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Abstract—The estimation of signal parameters using quantized
data is a recurrent problem in electrical engineering. As an
example, this includes the estimation of a noisy constant value,
and of the parameters of a sinewave that is its amplitude, initial
record phase and offset. Conventional algorithms, such as the
arithmetic mean, in the case of the estimation of a constant, are
known not to be optimal in the presence of quantization errors.
They provide biased estimates if particular conditions regarding
the quantization process are not met, as it usually happens in
practice. In this paper a quantile–based estimator is presented
that is based on the Gauss–Markov theorem. The general theory
is first described and the estimator is then applied to both DC
and AC input signals with unknown characteristics. By using
simulations and experimental results it is shown that the new
estimator outperforms conventional estimators in both problems,
by removing the estimation bias.

Index Terms—Quantization, estimation, nonlinear estimation
problems, identification, nonlinear quantizers.

I. INTRODUCTION

The estimation of signal parameters based on quantized data
is a problem of general interest in the area of instrumentation
and measurement. Frequently the only available information
about a physical phenomenon lies in the sequence of quan-
tized data obtained through an Analog–to–Digital Converter
(ADC) and on information partially available about the input
sequence. As an example, the estimation of a Direct Current
(DC) value, or of the amplitude and the initial record phase
of an Alternate Current (AC) sequence, fall among such
problems: samples of the input sequence, possibly noisy, are
converted into digital format for further processing, to identify
the needed parameters. As shown in [1]–[5], unless particular
conditions apply, the application of conventional algorithms
such as the arithmetic mean or the Least Square Estimator
(LSE) result in biased estimates. Typically, the estimation bias
depends on the type of identification problem, e.g. DC or AC
type of problem, on the noise Probability Density Function
(PDF) and on the ADC characteristics. If the ADC is perfectly
uniform, theoretical results can be applied to remove the bias
in both the DC and the AC cases, as the quantizer can be
linearized on the average. In practice, however, ADCs are not
uniform. They rather exhibit Integral (INL) and Differential
Nonlinearities (DNL), largely invalidating the hypotheses re-
quired for the application of the theoretical results allowing
simplified signal processing of quantized samples.
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The problem of identifying signal parameters, after noise is
added and quantization is performed, can be seen in the larger
context of the reconstruction of an input signal PDF: in the DC
case the PDF is constant over time, in the AC case it becomes
time–dependent. When estimating the PDF at the input of a
quantizer through the quantized samples, it was proven in [6]
that the following few cases may occur:

• if the hypotheses of the quantization theorem hold true,
then the input PDF can be reconstructed with no errors;

• if the hypotheses of the quantization theorem do not hold
true but the noise is Gaussian with a variance comparable
to the nominal quantization step ∆, then the input PDF
can be reconstructed by using the results of this theorem
with some (negligible) errors;

• in all other cases, the quantization theorem can not be
applied and some other techniques must be used. This
occurs, for instance, when the characteristic function
of the input PDF is not band–limited, when the input
variance is small compared to ∆, or when the quantizer
is not uniform, as it happens frequently in practical cases.

When the third case applies, non–subtractive dithering may
partly relieve from the bias problem, as it smooths the mean
value of the input–output ADC characteristic [4], at the cost
of an increased variance. Alternatively, in solving parametric
estimation problems related to the input PDF, such as the
estimation of the mean of Gaussian noise, a Maximum–
Likelihood Estimator (MLE) can be adopted as in [7]–[12].
However, because of the nonlinearity of the quantizer input–
output characteristics, this results in expressions that can be
treated only by numerical processing with all practical im-
plications: potential convergence problems, numerical tuning
of algorithmic parameters, initialization of the algorithm and
local– instead of global–maxima.

It is shown in this paper that by using some additional infor-
mation, e.g. when the noise PDF is known up to a limited set of
parameters, ADC data can be used to obtain accurate estimates
of unknown parameters, by using linear identification models
applied to suitably pre–distorted output samples. A general
approach following this strategy is presented in [13], where
the fundamental underlying theory of system identification
based on quantized samples, is presented. A similar approach
is followed in this paper where it is shown, both by simulations
and experimental results, how to obtain unbiased parametric
estimation of the ADC input PDF. With respect to [13] the
estimator presented in this paper is based directly on the
Gauss–Markov theorem and does not require the introduction
of a specific procedure leading to the quasi–convex combi-
nation estimator. Moreover, it estimates the error covariance
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matrix by avoiding the iterated calculations associated with the
recursive approach taken in [14]. Experimental results obtained
by using a commercial Data Acquisition System (DAS) prove
the validity of the adopted hypotheses on the simplifying
assumptions taken in this paper. Its validity is also proven
here when the noise standard deviation is small compared to
∆, a typical situation in many cases of practical interest when
using ADCs. The approach is general enough to accommodate
for generic noise PDFs and when nuisance parameters must
be estimated along with the input signal parameter values.

Two typical estimation problems are considered in this
paper:

• DC case: the estimation of a DC value;
• AC case: the estimation of the amplitude, initial record

phase and offset of a sinewave,

when signals are affected by zero–mean Gaussian noise and
quantized by a possibly non–uniform ADC. It is shown that the
presented estimator outperforms the arithmetic mean estimator
in the DC case and the LSE in the AC case, by largely
removing the estimation bias.

