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 

Abstract— This paper presents a sensor fusion algorithm based 

on an Unscented Kalman Filter (UKF) designed for robust 

estimation of position and orientation of a freely moving target in 

surgical applications. The UKF is not subject to the nontrivial 

disadvantages of the more popular Extended Kalman Filter (EKF) 

that can affect the accuracy or even lead to divergence of the 

algorithm. Orientation is represented by quaternion which avoids 

singularities and is computationally more effective. The fusion 

algorithm has been designed to incorporate an optical tracking 

system and an inertial sensor unit containing tri-axial angular rate 

sensors and accelerometers. The proposed tracking system does 

not suffer from environmental distortion, is robust to brief line-of-

sight losses and has a high sampling rate. Experimental results 

validate the filter design, and show the feasibility of using 

optical/inertial sensor fusion for robust motion tracking meeting 

the requirements of surgical computer-assisted procedures. 

 
Index Terms—Inertial measurement unit, optical tracking 

system, pose estimation, quaternion, sensor fusion, surgical 

navigation, unscented Kalman filter (UKF) 

 

I. INTRODUCTION 

NTRODUCING the idea of frameless and interactive 

computer-aided surgery provided the surgeons with 

navigation systems able to show in real time the position of the 

tip of an instrument in the corresponding pre-operative images 

without requiring cumbersome implementation of stereotactic 

frames [1]. This required efficient, fast and accurate motion 

tracking methods to track the surgical instrument and patient’s 

body parts. 

While motion tracking is becoming an inseparable part of 

modern operating rooms, it has already been a key technology 

in virtual environments and robotics. A bewildering number of 

motion-tracking technologies have been designed for different 

purposes, operating on different physical principles and 

exhibiting different performance characteristics, including 

mechanical trackers, acoustic, inertial tracking systems, active 

magnetic trackers, and optical tracking systems.  

Mechanical tracking systems rely on a physical connection 

between the target and a fixed reference point [2]. The 

measurement frequency is typically high; however the physical 

 
All authors are with the Department of Electronics,  Information and 

Bioengineering, Politecnico di Milano, Milan, Italy (e-mail: 
nima.enayati@polimi.it) 

connection constraint imposes a limited range of motion. 

Acoustic tracking systems emit and sense ultrasonic sound 

waves to determine the position and orientation of a target, 

through either time-of-flight or phase-coherence. The system’s 

performance is affected by the changes of environmental 

factors like temperature, humidity and the distance to the fixed 

sensors. Magnetic tracking systems can track magnetic field of 

earth as a widely available DC source to estimate heading. 

Alternatively, active magnetic tracking systems determine both 

position and orientation by using orthogonally mounted coils to 

sense a set of sequentially generated magnetic fields. 

Electromagnetic tracking systems are responsive and have low 

levels of latency. However, ferromagnetic and conductive 

material in the environment can affect a magnetic field’s shape 

and the resulting field distortion substantially affects the 

accuracy of the tracking. Inertial measurement units (IMU) 

have become particularly popular due to the availability of low-

cost small-size micro-electro-mechanical systems (MEMS). 

Commonly, these sensors include triads of accelerometers and 

gyroscopes measuring linear acceleration and angular rate with 

a relatively high resolution and low latencies. Magnetometers 

are sometimes included in the unit to add heading estimation 

capability to the system. IMUs require no external devices or 

free line of sight and are immune to all forms of interference. 

However, the drift rates due to integration of the signals are too 

great for practical long term use [3]. Optical Tracking Systems 

(OTS) inevitably have two components: light sources and 

optical sensors. The light sources might be passive objects that 

reflect or diffuse ambient light or active devices that emit light. 

Examples of passive light sources include distinguishable 

fiducials or natural surfaces in the environment and sensors are 

often multiple CCD cameras. These vision-based tracking 

systems suffer from a notorious requirement of clear line of 

sight, end-to-end system delay, and high computational 

expense. Advantages such as being disposable, having no 

wiring and wide visibility angle have made infrared retro-

reflecting passive markers generally more favorable in surgical 

applications. However commercial optical tracking systems 

with passive markers have a lower sampling frequency (20–60 

Hz) compared to the ones using active markers (100-800 Hz).   

A tracking system employed for surgical applications 
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requires a relatively high degree of robustness, reliability and 

precision. In general, computer-assisted surgery requires a 

tracking accuracy in the order of millimeters. 1mm is 

recommended in computer-assisted neurosurgery [5]. It is not 

likely to have an emerging sensing technology to solve the 

problems of current technologies while satisfying the accuracy 

requirements. As humans and animals have evolved the 

capability to use multiple senses to improve their ability to 

survive, a natural solution would be to combine different sensor 

types to improve the quality, reliability and robustness of the 

tracking system. Among current solutions, optical tracking 

systems with passive markers have been widely used in modern 

operating rooms due to their accuracy and immunity to 

interference. Combining an OTS with a second sensor may 

solve or improve the limitations of low frequency of acquisition 

and clear line-of-sight requirements. Active magnetic tracking 

systems have been frequently used as a complementary sensor 

with vision and optical systems since they provide direct 

position and orientation measurements (compared to inertial 

measurements that need to be integrated first). However, the 

sensitivity to surrounding electromagnetic fields and 

conductive material reduces the reliability of these sensors if 

used in an ordinary operating room and limits their 

implementation. 

This paper describes the design, implementation, and 

experimental validation of an Unscented Kalman Filter (UKF) 

for real-time motion tracking. In order to produce 6D pose 

estimates relative to an Earth-fixed reference frame, the filter 

uses input data from an OTS and a sensor module containing a 

triad of orthogonally mounted linear accelerometers, a triad of 

orthogonally mounted angular rate sensors, and 4 fixed infrared 

active markers. Quaternions are used to represent orientation to 

improve computational efficiency and avoid singularities. The 

filter increases the low acquisition frequency of the optical 

tracking system while maintaining the desired accuracy and 

compensates brief marker occlusion, allowing for an accurate, 

more robust and faster pose tracking. The UKF uses a set of 

appropriately chosen weighted points to parameterize the 

means and covariance of probability distributions. It has been 

argued [6] that the expected performance of the UKF is superior 

to that of the EKF and is directly comparable to that of the 

second order Gauss filter.  The differences in performance in 

some example applications are demonstrated in [7] [8]. A 

second-order linear system is used for translation and a first 

order model represents rotation. The filter is experimentally 

validated using actual sensor measurements in extensive 

performance tests. The primary contributions of this paper are: 

•    A UKF designed for robust 6D pose tracking that fuses 

orientation quaternion input with angular rate measurements 

and position input with linear acceleration measurements. 

