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Abstract—In quite some applications the linear dynamics of the
system under test evolve over time in a smooth, non-periodic man-
ner. The dynamic behavior of such systems is uniquely described
by the time-variant frequency response function. However, since
most real life systems behave to some extent nonlinearly, it is
important to detect and quantify the deviation between the ideal
linear time-variant framework and the true nonlinear time-variant
dynamics. Therefore, in this paper a nonparametric estimation
procedure is developed for detecting and quantifying the noise
level and the level of the nonlinear distortions in time-variant
frequency response function measurements using random phase
multisine excitations. As a result, the users can decide whether
or not the linear time-variant framework is accurate enough to
describe the true dynamics in their particular application. The
proposed measurement procedure is illustrated on a time-variant
electronic circuit.

Index Terms—time-variant frequency response function, time-
variant systems, arbitrary time-variation, nonparametric estimates,
nonparametric noise model, nonlinear distortions, periodic excita-
tions, multisine

I. INTRODUCTION

The true dynamics of a system under test do often not meet
the classical linearity and time-invariance assumptions. This is
the case in, for example, pit corrosion of metals where the time-
variation is induced by the changes in the metal surface [1];
thermal drift in power electronics whose characteristics are tem-
perature dependent [2]; aging, fatigue and mortification in bio-
medical measurements [3]; airplane dynamics which depend on
the changing flight speed and height [4]; and battery impedance
measurements which depend on the changing state-of-charge
[5]. For all these applications the dynamics evolve smoothly
and non-periodically over time in either an uncontrolled (pit
corrosion; thermal drift; aging, fatigue and mortification) or
a controlled (airplane dynamics, battery impedance measure-
ments) way. The time-variant frequency response function (TV-
FRF) introduced in [6], [7] uniquely characterizes the time-
variant dynamics of these complex systems. However, since
these real life systems all behave to some extent nonlinearly,
there is a need to detect and quantify the deviation between the
ideal linear time-variant framework inherent to the concept of
the TV-FRF and the true nonlinear time-variant dynamics. No
solution is available in the literature for non-periodic (arbitrary),
smooth time-variations and the major goal of the present paper
is to fill this important gap.

In some applications the time-variation originates from the
switching between a finite number of linear time-invariant

systems and, hence, is non-smooth. Examples of non-smooth
time-variant dynamics can be found in power electronics [8],
econometrics [9], and control applications [10]; and more gen-
eral, in hybrid systems (see [11] and the references therein). In
this paper we explicitly exclude non-smooth time-variations.

[12] presents an indirect method for measuring the TV-FRF of
periodically time-varying systems excited by multisine excita-
tions. Assuming that the periodic excitation can be synchronized
with the periodic time variation, the noise level and the level of
the nonlinear distortions are quantified (the algorithm described
in [13] cannot detect and quantify the nonlinear distortions).
The approach of [12] has been implemented in a small size,
low cost frequency response analyzer [14]. [15] and [16] handle
arbitrarily time-varying systems excited by, respectively, random
phase multisine and arbitrary excitations. In both cases the
nonlinear distortions can neither be detected nor quantified.
Compared with the direct [15] and indirect [16] methods, the
indirect procedure proposed in this paper has the following
advantages:
• A few periods of the transient response to a random phase

multisine excitation are sufficient (many periods are needed
in [15]).

• Detection and quantification of the noise and the nonlinear
distortions.

• The estimation procedure only requires nonparametric
algorithms for multiple-input, single-output linear time-
invariant systems ([15] requires dedicated algorithms for
single-input, single-output time-variant systems).

Its major drawback is the fixed choice of the basis functions
(Legendre polynomials) parametrizing the time-variation in the
TV-FRF.

The nonparametric TV-FRF estimation methods based on the
short-time Fourier transform assume that the time-variation is
(very) slow (e.g. [17] for noise power spectra and [18] for
FRFs). Hence, these methods inherently make a trade-off be-
tween accurate tracking of the time-variation (by minimizing the
length of the sliding time window) and the required frequency
resolution of the FRF measurement (by maximizing the length
of the sliding time window). At the cost of a more complicated
estimation algorithm, the approach proposed in this paper results
in TV-FRF estimates with a much larger frequency resolution.