This paper is organized as follows. In Section II we in-
troduce the considered system, the associated signals and the
adopted symbol conventions. Section III contains the mathe-
matical analysis supporting the performance of the quantile–
based estimator. It is organized in subsections to address both
DC and AC estimation problems with the same modeling
approach. Montecarlo–based simulation results are presented
in Section IV to validate the derived theory. Section V contains
the description of the experiments done to further prove the
estimator properties under the various assumed constraints,
while Section VI includes comments on the results shown and
limits of the proposed estimation procedure.

II. SIGNALS AND SYSTEMS

In this Section we illustrate the properties of the quantizing
system considered in this paper and the type of input signals
applied at its input. The assumed signal chain is depicted
in Fig. 1. In this figure, x[·; θ] represents a discrete time
deterministic sequence known up to a vector parameter θ
and η a zero–mean noise sequence with a given PDF and
independent outcomes, whose variance might be unknown.
The quantizer Q(·) in Fig. 1 models the effect of the ADC
on the signal. It might be non–uniform, but with L known
transition levels,

Q(·)
x [·; ✓]

⌘[·]
y[·]

Fig. 1. The signal chain considered in this paper.

By assuming L as an even integer, the quantizer output
becomes equal to

yk := −
(
L

2
− 1

)
∆ + k∆, k = 0, . . . , L− 1 (1)

when the input takes values in the interval [Tk, Tk+1), where
Tk is the k–th quantizer transition level. Accordingly, k =
0 and k = L − 1 correspond to the quantizer output being
equal to −(L/2− 1)∆ and L/2∆, respectively. If the transition
levels are unknown, they can be estimated during an initial
system calibration phase. It will be shown in Section V that
the estimator is enough robust to account for uncertainties in
the estimated values of the transition levels.

It is further assumed that N samples of the ADC output
sequence y[·] are collected and processed. Consequently, each
ADC output sample can be modeled as a random variable
taking values in L possible categories with probability deter-
mined by the deterministic input sequence, the noise PDF and
the ADC transition levels.

The additional assumption is made that the quantizer is
never overloaded, that is the input signal varies in the input
range that guarantees the quantization error to be granular. Be-
fore describing the proposed estimator, a motivating example
is given in the next Section.

A. A motivating example

Assume that x[n; θ] = θ1, that is an unknown constant
value. The natural and most widely used estimator of θ1 is
the arithmetic mean estimator

θ̂1 :=
1

N

N−1∑
i=0

y[i]. (2)

If the ADC is uniform and the noise PDF has suitable prop-
erties, e.g. the noise characteristic function is band–limited or
appropriate dithering noise is used, θ̂1 is unbiased. In all other
situations that most frequently apply in practice, e.g. when the
quantizer inside the ADC is non–uniform or when the noise
PDF does not satisfy particular conditions, θ̂1 is biased. As an
example, assume a 12-bit ADC uniform in the range [−1, 1)
and the noise PDF as a zero–mean Gaussian random sequence
with σ = 0.25∆. Under these conditions the bias of (2) is
shown in Fig. 2, when N = 50. Since the expected value of
(2) does not actually depend on N , even by increasing the
number of averaged samples, the bias does not vanish. In the
following, it will be shown how to remove this bias by using an
estimator based on a linear model between data and unknown
parameters.

III. QUANTILE–BASED ESTIMATION

In this Section, at first the main idea behind the proposed
estimator is illustrated using a simple example. Then, the
parametric signal models are defined and the full estimator
is described in the general case.
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Fig. 2. Arithmetic mean estimator. Bias in the estimation of a DC value in
Gaussian noise with σ = 0.25∆.

A. The estimation of a quantized noisy constant

To show the approach taken in this paper to estimate
parametric signals using quantized data, consider the simple
problem of estimating a constant in noise using a single–bit
quantizer, that is a comparator. Thus, assume

x[n] = θ+η[n], y[n] =

{
1 x[n] ≥ 0
0 x[n] < 0

n = 0, . . . , N−1

(3)
where θ is the constant to be identified, η[n] is zero–mean
Gaussian noise, having a known variance σ2 and y[n] is the
sequence of quantized data. Then simple processing shows that
the probability of y[n] being positive is:

p1 := P (y[n] = 1) = P (x[n] ≥ 0) = 1− Φ

(−θ
σ

)
(4)

Two aspects can be highlighted:
• by collecting data from the comparator, the probability

(4) can be estimated by elementary processing;
• when the probability p1 is known, or approximately

known, (4) can be inverted to find a value for θ:

θ̂ = −σΦ−1 (1− p̂1) (5)

where θ̂ is an estimator of θ and p̂1 an estimator of p1. As
an example consider the case θ = 0.1, N = 101, . . . , 104.
By simple counting the number of times that the comparator
outputs equals 1 an estimate of p1 is obtained. Then θ is
estimated as shown in Fig. 3 as a function of N . This approach
can be extended to the case of a multi bit quantizer and to
different signal models, as done in the next Sections.