•   Experimental results validating that filter performance is 

adequate for surgical applications. 

The rest of this paper is organized as follows. An overview of 

the related work is presented in section II and the approach 

described in this paper is contrasted with previous approaches. 

Section III describes the fusion methods including the 

estimation models. In section IV the experiments are defined, 

results are presented and discussed. The work is concluded in 

section V. 

II. RELATED WORK  

A wealth of research has addressed motion tracking, some of 

which benefit from multi sensor measurements while others 

simply implement single sensors to estimate the pose of the 

tracked object. In an ideal world, a purely inertial tracker would 

have been an appropriate choice, having advantages of nearly 

instantaneous measurement, superb resolution and immunity to 

all forms of interference. However, all the non-idealities such 

as noise, bias, calibration error and gravity compensation error 

are accumulated due to the inevitable integration of inertial 

data, yielding an ever increasing drift. [9] reported a technique 

to track gravity vector in human motion tracking using merely 

accelerometers. A set of triaxial accelerometers was used to 

determine 2D orientation in motions involving small linear 

acceleration. In case of higher accelerations, two sets of triaxial 

accelerometers on a single rigid body were used to cancel 

motion-related linear acceleration. Though the effects of these 

geometric sensor fusion techniques are depicted, there is no 

comparison with truth data.  

Hybrid systems attempt to compensate for the shortcomings 

of each technology by using multiple measurements. Numerous 

approaches have been introduced for motion tracking and 

registration in augmented reality applications that have tried to 

compensate the drift by using the so called nine-axis inertial 

sensor modules, containing three orthogonally mounted triads 

of angular rate sensors, accelerometers, and magnetometers. 

Foxlin et al. [10] describe a commercial nine-axis sensing 

systems designed for head tracking applications. Sensor fusion 

is performed using a complementary separate-bias Kalman 

filter (KF). Drift correction is described as only being 

performed during stationary periods when it is assumed 

accelerometers are sensing only gravitational acceleration. 

Thus, the described algorithm requires that the sensors stop 

moving in order to correct inertial drift errors. More recently, 

Foxlin et al. [11] developed a 6DOF tracking system with a 

similar orientation tracking system aided by ultrasonic time-of-

flight range measurements of a constellation of wireless 

transponder beacons. For real-time estimation of rigid body 

orientation using the Magnetic, Angular Rate, and Gravity 

(MARG) sensors, Bachmann [12] proposed a non-optimal 

quaternion-based complementary filter for human body 

tracking. Extensions to this work and the development of an 

optimal filter designed for human posture tracking applications 

are described in [13] and [14]. A Gauss–Newton iteration 

method is used to preprocess accelerometer and magnetometer 

data to produce quaternion input to the EKF. As it is mentioned 

by the authors, the filter is not applicable where accelerations 

due to forces other than gravity are present for indefinite 

periods. The comparison of the filter orientation estimates with 

truth data obtained from a rotary tilt table showed a static 

accuracy of 2° and a dynamic accuracy of 9°. Kraft [15] 

describes a quaternion-based UKF for real-time estimation of 

rigid-body orientation MARG sensors. Simulation results 

demonstrate the general validity of the described filter. 
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Performance tests of the filter with real measurements are 

mentioned, but not shown or quantified. An adaptive filter is 

proposed in [16] to estimate the external accelerations and to 

correct them. Ren et al [17] propose a two-stage sensor fusion 

process for orientation tracking of handheld surgical 

instruments with MARG sensors. Experiments validate the 

designed KF for small clinical motion and a small rotational 

perturbation. Another two-stage Kalman filter was used by [18] 

in a more application-specific that consists of an orientation 

estimation step by means of the angular rate measurements and 

two correction stages to correct the estimated orientation using 

the acceleration and magnetic field data. While the two-stage 

MARG sensor approaches satisfy the specified accuracy 

requirement of 1° and are free of line of sight constraints, the 

magnetic field distortion can affect the estimation accuracy. 

Others have attempted to fuse vision and inertial tracking 

systems to increase sampling frequency, improve accuracy and 

add to the robustness. You et al. [19] integrated a natural-feature 

vision system with three gyro sensors to increase the robustness 

of vision tracking that provides 3DOF orientation tracking for 

augmented reality registration. Visual and gyro data were fused 

using an EKF. This approach was subsequently employed in 

[20] to perform six-degree-of-freedom object pose tracking. 

Using only gyro data partially simplified the problem. The 

experimental results were quite promising in a 2D image plane, 

but not yet verified in 3D cases. [21] proposed a KF that 

combines vision tracking and inertial measurements to track a 

tool. An IMU sampling at 100 Hz is attached to the tool whose 

tip is detected by four cameras that provide pose estimation at 

20 Hz. The authors conclude that using 4 cameras instead of the 

typical stereo camera vision systems reduces the pose 

estimation error and integrating vision system with inertial 

navigation system allows video tracking in lower sampling. 

Figures show the general validity of the conclusion but the 

errors are not quantified. [22] used an EKF to fuse marker-

based vision tacking and inertial measurement. Unlike the work 

presented in this paper, the filter is not singularity-free due to 

the use of Euler angles to represent orientation. The difference 

between the EKF estimations and vision tracking measurements 

are reported to be in the order of centimeters in experimental 

tests while no ground truth comparison is performed.  

Active magnetic trackers have been a popular means of 

tracking in virtual and augmented reality for many years [23]. 