Since the time-variations considered are non-periodic (ar-
bitrary), the estimated TV-FRF is valid in the measurement
interval only. Without additional assumptions (e.g. ergodicity



of the time-variation) nothing can be said outside this interval.
Nevertheless, the TV-FRF is still very useful for analyzing the
time-variant dynamics. Indeed, the arbitrary (non-periodic) time-
variation either can be controlled via (an) external scheduling
parameter(s) (e.g. the flight speed and height in airplane dy-
namics) or is due to an uncontrollable physical phenomenon
(e.g. the surface roughness in pit corrosion of metals). In the
controlled case, the ultimate goal of the non-periodic time-
variant experiments is to construct a linear differential equation
whose coefficients depend on the external scheduling parame-
ter(s) (= linear parameter-varying model). Analyzing the TV-
FRF of these experiments is a first step to get insight into the
complexity of this modeling problem (the dynamic order, and
the (dynamic) dependency on the scheduling parameter(s)). In
the uncontrolled case, it is difficult to the repeat the time-variant
experiment under exactly the same conditions. Nevertheless,
beside deep physical insight, the proposed TV-FRF estimation
procedure allows one to distinguish the time-variant effects
from the noise, the nonlinear distortions, and the experimental
repeatability.

The outline of the paper is as follows. First, the class of
nonlinear time-variant systems (Section II) and the class of
excitation signals (Section III) for which the theory applies are
described. Next, using the assumptions described in Section IV,
and combining the results of [16], [19], [20] in an original and
non-trivial way, an indirect method is developed for estimat-
ing nonparametrically the TV-FRF, its noise variance, and its
variance due to the nonlinear distortions. Further, the proposed
indirect method is illustrated on measurements of a time-variant
electronic circuit (Section VI). Finally, some conclusions are
drawn in Section VII.

II. THE CLASS OF TIME-VARIANT SYSTEMS

The classes of time-variant systems considered in this paper
are defined via the time-variant frequency response function.
Therefore, we first briefly recall the definition of the time-variant
frequency response function and its properties (Section II-A),
before introducing the classes of slowly time-variant (Section
II-B) and nonlinear slowly time-variant (Section II-C) systems.

A. The Time-Variant Frequency Response Function

A linear time-variant (LTV) system is uniquely characterized
by its time-variant impulse response g(t, τ). The latter describes
the response of the system as a function of the time t when
a Dirac impulse excitation is applied at time instant τ . The
time-variant frequency response function (TV-FRF) G(jω, t) is
related to the time-variant impulse response g(t, τ) as

G (jω, t) =

ˆ +∞

−∞
g (t, t− τ) e−jωτdτ (1)

For causal systems the time-variant impulse response satisfies
g(t, τ) = 0 if t < τ , and the lower integration boundary
in (1) is replaced by zero. In [6], [7] it is shown that the
properties of the TV-FRF (1) are similar to those of an FRF of a
linear time-invariant (LTI) system: (i) the steady state response
to u(t) = sin(ω0t) is the amplitude and phase modulated
signal y0(t) = |G(jω0, t)|sin(ω0t + ∠G(jω0, t)); and (ii) the

... ...

Figure 1. Direct model of a linear time-variant system. The time-variation is
modeled by the known basis functions fp(t), p = 1, 2, . . . , Nb.

transient response to an arbitrary excitation u(t) is calculated
as y0(t) = L−1{G(s, t)U(s)}, with U(s) the Laplace transform
of u(t) and L−1{} the inverse Laplace transform operator.

Given a complete set of basis functions fp(t), p = 0, 1, . . .,
over the interval [0, T ], the TV-FRF (1) can be expanded in
series as

G (jω, t) =

∞∑
p=0

Gp (jω) fp (t) ∀ t ∈ [0, T ] (2)

where the frequency dependent coefficients Gp(jω) represent
FRFs of LTI systems. Without any loss in generality, the
following constraints can be imposed on the basis functions

f0 (t) = 1 and
1

T

ˆ T

0

fp (t) dt = 0 for p > 0 (3)

In this paper we consider arbitrarily time-varying systems and,
hence, choose an orthogonal polynomial basis (Legendre poly-
nomials) to describe the time-variation.

B. Linear Slowly Time-Variant Systems

Note that the series expansion (2) contains infinitely many
FRFs, which is unpractical for nonparametric estimation. There-
fore, we limit ourselves to the class of time-variant systems
whose TV-FRF can be expanded in a finite sum.

Definition 1. The class of slowly time-variant systems
considered includes all time-variant systems whose time-variant
frequency response function can be written as

G (jω, t) =

Nb∑
p=0

Gp (jω) fp (t) ∀ t ∈ [0, T ] (4)

where fp(t) = Pp(2t/T − 1), with Pp(x) the Legendre polyno-
mial of degree p, see [21].

Note that fp(t) = Pp(2t/T − 1) satisfies the constraints
(3). Figure 1 shows the block diagram corresponding to
the slowly time-variant system (4) (proof: apply y0(t) =
L−1{G(s, t)U(s)}). It is called the direct model of the time-
variant system in the sequel of this paper.