B. Extension of the proposed approach to a multi bit quantizer

It will be shown that all the estimation problems considered
in this paper can be solved by the application of the Gauss–
Markov theorem. Accordingly, assume that the sequence of
observations X can be linearly related to the unknown param-
eters θ as in the following

X = Hθ +W, (6)

where X = [x1 x2 . . . xN ]T represents a column vec-
tor containing outcomes of the observable variable, θ =
[θ1 θ2 . . . θM ]T , the column vector with the unknown
parameters to be estimated, H is a N×M matrix with known

10
2

10
3

10
4

0.05

0.1

N

θ̂

Fig. 3. Estimate of a constant in noise using (5). Estimator mean value as
a function of the number of samples in 101, . . . , 104: the constant to be
estimated is θ = 0.1, the noise is zero–mean Gaussian with σ = 0.1.

entries and W = [w1 w2 . . . wN ]T , is a column vector
containing outcomes of the noise affecting the observable
variables. Then, if the noise vector is zero–mean, it can be
shown that the Best Linear Unbiased Estimator (BLUE) of θ
is [19]:

θ̂ := (HTΣ−1
X H)−1HTΣ−1

X X, (7)

where ΣX represents the covariance matrix of the noise
vector W . In the next subsections it is shown how to cast
several parametric identification models in the form (6), so
to apply (7) for their solution. The added complexity here
refers to the effect of quantization that correlates outcomes
and distorts input data because of its nonlinear input–output
characteristic. Thus, each problem considered in the following
will be addressed by:

• considering the effect of quantization and showing how
to linearize the relationship between observable data (the
quantized output sequence) and unknown parameters, as
in (6);

• showing that the quantizer output sequence provides
useful information for the unbiased estimation of the
input noise quantiles;

• illustrating how to estimate the noise covariance matrix
required by (7), by using available information provided
by the quantizer;

• using (7) to provide an expression for the estimator in
the considered cases.

In subsections C–H the idea presented in subsection III-A is
extended to comprehend the case of several quantization lev-
els. At first, the considered DC and AC models are presented
in subsection C and then the estimator forms are expressed,
by additionally assuming a Gaussian noise PDF.

C. The DC and AC parametric signal models

In this subsection, the DC and AC data models considered
in the following subsections are presented. Assuming n =
0, . . . , N − 1, the analyzed DC parametric models are:

model 1: y[n] = θ1 + ση[n] + e[n],

model 2: y[n] = θ1 + θ2η[n] + e[n],
(8)



4

where e[·] is the quantization error sequence. While in model 1
the noise standard deviation σ is assumed to be known, in
model 2 this is taken as a second parameter to be estimated.
The identification of a third AC parametric model,

model 3: y[n] = θ0 + θ1x1[n] + θ2x2[n] + ση[n] + e[n],
(9)

is considered, where x1[n], x2[n] are known periodic se-
quences and θi, i = 0, 1, 2, are three parameters to be
identified. The additional assumption for this model is that
sampling is coherent, that is synchronous and such that N
corresponds to an integer number of periods of both x1[·] and
x2[·]. For instance, if x1[n] = cos(ωn) and x2[n] = sin(ωn)
where ω is a known constant, (9) represents the well known
model of the three–parameter sine fit [15]. In the following,
the properties of a quantile–based estimator applied to all these
cases will be illustrated.
D. The ADC as a Source of Ordinal Data

In this subsection, the statistical properties of the sequence
of data output by an ADC are recalled, so to serve as a basis
for the proposal of a quantile–based estimator. As a general
remark, the quantizer inside the ADC maps the input values to
an ordinal scale that admits calculation of the mean value of
the measurement results, as in (2), not without controversy1.
Conversely, generally applicable statistics include the estima-
tion of quantiles that will be applied in the following to remove
the potential incongruences associated with the usage of (2).
In this subsection an analysis is made on the properties of the
information available when solving model 1 through model 3
problem types.

For a given value of θ1 in model 1 and model 2 define, Π =
[p0 . . . pL−1]

T where each pk represents the probability of y[·]
taking the value yk, and C = [c0 . . . cL−1]

T where ck := Npk,
is the average number of occurrences in code bin k when N
samples are collected. Also define, CΠ = [cp0 . . . cpL−1]T

where cpk =
∑k
n=0 pn. Moreover define Ĉ = [ĉ0 . . . ĉL−1]

T

as the random vector containing the experimental number of
occurrences in each code bin and ĈΠ = [ĉp0 . . . ĉpL−1]T

where ĉpk :=
∑k
n=0 ĉn.

Then Ĉ is a random variable having a multinomial distri-
bution with parameters N and Π for which [16]:

E(Ĉ) =

 Np0

...
NpL−1

 (10)

and whose covariance matrix is [16]:

ΣĈ =


Np0(1− p0) −Np0p1 . . . −Np0pL−1

−Np0p1 Np1(1− p1) . . . −Np1pL−1

...
...

...
...

−Np0pL−1 −Np1pL−1 . . . NpL−1pL−1


(11)

1As pointed out by [17], even Stevens makes a practical concession to
the usage of otherwise not admissible statistics of ordered data [18]: In
the strictest propriety the ordinary statistics involving means and standard
deviations ought not to be used with these (ordinal) scales, for these statistics
imply a knowledge of something more than the relative rank–order of data.
On the other hand, for this ’illegal’ statisticizing there can be invoked a kind
of pragmatic sanction: In numerous instances it leads to fruitful results.