Even though using magnetic sensors eliminates line-of-sight 

requirements, they suffer from the susceptibility to distortions 

of the EM field when placed in close proximity to 

ferromagnetic objects. [24] proposed a method to decrease the 

field distortion error by calibrating an electromagnetic tracking 

system (EMTS) in situ with measurements from an optical 

tracking system.  In this method the EMTS and OTS reference 

systems are registered once with a calibration procedure, and 

the pre-computed electromagnetic field distortion correction is 

then applied to all the subsequent EMTS measurements. This 

method can compensate for magnetic field distortions, but any 

change in the arrangement of ferromagnetic objects in tracking 

system surrounding will cause calibration error unless a new 

calibration procedure is performed. Vaccarella et al [25] used 

an optical/EMTS fusion. Compensation for short marker 

occlusion was performed in a sampling rate of 10 Hz. Even 

though the proposed algorithm increases the accuracy of the 

electromagnetic tracking system in the presence of magnetic 

field distortion, the susceptibility to distortions of the EM field 

still remains. 

Some work has attempted to lessen the latencies and 

compensate short marker occlusions of optical tracking systems 

by implementing inertial sensors. In dynamic registration in 

augmented reality applications, Azuma and Bishop [4] have 

used inertial data from accelerometers and angular rate sensors 

to reduce dynamic errors caused by the end-to-end latency in 

the position and orientation estimates produced by an outside-

in marker based optical tracking system. They have used a 

predictive pose tracking EKF that guesses where the user’s head 

will be in the future and this has resulted in errors 2-3 times 

lower than prediction without inertial sensors and 5-10 times 

lower than using no prediction at all. To compensate for marker 

occlusion of optical tracking systems, position measurements 

of individual 3D-markers (tight coupling) at 55Hz were 

combined by acceleration and angular rate measurements at 

500Hz using an EKF by [26]. Errors are sub millimeter as far 

as one marker is visible. The error reaches 150 mm when all 

markers are occluded for 3s in experiments. Extension to this 

work was presented in [27] using an ultra-light coupling 

algorithm in which measurements from each camera is 

imported into the filter individually to account for cases where 

a marker is visible to a camera and not to the others. Another 

EKF based optical-inertial tracking system was introduced by 

[28] for a servo-controlled handheld tool in a computer-assisted 

surgery system. To reduce the latencies marker positions are 

used directly in the data fusion algorithm (tightly-coupled). To 

test the performance of the filter the estimation is compared 

with the measurements of a resolver in linear motions. The 

errors are not quantified but the results of experiments show the 

ability of the fusion system to follow the target at an estimation 

frequency of 250 Hz. 

In contrast with the work described above, this paper presents 

a filter algorithm that is specifically designed for full 6d motion 

tracking that meets the accuracy requirements of neurosurgery 

applications. Not being affected by interferences such as 

magnetic field distortion makes the tracking system a practical 

choice for operating rooms. The algorithm is singularity-free, 

computationally efficient for real-time implementations and 

able to achieve substantially higher sampling frequencies 

compared to commercial optical tracking systems. 

III. SENSOR FUSION METHOD 

The Kalman Filter and its extensions have been well 

investigated in the literature and here only the main concepts 

are reviewed. In Appendix I a semi-algorithmic description of 

the implemented UKF is available. 

A. The Kalman filter and its extensions 

Originally developed for systems assumed to be represented 

with a linear state-space model, the Kalman algorithm is an 

optimal state estimator of discrete-time controlled process from 
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measurements corrupted by normally distributed white noise. 

The EKF extends the use of the algorithm to systems with non-

linear process and measurement models by linearizing the 

models about the current mean and covariance. A fundamental 

flaw of the EKF is that the distributions of random variables are 

no longer normal after undergoing their respective nonlinear 

transformations and EKF only approximates the optimality of 

Bayes’ rule by linearization. From the intuition that it is easier 

to approximate a probability distribution than to approximate 

an arbitrary nonlinear transformation, Julier and Uhlmann 

[6][7] introduced the unscented transformation (UT) for 

probabilistic inference. Eliminating the need of derivation and 

evaluation of Jacobian matrices, the UT-based unscented 

Kalman filter preserves the normal distributions throughout the 

non-linear transformations and partially incorporates 

contributions of higher order information into the estimates.  

Among several discrete-time versions of KF the predictor-

corrector version seems to be the most commonly used. Given 

a process that is governed by a non-linear (linear in case of 

classical KF) stochastic difference equation: 

  𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) (1) 

 𝑧𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘) (2) 

 

where the non-linear function f relates the state 𝑥 and the input 

u at time step k to the state at the current time step k+1 and the 

non-linear function h relates the state and the input to the 

measurement 𝑧. The random variables 𝑤𝑘 and 𝑣𝑘 represent the 

process and measurement noise that will be assumed to be 

additive here. An a posteriori state estimate is computed as a 

linear combination of an a priori estimate and a weighted 

difference between an actual measurement and a measurement 

prediction. Classical, Extended and Unscented Kalman filter all 

follow this underlying scheme, yet they do so in a different 

manner. The UKF addresses the non-linear function 

approximation issues of the EKF through a fundamentally 

different approach. It captures the 1st and 2nd order statistics of 

a random variable that undergoes a non-linear transformation 

by a minimal set of specifically chosen sample points called 

sigma points. The sigma points are propagated through the non-

linear function (i.e. no linearization is used) to generate a 

transformed sigma points set. The posterior statistics are found 

by calculating weighted sample mean and covariance of the 

transferred sigma points. A summary of the used UKF 

algorithm is presented at Appendix I. For a more detailed 

description see [29].  

Often in fast pose estimation systems it is desirable to estimate 

where the object will be in the next step instead of knowing 

where it is at the moment. This would allow compensating for 

the possible delays introduced by other systems involved such 

as robots. In the more common KF the a posteriori state estimate 

𝑥̂𝑘 is calculated from the measurement 𝑧𝑘. We instead have 

implemented a predictor-type KF that receives the current 

measurement 𝑧𝑘 and estimates the state for the next step 𝑥̂𝑘+1. 

