. The aluminum block in foreground
embeds a Pt100 sensor to monitor the temperature of the primary current busbar.

• Measurement International MI 6100A linear dc power supply,for |IP| < 100A. Current
reversal is achieved with a switch internal to MI 6011B.

• Agilent mod. 6680 (two items in parallel) for|IP| < 1750A. Current reversal is achieved
with a Measurement International mod. 6025 pneumatic switch.

AD Agilent mod. 3458A multimeter in dc voltage mode, measuringthe voltage drop on a Tinsley
mod. 16591Ω standard resistor.

AC Agilent mod. 3458A multimeter in dc current mode,100mA range.

The DCCT and busbar temperatures are monitored with two Pt100 platinum temperature sensors (see
Fig. 4) read by a Fluke mod. 1529 CHUB E-4 thermometer.

4. RESULTS
After a warming-up period of about1 h atIP = +I (n)

P , IP is repeatedly cycled between values0, +I (n)
P ,

0, −I (n)
P (ending the whole cycle sequence withIP = 0).1 The readingIC is continuously recorded.

Fig. 5 shows a time series ofIC readings corresponding to anIP cycle. For each value ofIP, after
transients have died out, a time averageIC(IP) is computed (see gray bands in Fig. 5).
The quantity∆IC to be employed in Eq. (2) is computed as∆IC(I

(n)
P ) = IC(I

(n)
P )− (I ′C(0)+ I ′′C (0))/2,

whereI ′C(0) andI ′′C (0) are the zero readings respectively preceding and succeeding IC(I
(n)
P ) in the time

series.
1It has been found that, for the particular DCCT being tested and for IP near fullscale, the current must be ramped up smoothly

to allow the DCCT automatic shutdown.



Figure 5: Time recording of the compensation currentIC for different primary currentsIP.

Table 1: DCCT gainGD for different primary currentsIP. The relative deviationδGD from nominal ratio is also
reported.

I (n)
P Supply EXT GD δGD U(δGD)
A ×10−4 ×10−6 ×10−6

+90 6100A 6011B 6.666 653 9(16) −1.92 0.24
−90 6100A 6011B 6.666 653 9(16) −1.92 0.23
+300 6680A 6012M 6.666 682(16) +2.3 2.3
−300 6680A 6012M 6.666 676(15) +1.5 2.3
+600 6680A 6012M 6.666 677(15) +1.6 2.3
−600 6680A 6012M 6.666 676(15) +0.9 2.3
+900 6680A 6012M 6.666 672(15) +0.9 2.3
−900 6680A 6012M 6.666 673(15) +1.1 2.3

From each∆IC(I
(n)
P ), the absolute∆GC(I

(n)
P ) and relativeδGC(I

(n)
P ) errors are computed. Fig. 6 graph-

ically shows the valuesδGD corresponding to eachI (n)
P measurement cycle.

Tab. 1 reports the estimates forGD andδGD of the DCCT under measurement, together with the corre-
sponding95% expanded uncertainties, for several primary currentI (n)

P values.
As an example, the uncertainty budget for the calibration ofGD at IP = +90A is given in Tab. 2,
where it can be appreciated that the main contributions to the measurement uncertainty are due to the
instability ofIC and the EXT and CC current ratiosGE andnED.

5. CONCLUSIONS
The proposed setup allows the calibration of the ratio of a DCCT with accuracies in the10−6 range
or better. The proposed implementation, suitable for primary currents up to2 kA, is based on com-
mercial instruments typically employed for the calibration of low-valued resistors, and therefore often
available in calibration laboratories. The implementation is being employed for the participation to the
EURAMET.EM-S35 comparison, which is co-piloted by INRIM and the Federal Institute of Metrol-
ogy (METAS), Switzerland. The travelling standard of comparison is based on a LEM mod. IT 600-S
ULTRASTAB transducer; the participants measureGD at primary currentsIP =±90A, ±300A and
±600A. The preliminary characterizations of the travelling standard performed by INRIM and METAS
give results which are in agreement within a compound relative uncertainty better than5× 10−6. At
the present time the results of the comparison are confidential; a full validation of the INRIM method



Figure 6: The relative gain errorδGD of the DCCT under calibration, for different nominal primary current values
I

(n)
P . Each dot corresponds to half of the measurement cycle shownin Fig. 5. For eachI (n)

P , five measurement results
are reported. The average value and its uncertainty are given in Tab. 1.

Table 2: Uncertainty budget forGD, at I (n)
P = +90A.

Quantity X u(X) contrib. tou(GD) type note

∆IC −17.2 µA 0.36 µA 2.7× 10−11 A Standard deviation of the mean, taken over5 IP cycles
IP 90A 90mA 1.3× 10−12 B AD readings (bound on maximum error)
nCD −6.666 666 7× 10−3 6.7× 10−10 < 1× 10−13 B CC manufacturer’s specifications
nED −6.666 666 7× 10−1 6.7× 10−8 6.7× 10−11 B CC manufacturer’s specifications
GE +1.000 000 0× 10−3 5.8× 10−11 3.8× 10−11 B EXT (MI 6011B) manufacturer’s specifications

GD +6.666 653 9× 10−4 8.1× 10−11

δGD −1.92× 10−6 1.2× 10−7

U(δGD) 2.4× 10−7 Expanded uncertainty,95% coverage probability

will become available after the publication of the comparison report, expected by the end of 2015.
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