Then the maximum likelihood estimator of pk is,

p̂k =
ĉk
N

k = 0, . . . , L− 1 (12)

and Π̂ = [p̂0 . . . p̂L−1]T is an unbiased estimator of Π with
covariance matrix ΣΠ̂ = 1

N2 ΣĈ .
Observe that regardless of the true value of the sequence

generating a given quantized output sequence, when the prob-
lem is a static one, the only available information at the
quantizer output can be modeled as done in this subsection.
Thus, the open problem remains that of exploiting efficiently
these data to extract all possible information about the un-
known parameter. Moreover, since off–diagonal entries in the
covariance matrix ΣĈ are not null, it is expected that the
simple mean estimator of θ1 will not yield optimal statistical
performance, as it ignores both that different values have
different probability of occurrence and the mutual information
carried by different values of the quantized sequence. Alter-
native estimators can be employed as shown in the following.

E. Model 1

By assuming that the quantizer is not overloaded we have:

Fy(yk) :=P (y[n] ≤ yk) = P (θ1 + ση[n] ≤ Tk)

=F

(
Tk − θ1

σ

)
=

k−1∑
n=0

pn := cpk, k = 1, . . . , L− 1

(13)

with F (·) as the noise cumulative distribution function, from
which we derive

Tk = F−1
y (cpk) = θ1 +σF−1(cpk) k = 1, . . . , L−1. (14)

Since cpk can be estimated using experimental data, (14) is
the key equation for the proposal of a quantile–based estimator
[13]. While a mathematical form of the estimator could be
derived by resorting to the case of a generic noise PDF, the
following subsection adds the hypothesis of Gaussian noise
to reduce the level of abstraction and to increase usability of
results. The approach taken in the next subsection under the
assumption of model 1 will be then extended in a similar way
to comprehend also model 2 and model 3.

F. Gaussian case

In the Gaussian case, we have F (x) = Φ (x), where Φ(·)
is the cumulative distribution function of a standard Gaussian
random variable, so that from (14)

θ1 = Tk − σΦ−1(cpk) k = 1, . . . , L− 1. (15)

that shows that there is a linear relationship between suitably
pre–distorted cumulative probabilities defined in (13), and the
constant input θ1. To derive an expression for the estimator of
θ1, cpk will be substituted by ĉpk. Accordingly, define L =
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{k1, . . . , kΛ} as the set of indices in the interval 0, . . . , L− 1
for which 0 < p̂k < 1 and Λ ≥ 1 its cardinality and

H1 := [

Λ︷ ︸︸ ︷
1 · · · 1]T

X1 :=
[
Tk1
− σΦ−1(ĉpk1

) · · · TkΛ
− σΦ−1(ĉpkΛ

)
]T

W1 := X1 −H1θ1,

(16)

where W1 is a noise vector having covariance matrix ΣX1 .
The estimation problem can then be written in matrix form:

X1 = H1θ1 +W1 (17)

When N is sufficiently large, the variance of ĉpk is sufficiently
small to allow usage of a first–order Taylor series expansion
of each component in X1 about E(ĉpk) = cpk. As a con-
sequence, the nonlinear function Φ−1(·) is linearized so that
E(W1) ' 0 results and (17) satisfies the hypotheses of the
Gauss–Markov theorem. Accordingly, the BLUE of θ1 can be
written as [19]:

θ̂GM1
:= (HT

1 Σ−1
X1
H1)−1HT

1 Σ−1
X1
X1 (18)

with
Var
(
θ̂GM1

)
= (HT

1 Σ−1
X1
H1)−1 (19)

where ΣX1
also represents the covariance matrix of X1.

An estimate for the covariance matrix of X1 is obtained by
observing that:

ΣX1
= σ2ΣY , (20)

where Y =
[
Φ−1(ĉpk1

) · · · Φ−1(ĉpkΛ
)
]T

and ΣY its co-
variance matrix. An approximated expression for ΣY can be
obtained by linearizing the nonlinear function Φ−1(·) using
a Taylor series expansion about the mean value of each
component in ĈΠ, so that we can write [20]:

ΣY ' JΣ
ĈΠ
JT , (21)

where J is a diagonal matrix defined as

J = diag

(
dΦ−1(x)

dx

∣∣∣∣
x=ĉpk1

, . . . ,
dΦ−1(dx)

dx

∣∣∣∣
x=ĉpkΛ

)
.

(22)
By recalling that the derivative of the inverse function can be
expressed in terms of the derivative of the direct function, we
have:

dΦ−1(x)

dx

∣∣∣∣
x=ĉpk

=
1

dΦ(x)
dx

∣∣∣
x=Φ−1(ĉpk)

=
√

2πe
1
2 (Φ−1(ĉpk))

2

k = k1, . . . , kΛ

(23)

Finally, an estimate of the covariance matrix of ĈΠ to be
substituted in (21), can be obtained by observing that CΠ =
AΠ where

A =


1 0 · · · 0
1 1 · · · 0
...

... · · ·
...