Note that due to presence of a one-step delay between the 

measurement and the estimation, the performance of the 

predictor-type KF is expected to be slightly inferior to that of 

the normal one. The changes required for this modification in 

the UKF are explained in Appendix I. 

 
Fig. 1. The reference frames involved in the fusion system 

B. Sensor models 

The measurements are from multiple sensing modalities that 

use the following three reference frames:  

 World reference frame W: The OTS origin coordinate system 

fixed to the optical sensor and therefore is static and can be 

assumed as the world reference frame. 

 Body reference frame B: The OTS dynamic coordinate 

system fixed to tracked object and defined by the optical 

markers. 

 Inertial reference frame I: the coordinate system in which the 

IMU provides its measurements and is fixed to tracked object. 

The OTS reports the pose of the reference frame B with 

respect to its origin coordinate system that is considered as the 

world reference frame W (Fig. 1). Since the measurements of 

the sensors need to be taken into a single coordinate system for 

the fusion, the transformation 𝑹𝐼
𝐵 between the inertial reference 

frame I and the body reference frame B is needed. To find 𝑹𝐼
𝐵 a 

method based on rotation differences explained in [32] was 

used. The markers and the IMU are rigidly fixed to the sensor 

module, therefore 𝑹𝐼
𝐵 is constant and can be calculated only 

once. The IMU measurements are taken to the body reference 

frame before feeding them to the filter. To simplify the 

notations, here we consider the IMU measurements after the 

transformation to B reference frame. 

In our configuration the optical tracking system is considered 

as the true signal (ground truth), providing accurate 

measurements (10 times more accurate than our requirement) 

of the pose of the rigid body defined by the optical markers. A 

time delay due to computations is inherent to all loosely 

coupled tracking solutions. Implementing a tightly-coupled 

approach that feeds the filter with position measurements of 

each marker, may reduce the latencies [26]. However in our 

experimental set the latency of the OTS (approximately 4ms for 

4 markers as reported by the manufacturer) was mainly 

dominated by the communication delays and therefore 

acquiring marker position would not cause a significant 

difference. Since the specific latency is relatively small it can 

be ignored. However, if the latency is significant, care must be 

taken when fusing these lagged data with the current estimate 

of the state in the measurement update step of the KF [8]. The 

IMU as well is assumed to measure without latencies. 

The accelerometer and the gyroscope are modeled as: 

  𝒂̃𝐵(𝑘) = 𝒂̅𝐵(𝑘) + 𝒂𝑏
𝐵(𝑘) + 𝒂𝑛

𝐵(𝑘) + 𝒈𝐵(𝑘) (3) 

 𝝎̃𝐵(𝑘) = 𝝎̅𝐵(𝑘) + 𝝎𝑏
𝐵(𝑘) + 𝝎𝑛

𝐵(𝑘) (4) 
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where 𝒂̃𝐵(𝑘) and 𝝎̃𝐵(𝑘) are sensor measurements, 𝒂̅𝐵(𝑘) and 

𝝎̅𝐵(𝑘) are the true values, 𝒂𝑏
𝐵(𝑘) and 𝝎𝑏

𝐵(𝑘) are sensor biases, 

𝒂𝑛
𝐵(𝑘) and 𝝎𝑛

𝐵(𝑘) are measurement noise terms and 𝒈𝐵(𝑘) is 

the gravitational acceleration, all measured in Body reference 

frame. The OTS measurements were modeled simply with 

additive noise terms. 

C. Process and measurement models     

The output of the measurement system is a set of spatial vectors, 

measured with respect to sensor reference frame. Given these 

data, the filter computes an estimate of the system state 

vector 𝒙: 

 𝒙 =  [ 𝒑𝑊    𝒗𝑊    𝒂𝑏
𝐵   𝒒   𝝎𝑏

𝐵] (5) 

where 𝒑𝑊 = [𝑥, 𝑦, 𝑧] and 𝒗𝑊 = [𝑣𝑥, 𝑣𝑦 , 𝑣𝑧] represent vectors of 

position and velocity along the world reference frame and 

 𝒂𝑏
𝐵 = [𝑎𝑏𝑥 , 𝑎𝑏𝑦 , 𝑎𝑏𝑧] and 𝝎𝑏

𝐵 = [𝜔𝑏𝑥 , 𝜔𝑏𝑦 , 𝜔𝑏𝑧] are vectors of 

IMU acceleration and angular rate biases along the body 

reference frame. 𝒒 = [𝑞0, 𝑞1, 𝑞2, 𝑞3] is the orientation 

quaternion. The system state vector therefore has 16 

components. The body’s orientation is represented by a unit 

quaternion. Quaternions offer a singularity-free description of 

orientation and do not suffer from Gimbal lock as opposed to 

Euler angles. They are more compact compared to rotation 

matrices and thereby are more computationally efficient. The 

set of unit quaternions i.e. a quaternions of norm one, 

constitutes a unit sphere in four-dimensional space. The three 

remaining degrees of freedom after applying unity constraint 

are enough to represent any rotation in 3D space.  

Knowledge of the state allows theoretical prediction of the 

future (and prior) dynamics and outputs of the deterministic 

system in the absence of noise. The continuous-time kinematic 

equations that govern the state vector are:  

 𝒑̇𝑤 =   𝒗𝑤 (6) 

 
𝒗̇𝑤 =   𝑹𝐵

𝑤(𝒂̃𝐵 − 𝒂𝑏
𝐵)

− 𝒈𝑤 
(7) 

 
𝒒̇𝑤 =   

1

2
𝒒𝑤⨂(𝝎̃𝐵

− 𝝎𝑏
𝐵) 

(8) 

 𝒂̇𝑏
𝐵 =   𝒘𝑎𝑏

 (9) 

 𝝎̇𝑏
𝐵 =   𝒘𝝎𝑏

 (10) 

where vectors wab
 and 𝑤𝝎𝑏

 are zero mean Gaussian variables 

and ⨂  represents quaternion multiplication. For a thorough 

description of quaternion algebra refer to [31]. Since the vector 

of the gravitational field 𝒈 is constant in the world reference 

frame, by converting the acceleration measurements from body 

to world reference frame, gravity can be removed from the 

measured accelerations. This is performed in the process model 

(7) where 𝒈𝑤 is the gravitational acceleration vector in the 

world reference frame and 𝑹𝐵
𝑤 is the direction cosine matrix 

(DCM), a nonlinear function of the current orientation unit 

quaternion that transforms vectors from body reference frame 

to the world reference frame given by: 

 𝑹𝐵
𝑤

= 2 [

0.5 − 𝑞2
2 − 𝑞3

2 𝑞1𝑞2 − 𝑞0𝑞3 𝑞1𝑞3 + 𝑞0𝑞2

𝑞1𝑞2 + 𝑞0𝑞3 0.5 − 𝑞1
2 − 𝑞3

2 𝑞2𝑞3 − 𝑞0𝑞1

𝑞1𝑞3 − 𝑞0𝑞2 𝑞2𝑞3 + 𝑞0𝑞1 0.5 − 𝑞1
2 − 𝑞2

2

] 
(11

) 

Equation (7) is a nonlinear function of the state variables 𝒒 and 

𝒂𝑏
𝐵. The translation discrete time-updates are calculated by the 

following simple second order Euler update: 

 𝒑𝑘+1
𝑤

= 𝒑𝑘
𝑤 + 𝒑̇𝑘

𝑤 . 𝑑𝑡

+
1

2
𝒗̇𝑘

𝑤 . 𝑑𝑡2 

(12) 

 
𝒗𝑘+1

𝑤 = 𝒗𝑘
𝑤 + 𝒗̇𝑘

𝑤 . 𝑑𝑡 (13) 

 𝒂𝑏𝑘+1

𝐵 = 𝒂𝑏𝑘

𝐵  (14) 

where 𝑑𝑡 is the length of the time interval. 𝐩̇k
w and 𝐯̇k

ware 

calculated using (6) and (7). The accelerometer and gyroscope 

measurements are used as the inputs of the filter. 

The discrete quaternion propagation is described by a first order 

update equation i.e. constant angular velocity considering that 

a rotation by 𝒒1 followed by rotation by 𝒒2 is equivalent to a 

rotation by 𝒒2⨂𝒒1. The update equations therefore are: 

 𝒒𝑘+1 = 𝒒𝑘⨂𝒒𝑑 (15) 

Having the input 𝝎𝑘
𝑤and the length 𝑑𝑡 of the time interval, the 

differential rotation during this interval 𝒒𝑑 is defined as: 

 
𝒒𝑑 = [cos

𝛼𝑑

2
  , 𝒆𝑑 sin

𝛼𝑑

2
] (16) 

where 𝛼𝑑 and an axis 𝒆𝑑 are angle and axis of rotation: 

 𝛼𝑑 =  |𝝎𝑘
𝑤|. 𝑑𝑡 (17) 

 𝒆𝑑 =
𝝎𝑘

𝑤

|𝝎𝑘
𝑤|

 (18) 

|𝝎𝑘
𝑤| is the total angular velocity in rad/s. The measurement 

model projects the measurement data onto the state estimate and 

describes the influence of a random measurement noise on the 

measured value. With the specific defined state vector, a simple 

linear model can be used as the measurement model for the 

implemented sensors: 

 𝒛𝑝𝑘
=  𝒑𝑘 + 𝒗𝑝𝑘

 (19) 

 𝒛𝑞𝑘
=  𝒒𝑘 + 𝒗𝑞𝑘

 (20) 

where 𝒗𝑝𝑘
 and 𝒗𝑞𝑘

 are the stochastic noise terms for the OTS 

measurements of position and orientation.  

D. Noise covariances 

The process noise covariance matrix 𝑸𝑘 that represents the 

uncertainty of the system state estimate is defined by: 

 𝑸𝑘 = 𝐸[𝒘𝑘𝒘𝑘
𝑇] (21) 

 𝒘𝑘 = [𝒘𝑝𝑘
, 𝒘𝑣𝑘

, 𝒘𝑎𝑏𝑘
, 𝒘𝑞𝑘

, 𝒘𝜔𝑏𝑘
] (22) 
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where E is the expectation operator and 𝒘𝑘 is the discrete 

process noise vector of (22). Even though there is no necessary 

condition on diagonality of 𝑸𝑘, it is a standard assumption for 

practical purposes to set it as a diagonal matrix. However, the 

unity constraint on quaternions makes the quaternion 

components of the state vector dependent and therefore the 

process noise covariance matrix will not be accurately defined 

by a diagonal 4 by 4 matrix. Since the orientation component of 

the state vector has in fact three degrees of freedom the 

corresponding process noise can be described with a three-

dimensional noise vector 𝒘𝑞𝑘
. The resulting 𝑸𝑘 is a 15-

dimensional diagonal matrix. The level of “trust” on the 

accuracy of the measurements is represented by measurement 

noise covariance matrix 𝑹𝑘 defined as: 

 𝑹𝑘 = 𝐸[𝒗𝑘𝒗𝑘
𝑇] (23) 

 𝒗𝑘 = [𝒗𝑝𝑘
, 𝒗𝑞𝑘

] (24) 

The component that represents the measurement noise on 

orientation 𝒗𝑞𝑘
 is defined as a 3-dimensional vector for the 

same reason that was described for process noise variable. 

Noise characteristics of the position measurements were 

directly determined from various static acquisitions. For the 

orientation component the quaternion measurements were first 

converted to rotation vector and the 3-dimensional noise 

variance was then calculated. 

A subtlety of the filter is the mismatch of the dimension of 

noises matrices and state vector. In all algebraic operations the 

quaternion part must be considered separately. As an example 

in the calculation of sigma points where a set of disturbed state 

vectors are generated by adding noise to the state, the noise 

corresponding to the orientation quaternion is first converted to 

a quaternion and then the state vector is quaternion-multiplied 

by the generated quaternion. Another subtlety is that when the 

mean of the transformed sigma point is calculated it must be 

taken into account that orientations are periodic and an 

arithmetic mean may achieve wrong results. We have 

implemented the intrinsic gradient descent algorithm that is 

described in [32] to find the mean value of the quaternion sets. 