1 1 · · · 1

 (24)

is a lower diagonal matrix. Thus the covariance matrix of ĈΠ
is

Σ
ĈΠ

= AΣΠ̂A
T , (25)

and estimates of ΣΠ̂ and Σ
ĈΠ

are obtained by replacing each
entry in (11) of the type Npipj , by the corresponding natural
estimator based on the product of estimated probabilities
Np̂ip̂j , with p̂i defined in (12). Once all unknown quantities
are substituted by their estimates in (18), a similar estimator
to that presented in [13] (e.g. eq. 6.19) is obtained.

G. Model 2

By considering model 2 under the hypothesis of Gaussian
noise, the equivalent expression for (14) is:

Tk = F−1
y (cpk) = θ1 +θ2F

−1(cpk) k = 1, . . . , L−1 (26)

from which, using the Gaussian hypothesis, we have:

Tk
θ2
− θ1

θ2
= Φ−1(cpk) k = 1, . . . , L− 1. (27)

To linearize the relationship between parameters and observed
data, define a new vector parameter γ := [γ1 γ2]T :=[

1
θ2

θ1
θ2

]T
. Observe that if an estimate for γ is available, an

estimate for θ1 and θ2 is easily obtained by inverting the
relationship in the definition of γ. Thus (27) can be rewritten
as:

Tkγ1 − γ2 = Φ−1(cpk) k = 1, . . . , L− 1. (28)

Then again define L = {k1, . . . , kΛ} as the set of indices in
the interval 0, . . . , L − 1 for which 0 < p̂k < 1, Λ ≥ 2 its
cardinality and

H2 :=


Tk1

−1
Tk2 −1

...
...

TkΛ
−1


X2 :=

[
Φ−1(ĉpk1

) · · · Φ−1(ĉpkΛ
)
]T

W2 := X2 −H2γ,

(29)

where W2 is a noise vector having covariance matrix ΣX2
=

ΣY . The estimation problem can then be written in matrix
form:

X2 = H2γ +W2 (30)

Again, when N is sufficiently large, each component in X2

can be linearized about the corresponding mean value as in
the case of model 1 and E(W2) ' 0 results. The application
of the Gauss–Markov theorem provides:

θ̂GM2
:= (HT

2 Σ−1
X2
H2)−1HT

2 Σ−1
X2
X2 (31)

with
Var
(
θ̂GM2

)
= (HT

2 Σ−1
X2
H2)−1 (32)

where ΣX2
also represents the covariance matrix of X2 and

is estimated as in the case of model 1.
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H. Model 3
The coherency condition on sampling implies that an integer

number N of periods of x1[·] and x2[·] are observed. Let
us further assume that each period contains M samples of
the input signal. Consequently, the total number of samples
is K = MN and if the noise η[·] would not be present,
the quantizer output would be periodic with the same period
P = MTS of the known sequences, with TS as the sampling
period. By recalling that any real number x can be expressed
as the sum of its integer part bxc and of its fractional part 〈x〉
we can write

xi[n] = xi

[⌊ n
M

⌋
M +

〈 n
M

〉
M
]

= xi

[〈 n
M

〉
M
]
i = 1, 2,

where the equality follows by the periodicity assumption.
Thus, there are only M different time instants modulo M asso-
ciated with n = 0, . . . ,M−1, each one recorded N times, that
is the number of periods. This is made clear in Fig. 4 where a
sinusoidal sequence x1[n] is assumed with M = 5 and N = 9.
Therefore a total of K = 45 samples is collected, of which
only 5 refer to independent time instants. Dashed rectangles
in this figure show the samples that provide the same signal
amplitude, when the effects of noise and quantization are
neglected. Now consider a given value of n ∈ {0, . . . ,M−1}
and m ∈ In =: {n, n + M,n + 2M, . . . , n + (N − 1)M}.
Since, for some integer i,〈m

M

〉
M =

〈
n+ iM

M

〉
M =

〈 n
M

〉
M =

n

M
M = n

for m ∈ In we can write

y[m] = θ0 + θ1x1[n] + θ2x2[n] + ση[m] + e[m], (33)

that provides N realizations of the quantizer output for any
single value of the constant input θ0+θ1x1[n]+θ2x2[n]. Thus,
I0, . . . , IM−1 provide a partition of the K samples. Moreover,
for a given value n, (33) provides N values that can be used
to build a histogram of the quantized output,

Ĉ[n] = [ĉ0[n] . . . ĉL−1[n]]
T (34)

as the random vector containing the experimental number
of occurrences in each code bin when the deterministic
input is s[n] := θ0 + θ1x1[n] + θ2x2[n] and, ĈΠ[n] =
[ĉp0[n] . . . ĉpL−1[n]]T where ĉpk[n] :=

∑k
n=0 ĉn[n].

By considering model 3 under the hypothesis of Gaussian
noise, the equivalent expression for (14) is:

Fy(yk) :=P (y[n] ≤ yk)

=P (θ0 + θ1x1[n] + θ2x2[n] + ση[n] ≤ Tk)

=Φ

(
Tk − θ0 − θ1x1[n]− θ2x2[n]

σ

)
=

k−1∑
h=0

ph[n] := cpk[n], k = 1, . . . , L− 1

(35)

where ph[n] represents the probability that y[m] takes the
value h when the input signal is s[n]. Thus, from (35) we
have:
θ0 + θ1x1[n] + θ2x2[n] = Tk − σΦ−1 (cpk[n])

k = 1, . . . , L− 1 n = 0, . . . ,M − 1
(36)

For each n, define a corresponding set L[n] as the set of
indices in the interval 0, . . . , L − 1 for which 0 < p̂k[n] < 1
and Λ[n] its cardinality. Then define

θ3 := [θ0 θ1 θ2]T

H3[n] :=


1 x1[n] x2[n]
1 x1[n] x2[n]
...