IV. EXPERIMENTAL RESULTS 

The performance of the developed fusion algorithm was put 

to test by acquiring real data from an experimental setup 

consisting of:  

• An optical tracking system  

• A sensor module: the board to which the inertial 

measurement unit and 4 active optical markers were fixed  

• A computer running Linux Ubuntu operating system, in 

charge of data storage, implementing the packages that we 

developed in C++ for Robotic Operating System (ROS).  

The OTS is Optotrak Certus (Northern Digital - Canada) that 

uses 3 charge-coupled devices (CCD) to obtain 3D position of 

infrared light emitting diodes within a working volume.  The 

device provides 6DOF pose measurement in case of having a 

rigid body defined by at least 3 markers. The tracking frame 

rate depends on the number of markers. For instance in case of 

having 4 markers the maximum reachable frequency of tracking 

is claimed to be about 850 Hz. However in practice the 

maximum achieved real-time frequency for 4 markers was 

300Hz. The IMU is Inertial Two sensor module from ATMEL 

(Atmel, San Jose, USA). It delivers a nine degree-of-freedom 

sensor platform including a 3-axis accelerometer (KXTF9-1026 

from Kionix), a 3-axis compass (HMC5883L from Honeywell) 

and a 3-axis gyroscope (IMU-3000 from InvenSense). The 

sensors provide various sampling ranges (max: 2000 °/s for 

Gyro and 8 g for accelerometer) and frequencies (max: 2100 Hz 

for Gyro and 800 Hz for accelerometer). However, the final 

sampling frequency depends on the performance of the 

microcontroller board and the quality of communications. The 

IMU is mounted on the evaluation board (UC3-A3 Xplained) 

with Atmel AT32UC3A3256 32-bit AVR microcontroller. The 

IMU and 4 optical markers are rigidly connected and fixed to 

the sensor module as it can be seen in Fig. 2. Software packages 

for data acquisition from the sensors were developed in C++ 

implementing the modular architecture of ROS framework. A 

firmware was written for the IMU’s microcontroller for serial 

communication. The fusion algorithm was developed in 

MATLAB R2010b, and it was run offline by having the 

recorded data acquisitions fed to it. 

The performed experiments fall into two categories: 

frequency augmentation and marker occlusion. In both tests the 

sensor fusion algorithm estimates the sensor module’s pose 

while the OTS measurements are not available due to either a 

lower sampling frequency (frequency augmentation test) or 

temporary loss of marker sights (marker occlusion test). In each 

category, the experiments were performed separately for 

orientation and position estimation. The sensor module was 

moved by hand in space. The details of each experiment 

category are described next. 

 
Fig. 2. The optical tracking system and the sensor module used for the 
experiments 

A. Frequency Augmentation Experiments 

Existing commercial optical tracking systems used in 

computer-assisted surgery have a bandwidth of 20–60 Hz. In 

order to evaluate the performance of the fusion algorithm for 

frequency augmentation purposes, we fed the algorithm with a 

down-sampled 20Hz OTS measurement and a 200Hz IMU 

measurement. The frequency of the estimated pose by the 

fusion algorithm is equal to that of the faster input i.e. the 200Hz 

IMU signal. Since between the updates, the OTS measurement 

is not used by the fusion algorithm, the accuracy of the pose 

estimation can be found by comparing the estimated pose with 

the ground truth signal that is the OTS measurement at 200Hz. 

We define the frequency augmentation (FA) ratio as the ratio of 

the fusion algorithm’s output frequency to that of the OTS. For 

example having an FA ratio of 10 means that for each 10 

estimated samples from the IMU, 1 sample is acquired from the 

OTS that “corrects” the drift caused by estimation from the 
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IMU. The lower end of the frequency range of OTS devices (20 

Hz) was chosen since it represents the worst case. The higher 

the FA ratio is the longer the IMU estimation interval will be, 

which results in higher drifts. The architecture of the frequency 

augmentation test is shown in Fig. 3. 

 
Fig. 3. Frequency augmentation experiment scheme 

In position estimation experiments the sensor module was 

moved for 1 minute in a circular trajectory (xy plane in world 

reference frame) with an approximate diameter of 30cm. The 

orientation experiments involved a periodic rotation of about 60 

degrees around y axis in body reference frame. In motion 

tracking systems the estimation error depends on dynamics of 

the motion. The higher the acceleration and velocity of the 

object the greater will be the estimation error.  [33] reports the 

maximum velocity of patient’s head movement during awake 

brain surgery to be 60 mm/s. To account for cases involving 

higher velocities, the position experiments were divided in two 

velocity ranges with RMS linear velocity ranges of 35-75mm/s 

and 100-150mm/s. For orientation experiments a single angular 

rate set ranging 40°/s to 60°/s RMS was performed. For each 

set of experiments 12 repetitions were recorded. The estimation 

error was measured at each step by comparing the estimated 

pose with the real pose (OTS measurement). The average of the 

12 root mean square errors (RMSE) of the 12 repetitions for 

each experiment set was computed as the performance of the 

fusion algorithm.  
TABLE I SUMMARY OF THE PERFORMED EXPERIMENTS. P AND O STAND FOR 

POSITION AND ORIENTATION.  