...
...

1 x1[n] x2[n]



X3[n] :=


T1 − σΦ−1(ĉp1[n])
T2 − σΦ−1(ĉp2[n])

...
TΛ[n] − σΦ−1(ĉpΛ[n])


W3[n] := X3[n]−H3[n]θ3.

(37)

Then, an estimate of the covariance matrix of W3[n] is
ΣW3

[n] := σ2ΣY [n], where ΣY [n] is based on the definition in
(21), in which each occurrence of ĉpk is substituted by ĉpk[n].
Finally, the matrices for the entire set of M time–dependent
input values are constructed by defining:

H3 :=
[
H3[0]T · · ·H3[M − 1]T

]T
X3 :=

[
X3[0]T X3[1]T · · · X3[M − 1]T

]T
ΣX3

:= diag (ΣW3 [0], . . . ,ΣW3 [M − 1])
T

(38)

Then the application of the Gauss–Markov theorem provides:

θ̂GM3
:= (HT

3 Σ−1
X3
H3)−1HT

3 Σ−1
X3
X3 (39)

with
Var
(
θ̂GM3

)
= (HT

3 Σ−1
X3
H3)−1 (40)

Observe that:
• if for some n, a single quantization bin is excited by

the corresponding quantizer input sample, then H3[n] in
(37) vanishes, it must be discarded and not included in
the dataset used to form H3 in (38);

• enough information is needed to estimate the 3 scalar
parameters in θ3, that is the number of rows of H3 in
(38) must be not less than 3.

In the two following Sections both simulation and experimen-
tal results are presented.

0 5 10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

Fig. 4. Model 3. Sinewave coherent sampling in absence of additive noise and
quantization: N = 9 periods of the sinusoidal signal having each M = 5
samples per period. N independently sampled values are obtained that are
periodic with period M .
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Fig. 5. Model 1. Mean value of the estimation error of a quantized constant in
noise normalized to ∆. Montecarlo results based on 5000 records as a function
of θ/∆ and N : arithmetic mean estimator (a), quantile–based estimator when
σ = 0.17 (b) and σ = 0.2 (c).

IV. SIMULATION RESULTS

At first model 1 was considered. Mean values and standard
deviations of the estimation errors obtained by the Montecarlo
approach based on R = 5000 records are presented in Fig. 5
and in Fig. 6, respectively, as a function of both θ/∆ and N =
100, . . . , 500. All results were obtained assuming ∆ = 2/2b,
where b = 10 is the number of bits, and were normalized with
respect to ∆. Given the periodic behavior of the quantization
error input–output characteristic, curves in Fig. 5 and Fig. 6 are
periodic with ∆ and their behavior is shown here, assuming
the single period −∆/2 < θ < ∆/2. The estimation mean error
is plotted in Fig. 5 in the case of the simple arithmetic mean
(a) and in the case of the quantile–based estimator (b-c). While
the simple arithmetic mean estimation error does not depend
on N , the performance of the newly proposed estimator also
depends on the number of averaged samples. This is a common
behavior in the case of bias–removing procedures [23]. In both
cases, the mean square error decreases when increasing the
number of processed samples.

Fig. 5(c) shows that already with σ = 0.2 the estimation
bias is largely removed in comparison to results shown in
Fig. 5(a). Fig. 6 shows the behavior of the normalized standard
deviation of the estimation error. Fig. 6(a) refers to the
arithmetic mean estimator while Fig. 6(b) and Fig. 6(c) show
the normalized standard deviation of θ̂GM1

when σ = 0.17
and σ = 0.2, respectively. Results show that in all cases the
standard deviation remains of the same order of magnitude,
with the newly proposed estimator removing the largest part

Fig. 6. Model 1. Standard deviation of the estimation error of a quantized
constant in noise normalized to ∆. Montecarlo results based on 5000 records
as a function of θ/∆ and N : arithmetic mean estimator (a), quantile–based
estimator when σ = 0.17 (b) and σ = 0.2 (c).

of the estimation bias. Thus, the new estimator removes the
bias at the expense of an increased variance. Since when
σ > 0.4, the arithmetic mean already shows negligible bias
when the noise is Gaussian [1], the quantile–based estimator
is more effective when the noise standard deviation is lower
than this bound. Conversely, both estimators tend to provide
similar results. Moreover, observe that already for σ = 0.2,
the normalized standard deviation of θ̂GM1

approximately
achieves the square–root of the Cramer–Rao lower bound
applicable to unbiased estimators of a quantized constant in
Gaussian noise with known variance [9]. This becomes evident
in Fig. 7 where both the normalized estimator variance and
the corresponding Cramer–Rao lower bound are plotted as a
function of θ/∆, assuming N = 300 and σ = 0.2. While the
two curves tend to coincide when |θ/∆| ' 0.5, the small
positive and negative differences for other values of θ/∆
are due to the residual estimator bias. Thus, the proposed
estimator is capable to be statistically efficient under suitable
values of its tuning parameters.