 Sensor 
Frequency (Hz) 

Velocity Range 
(RMS) 

Repetitions 
OTS IMU 

Frequency 
Augmentation 

P 
20 200 35-75 mm/s 12 

20 200 100-150 mm/s 12 

O 20 200 40-60 °/s 12 

Marker 
Occlusion 

P 100 200 35-70 mm/s 12 

O 100 200 8-12 °/s 12 

B.  Marker occlusion Experiments 

During marker occlusion, the filter estimates the pose from 

IMU measurements and the error due to noises and discrete 

integration is accumulated. The longer the occlusion time the 

greater will be the error. Marker occlusion experiments evaluate 

the performance of the algorithm when it is being used to 

compensate for temporary loss of marker visibility. In these 

experiments the sensor module was moved/rotated nonstop in 

random trajectories with various velocities for 15s and data 

were acquired from both sensors at 200Hz. To be able to 

measure the estimation error during the occlusion, the markers 

were not covered during the acquisitions. Instead, the 

occlusions were simulated by not feeding the OTS 

measurements to the fusion algorithm during the occlusion 

periods. As shown in Fig. 4, an occlusion window lasting 200 

samples was applied N times (N = 14), shifting it over the entire 

acquisition. 12 acquisitions were performed and 14 occlusions 

were simulated per acquisition resulting in a total of 168 

occlusions. To evaluate the performance of the algorithm as 

function of the occlusion duration, the errors during each 

occlusion is recorded and the root mean square error (RMSE) 

of all the 168 occlusions is calculated as a function of the 

sample progression from the beginning of the occlusion 

window as: 

 

𝑅𝑀𝑆𝐸𝑀𝑂(𝑘) = √
1

12𝑁
∑(𝑥𝑘

𝑖 − 𝑥𝑘
𝑖 )

2
168 

𝑖=1

 (25) 

where k is the sample number (0-200). 𝑥̂𝑘
𝑖  and 𝑥𝑘

𝑖  are the 

estimated and real pose of occlusion I at sample k. Details of 

the experiments are summarized in Table I. 

 
Fig. 4. In marker occlusion experiments a fixed occlusion window is shifted 

over the signal for N times and the estimation error during each occlusion is 

recorded. 

C. Results of the Frequency Augmentation Experiments 

Fig. 5 shows the estimated and real (reference) position 

trajectories of the sensor module in a test acquisition. It can be 

seen from the enlarged part of the drawing that the estimation 

has a saw-tooth shape since the estimated trajectory drifts away 

from the reference trajectory until the OTS sample corrects the 

drift. Clearly the sensor fusion system is capable of tracking the 

sensor module. 5.5s of estimated and reference orientations 

around axis y along with the estimation error in an FA 

orientation estimation test is shown in Fig. 6. The error signal 

shows the saw-tooth drift correction phenomenon in a clearer 

manner. Furthermore, it can be observed that the maximum 

errors (tips of the saw-tooth) have a sine-shaped trend that 

follows the trend of the derivative of the estimated orientation. 

In fact, the Kruskal-Wallis test on the population of the RMSE 

values of the lower velocity set and the population of the higher 

velocity set yielded a p value of 0.003 confirming the increase 

of the RMS errors with the increase of velocity. The results are 

summarized in Table II. The reported velocities are the ranges 

of the 12 acquisitions’ RMS velocity. From the experiments we 

observe that the proposed system is able to yield pose 

estimation at 200Hz with a maximum RMS errors of 0.57mm 

and 0.43° using 20Hz optical measurement and 200Hz Inertial 

measurement. The corresponding 3D position tracking 

accuracy is 0.37mm for the lower velocity range and 0.75mm 

for the higher velocity range. 
TABLE II FREQUENCY AUGMENTATION RESULTS SUMMARY.  

RMSE OF ESTIMATION ERROR IN FA EXPERIMENTS 

 Velocity range (RMS) RMSE 

Position 
Velocity Range 1 

x 35-50 mm/s 0.17mm 

y 55-75 mm/s 0.29mm 
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z 15-20 mm/s 0.16 mm 

Position 
Velocity Range 2 

x 100-130 mm/s 0.42mm 

y 100-150 mm/s 0.57mm 

z 20-35 mm/s 0.22mm 

Orientation 

x 2-8 °/s 0.29 ° 

y 10-20 °/s 0.32 ° 

z 50-60 °/s 0.43 ° 

 
Fig. 5. Real position (dashed line) and the estimated position (solid line) for an 

acquisition with FA ratio of 10. Lower figure shows an enlarged part of the 

upper one. 

 
Fig. 6.   Up: Orientation estimation using 20Hz OTS and 200Hz Gyroscope 

measurements. The absolute error between the estimated orientation and 

reference (OTS at 200Hz) is shown in the lower plot. 

 
Fig. 7. Position estimation using inertial measurements during 2 simulated 

marker occlusions. Vertical bars represent the availability of OTS 
measurement. Lower plots shows the estimation error at each step for Fusion 

and no IMU estimations. 

D. Marker Occlusion Results 

Fig. 7 depicts how the fusion system responds to marker 

occlusion. In the example acquisition shown, two occlusions 

with durations of 80 and 150 samples happen. As it can be seen 

the object has been moved about 130mm and returned to the 

first position with an average velocity of approximately 

45mm/s. The vertical lines represent the availability of OTS 

measurements. The middle plot in Fig. 7 shows that during the 

occlusions the estimation error increases and gets corrected as 

soon as OTS measurement revives. To show the improvement 

achieved by fusing the inertial measurement a third signal has 

been added to the plot that is position estimated by the UKF 

with a second-order model using only the last available OTS 

measurement and no IMU input. As it can be seen the error 

reaches 10mm in the second occlusion while for fusion the error 

stays below 1mm. This example acquisition however, is from a 

smooth motion. In case of highly dynamic and random motions 

the errors can be higher. To evaluate the performance of the 

system the RMS error of 168 marker occlusions during random 

motions are plotted as a function of duration of occlusion in Fig. 

8. It can be observed that the error increases by extending the 

duration of markers occlusion reaching a maximum of 0.88° 

and 2.78mm at the end of 200 samples of estimation. The 

position estimation error stays under 1mm for a maximum of 

60 samples while the error of the orientation does not exceed 

the 1° limit during the occlusion period. The user must be 

informed if the duration of the occlusion passes the threshold 

for the required accuracy. 



 9 

 
Fig. 8.  RMSE of position estimation error along axis y (Left) and orientation 

estimation error around axis y for 54 simulated occlusions 

V. CONCLUSION 

In this work a quaternion based UKF was developed to be used 

as a fusion algorithm for Optical and Inertial motion tracking in 

medical surgery applications. Despite that the problems of 

marker occlusion and frequency augmentation for optical 

tracking systems have been previously addressed by researches, 

the accuracy of those efforts were either insufficient or not 

evaluated. Commercial optical tracking systems used in OR are 

almost all based on passive markers and have a relatively low 

sampling frequency. The presented fusion algorithm employs 

an inertial measurement unit to augment the measurement 

frequency of an optical tracking system, yielding a tracking 

system 10 times faster than the OTS. The accuracy of the 

system was evaluated under extensive experimental tests for 

different ranges of velocities and proved to be below 1mm and 

1° that satisfies requirements of tracking in computer-assisted 

neurosurgery. In addition, the tracking system is robust to brief 

loss of sight of the optical markers, a case in which a purely 

optical system would fail to provide accurate measurements. 

The developed sensor fusion system is based on quaternion 

representation for orientation; an advantage compared the 

common Euler angles that suffer from kinematic singularities. 

In this work the fusion algorithm was used offline, a future work 

will be taking into account the latencies in the fusion algorithm 

and developing a real-time tracking platform. Another future 

development can be studying the frequency of occurring partial 

marker occlusion compared to that of total occlusion in an 

operation. In case of significant difference a tightly coupled 

algorithm can be implemented that can possibly improve the 

estimation accuracy during partial marker occlusion.  

VI. APPENDIX I: UKF ALGORITHM 

This section provides a brief description of the UKF algorithm 

used in the fusion system. The algorithm is based on the 

scaled UKF [29] with a few minor modifications. 

A. Initialization  

In the beginning of the recursive algorithm initial values for 

the state vector 𝒙0 and state covariance matrix 𝑃0 is 

assumed. A typical choice is the first sensor measurements 

for the measured states and zero for the unmeasured ones. 

The initial covariance matrix can be set as an identity 

matrix. 

B. Sigma point generation  

For a random variable 𝒙 of dimension 𝑛 with mean 𝑥̅ and 

covariance 𝑃𝑥𝑥  , 2𝑛 + 1 “scaled sigma points” and their 

corresponding weights are given by: 

𝒳0  = 𝑥̅ 𝑾𝟎
𝒎 =  

𝝀

(𝒏 + 𝝀)
 (26) 

𝒳𝑖  = 𝑥̅ + (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖  
𝑖 = 1, … 𝑛 

𝑾𝟎
𝒄 =  

𝝀

(𝒏+𝝀)
+ (𝟏 − 𝜶𝟐 + 𝜷)   

𝒳𝑖  = 𝑥̅ − (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖 
𝑖 = 𝑛, … 2𝑛 

𝑾𝒊
𝒎 = 𝑾𝒊

𝒄 =  
𝟏

𝟐(𝒏+𝝀)
                     

𝒊 = 𝟏, … 𝟐𝒏 

where (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖 is the 𝑖th row or column of the matrix 

√(𝑛 + 𝜆)𝑃𝑥𝑥. A Cholesky decomposition can be used to 

compute √(𝑛 + 𝜆)𝑃𝑥𝑥 since 𝑃𝑥𝑥  is a symmetric and positive 

definite. 𝜆 is equal to: 

 
𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 

(27) 

Parameters 𝜅, 𝛼 and 𝛽 determine the spread of the sigma 

points around the prior mean [29]. For readability subscript 

k was omitted from the sigma points 𝒳𝑘. 

C. Time-Update equation 

The sigma points are propagated through the process model 

to get the transformed sigma points 𝒴𝑘: 

 𝒴𝑘+1|𝑘 = 𝐴( 𝒳𝑘 , 𝑢𝑘) (28) 

The predicted mean 𝑥̂𝑘
− (a priori estimate) can be computed 

as: 

 
𝑥̂𝑘+1|𝑘

− = ∑ 𝑊𝑖
𝑚 𝒴𝑖 

2𝑛

𝑖=0

 
(29) 

The predicted covariance 𝑃𝑦𝑘
−  is calculated as: 

 

𝑃𝑦𝑘+1
− = ∑ 𝑊𝑖

𝑐(𝒴𝑖,𝑘+1|𝑘 −

2𝑛

𝑖=0

𝑥̂𝑘+1
− )(𝒴𝑖,𝑘+1|𝑘

− 𝑥̂𝑘+1
− )𝑇 

(30) 

D. Measurement-update equation 

In normal UKF the transformed sigma points are propagated 

through the measurement model as:  

 𝒵𝑘+1|𝑘 = 𝐻( 𝒴𝑘+1) (31) 

Since we aim to implement a predictor type KF, we 

propagate the sigma points instead of the transformed set: 

 𝒵𝑘|𝑘 = 𝐻( 𝒳𝑘) (32) 

The predicted observation is calculated as: 

 
𝑧̂𝑘|𝑘

− = ∑ 𝑊𝑖
𝑚𝒵𝑘|𝑘

2𝑛

𝑖=0

 
(33) 

The innovation covariance matrix can be calculated next: 

 
 𝑃𝑧𝑘

= ∑ 𝑊𝑖
𝑐(𝒵𝑘|𝑘 −

2𝑛

𝑖=0

𝑧̂𝑘
−)(𝒵𝑘|𝑘 − 𝑧̂𝑘

−)𝑇 
(34) 

The cross-correlation covariance matrix is: 
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 𝑃𝑥𝑘+1𝑧𝑘
= ∑ 𝑊𝑖

𝑐(𝒴𝑖,𝑘+1|𝑘 −

2𝑛

𝑖=0

𝑥̂𝑘+1
− )(𝒵𝑘|𝑘 − 𝑧̂𝑘

−)𝑇 

(

3

5

) 

 And finally the Kalman gain is calculated as: 

 𝐾𝑘+1 =  𝑃𝑥𝑘+1𝑧𝑘
𝑃𝑧𝑘

−1 (36) 

E. The a posteriori estimates 

 𝑥̂𝑘+1 = 𝑥̂𝑘+1
− + 𝐾𝑘+1(𝑧𝑘 − 𝑧̂𝑘

−) 
(37) 

 𝑃𝑦𝑘+1
= 𝑃𝑦𝑘+1

− − 𝐾𝑘+1 𝑃𝑧𝑘
𝐾𝑘+1

𝑇  (38) 
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