When model 2 is considered, the bias of the arithmetic mean
estimator and that associated with the quantile–based estimator
are shown in Fig. 8(a) and (b), respectively. The noise standard
deviation σ = 0.34 was assumed which results in an overall
lower bias for the arithmetic mean estimator and its removal by
the quantile–based estimator already when N is slightly larger
than 100. Consider however that model 2 can be reduced to
model 1 if the known value of the noise standard deviation
is substituted by an estimate of it obtained using alternative
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Fig. 7. Model 1. Comparison between the normalized standard deviation of
θ̂GM1

obtained as in Fig. 6 and the corresponding Cramer–Rao lower bound
for unbiased estimators, derived using an expression published in [9].

estimators as in [15][21].
Simulations were also done when assuming model 3. Re-

sults are plotted in Fig. 9, based on 1000 Montecarlo records.
This figure shows the average residual error in the estimation
of s[·] based on 1000 records, when assuming x1[n] =
cos
(
2π n

MN
)

and x2[n] = sin
(
2π n

MN
)
, with M = 20

samples per period, N = 50 periods and θ
∆ = [3.7 11.4 23.1].

A 10 bit quantizer is considered having ∆ = 2/210 and
being affected by Gaussian noise with σ = 0.3∆. For each
time index m, the mean value of the difference between the
simulated and estimated sinewaves is plotted in this figure. To
prove the validity of the new approach, the known quantization
levels were assumed affected by INL uniformly distributed in
(−∆/2,∆/2). Both the errors associated with the usage of the
proposed estimator (bold line) and of the well–known least–
square estimator (thin line) are shown. The inset shows an
enlarged view of the first 100 samples.

Data in Fig. 9 show that the new estimator is capable of
reducing the estimation bias and improving estimation accu-
racy. The new estimator requires knowledge of the transition
level values, while the least–square estimator does not. While
a calibration phase might be required in those cases where
the ADC can not be considered to be linear enough, this
additional information is exploited by the algorithm to improve
estimation accuracy. Conversely, the least–square estimator
does not include this information and its performance degrades
progressively when the ADC behavior departs from ideality.

V. EXPERIMENTAL RESULTS

To prove the practical viability of the proposed estimator,
the signal chain depicted in Fig. 10 was used. A 12–bit
commercial DAS with ∆ = 0.005085 V was used to prove the
applicability of the proposed estimators. The transition levels
of the DAS, as defined in [15], were first estimated, along with
the DAS noise standard deviation σ̂DAS ' 0.15∆, measured
as of clause 9.4.2 in [15]. The DAS was also calibrated for
offset errors by simple pre–processing of all acquired data:
raw data were multiplied by a gain and added to a constant
value to remove offset and the gain errors [15]. Three sets
of experiments were performed to test the proposed estimator
under the hypotheses of model 1 and model 3.

Fig. 8. Model 2. Mean value of the estimation error of a quantized constant in
noise normalized to ∆ (model 1). Montecarlo results based on 5000 records
as a function of θ/∆ and N , when σ = 0.34: arithmetic mean estimator (a),
quantile–based estimator (b).

A. Model 1 assumption: experimental results

A waveform synthesizer used as a source of DC voltages
affected by artificially added Gaussian noise, with noise stan-
dard deviation ση , was used to provide input values to the

200 400 600 800 1000
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m

20 40 60 80 100

Fig. 9. Model 3. Mean value of the estimation error normalized to ∆, as
a function of the sampling index: the Gauss–Markov estimator (bold line)
and the least–square estimator (thin line). Simulations were based on 1000
Montecarlo records, known sequences x1[·] and x2[·] and σ = 0.3∆, with
∆ = 2/210.
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Fig. 10. Measurement setup used to collect experimental data.
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Fig. 11. Model 1. Mean value of the estimation error of a quantized constant
in noise normalized to ∆. Experimental results obtained using the setup shown
in Fig. 10. and N = 500. Estimator bias as a function of θ/∆ when using the
arithmetic mean estimator (solid line) and the quantile–based estimator (dots).
For each θ/∆ a single record of N = 500 was used. Transition levels and
input–referred noise standard deviation are first estimated using experimental
data, for model 1 to be applicable (see text).
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Fig. 12. Model 3. Mean value of the estimation error of the amplitude of
a synchronously sampled sinewave normalized to ∆, based on 5 records
of 8000 points each. Experimental results obtained using the setup shown
in Fig. 10. Estimator bias as a function of 100 sinewave amplitude in the
interval (0.05, 0.1) V, when using the least–square estimator (solid line) and
the quantile–based estimator (stars). ADC transition levels, whose value is
shown using dashed lines, and input–referred noise standard deviation are
first estimated using experimental data, for model 3 to be applicable (see
text).

DAS, in the range (−19∆, 19∆) V. The total measured noise
standard deviation σ ' (σ2

η + σ2
DAS)1/2, comprehensive of

the DAS input–referred contribution, was estimated during the
calibration phase as σ̂ ' 0.264∆.

A 61/2–digit digital multimeter (DMM) was employed to
measure a true quantity value of the DAS input [22]. For each
of the 800 DC values in the input range a single record of
N = 500 acquisitions was collected by the DAS, along with
the reference value measured by the DMM. All instruments
were connected to a PC using either the Ethernet or a USB
connection. Data were processed to obtain estimates of the
applied DC value and of the corresponding estimation errors.
Both the simple mean value estimator and the newly proposed
estimator were used, under the assumptions of model 1.
Results are plotted in Fig. 11 using a solid line and dots, in the
former and latter case, respectively. They confirm the accuracy
of the proposed procedure and show that it is effective in
removing the estimation bias characterizing the simple mean
estimator.

B. Model 3 assumption: experimental results

A waveform synthesizer was used to generate a 100 Hz
sinewave with 100 variable amplitudes in the range (0.05, 0.1)
V, without the addition of noise. This signal was acquired
by the DAS sampling at 104 ksample/s, providing M = 100
samples per period. For each one of the 100 voltage values,
8000 points resulting in N = 80 periods, were recorded
and processed using both the standard least–square method
described in [15] and the newly proposed quantile–based
estimator to estimate θ1, θ2, θ3. The sinewave amplitude was

then estimated as
√
θ̂2

1 + θ̂2
2 , with θ̂i, i = 1, 2 as each one

of the two estimators. The amplitude reference value was
measured by the DMM put in AC mode, as the mean value
of 10 measurement results. The mean error obtained using 5
records for each sinewave amplitude is plotted in Fig. 12 in
both cases, using a solid line for the LS–estimator and stars
for the newly proposed estimator. Given that only the sinewave
amplitude is estimated, there was no need to synchronize the
DAS with the waveform synthesizer. Thus, the initial record
phase of the sinewave generator was not controlled and was
assumed as a uniform random variable in [0, 2π).

VI. DISCUSSION OF RESULTS

In this Section, at first general properties of the proposed
estimator are discussed on the basis of the described results.
Then, known estimator issues and corresponding fixes are
examined.

A. Performance comparison

The proposed estimator can be used to obtain accurate
measurements of parameters of DC and AC sequences if some
of the characteristic parameters of the DAS used to quantize
data are known, such as transition levels and input–referred
noise standard deviation. Eventual errors in the estimation
of these parameters performed beforehand, will not affect
significantly the performance of the estimator, as shown by
data in Fig. 11 and 12. If nominal thresholds values are used
instead of actual values, the estimator still provides reasonable
results, improving over the performance of the simple mean
estimator. Provided that the noise standard deviation is large
enough to excite a number of quantization bins exceeding at
least by one the number of parameters to be estimated, there
are no restrictions on the severity of the applied quantization:
accurate estimates are obtained even when data are quantized
using low–resolution DASs.

In practice, the effect of noise is that of encoding the
information about the unknown parameters’ values in the
probabilities with which the various quantizer output codes
occur. The algorithm presented here acts as a decoder of such
information, by properly processing the estimated probabili-
ties. Moreover, while the usual approach to process quantized
data is based, at most, on calibration of ADCs for offset and
gain, the presented estimator allows calibration at the transition
level and is thus inherently more statistically powerful. Finally,
the same approach followed here can be applied with noise
PDFs different from the Gaussian one, by recalculating the
covariance matrix and by using the proper quantile equation
in (15) and in (27).
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Fig. 13. Model 1. Mean–square error in the the estimation of a quantized
constant in noise normalized to ∆2. Montecarlo results based on 1000 records
of N = 1000 samples each, as a function of θ/∆, when σ = 0.2.

B. Known issues and fixes

It is not assured that the quantile–based estimator uniformly
outperforms other estimators. For instance, consider the case
shown in Fig. 13, where the mean–square error is plotted,
under model 1, for both the quantile–based and the arith-
metic mean estimators. Here, N = 1000 is assumed and
1000 records of θ varying in the interval [−0.1∆, 0.1∆] are
considered. By knowing that the closest transition levels are
positioned in −∆/2 and ∆/2, it can be observed that when
θ ' 0 the quantile–based estimator maintains its overall
behavior. Conversely, the arithmetic mean estimator benefits
from the DC level getting close to an ADC equivalent output
level (' 0) and thus outperforms the quantile–based estimator.

Moreover, the proposed quantile–based estimator may fail
when the record length N is so small or σ � 1, so that
all samples in the record belong to the same quantization
bin. This results in a situation where all collected samples
excite the same bin that would be excited if the noise would
not be present. Under model 1 this results in Λ = 0 and
the estimator not having enough information to identify the
model. In a similar way model 2 and model 3 may not be
identifiable if Λ drops below 2 and 3, respectively. These
events are unlikely if N � 1 and/or σ > 1/6. However, an
easy fix could be proposed by resorting to a mechanism that
recognizes the occurrence of such phenomena and switches to
more conventional estimators, such as the LSE or the MLE.

VII. CONCLUSION

An estimator is presented in this paper that exploits the
unbiasedness of a quantile estimator based on ADC output
data, when the quantile level coincides with the value of one
of the ADC transition levels. The estimator is based on a linear
relationship between a statistics of the observed data using
nonlinear functions and parameters to be identified, and is thus
easily computable using matrix calculations. By also taking
into account the covariance between the ADC output codes, it
was possible to show that this estimator is an application of
the Gauss–Markov theorem and that it is rather robust toward
inaccuracies in some of the necessary hypotheses.
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