The term “slowly time-variant” in Definition 1 is justified
by the fact that the bandwidth of the Legendre polynomials
is concentrated around DC. It does not exclude that the time-
variation can be strong (large). The latter is the case if the
amplitude of at least one Gp(jω), p > 0, is not much smaller
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Figure 2. Direct model of a particular class of nonlinear slowly time-variant
systems: the steady state response of the nonlinear time-invariant sub-system to a
periodic input is periodic with the same period as the input (= nonlinear period
in, same period out system). G0(s) represents the best linear approximation
of the nonlinear period in, same period out (NL PISPO) sub-system, and the
best linear time-invariant approximation of the overall nonlinear time-variant
system. The stochastic nonlinear distortion ys(t) is uncorrelated with – but not
independent of – the input u(t).

than that of G0(jω). If for all p > 0 |Gp(jω)| � |G0(jω)|,
then the time-variation is weak (small).

C. Nonlinear Slowly Time-Variant Systems

We assume here that only the time-invariant branch in Fig.
1 behaves nonlinearly (see Fig. 2, top block diagram) and
that it belongs to the class of PISPO (period in, same period
out) nonlinear systems. The class of PISPO nonlinear systems
includes all nonlinear systems whose response can be approxi-
mated arbitrarily well in mean square sense by a Volterra series
on a given input domain. It has the property that the steady state
response to a periodic input is periodic with the same period as
the input, and comprises hard nonlinearities such as saturation
and discontinuities [22]. Chaos and sub-harmonics are excluded.

Definition 2. The class of nonlinear slowly time-variant systems
considered includes all nonlinear time-variant systems whose
response can be written as the sum of the response to a PISPO
nonlinear time-invariant system and the response to a linear
slowly time-variant system (Definition 1).

For a given class of random excitation signals with the
same power spectral density and probability density function,
the response of the PISPO nonlinear system in the top block
diagram of Fig. 2 can be written as the sum of the response to the
best (in mean square sense) linear approximation G0(s) and the
stochastic nonlinear distortion ys(t) (see Fig. 2, bottom block
diagram). The latter is uncorrelated with – but not independent
of – the input u(t) [23], [24]. Hence, (4) is the best (in mean

DFT binDFT bin1  2 ... 1  2 ... 

Figure 3. Noisy response of a nonlinear slowly time-variant system to a periodic
excitation. The left plot shows the input DFT spectrum U(k) = DFT(u(t)) of
two consecutive periods of the periodic excitation. The right plot shows
the output DFT spectrum Y (k) = DFT(y(t)) of the corresponding noisy
response y(t) = yblti(t) + ys(t) + ny(t): output of the best linear time-
invariant approximation yblti(t) (black arrows); nonlinear distortions ys(t) (red
arrows); time-variant contributions yTV(t) (blue arrows); and disturbing noise
ny(t) (green arrows).

square sense) linear time-variant approximation of the nonlinear
slowly time-variant system.

III. THE CLASS OF EXCITATION SIGNALS

A. Definition

A random phase multisine is the sum of harmonically related
sinewaves

u (t) =
1√
F

k2∑
k=k1

Aksin (2πkf0t+ φk) (5)

with Ak > 0 the user defined amplitudes, φk the random phases
chosen such that E{ejφk} = 0, k1, k2 ∈ N0, and F the number
of non-zero amplitudes (F = ord{Ak, k = k1, k1 + 1, . . . , k2 |
Ak > 0}). The amplitudes Ak in (5) are divided by

√
F such

that the signal rms value is independent of the number of
sinewaves F .

Note that (5) belongs to the class of Gaussian excitation
signals with a given (Riemann equivalent) power spectrum [25].
Note also that periodic excitations are needed to distinguish the
disturbing noise from the nonlinear distortions (see Section III-B
and [22]).

B. Noisy Response of a Nonlinear Slowly Time-Variant System
to a Periodic Input

Consider a periodic excitation signal u(t) and its correspond-
ing discrete Fourier transform (DFT) U(k) = DFT(u(t)),

U (k) =
1√
N

N−1∑
n=0

u (nTs) e
−j2πkn/N (6)

with Ts the sample period and N the number of time domain
samples. The DFT (6) of P consecutive signal periods of
u(t) has the following property

U (mP + r) = 0 (7)

for r = 1, 2, . . . , P−1 and m = 0, 1, . . . , N/P−1, with N/P ∈
N0 the number of samples per period. Hence, signal energy can
only be present at DFT bins mP , m = 0, 1, . . . , N/P − 1. The
left plot of Fig. 3 shows the case P = 2.



Figure 4. Noisy output observation y(t) of the response y0(t) of a nonlinear
slowly time-variant system (grey box) to a known random phase multisine
excitation u(t). G(s, t) is the best linear time-variant approximation satisfying
(4), ybltv(t) the output of the best linear time-variant approximation, ys(t) the
stochastic nonlinear distortion that is uncorrelated with – but not independent
of – the input u(t), and ny(t) the stationary output disturbance.

The steady state response of a nonlinear slowly time-variant
system (see Definition 2) to a periodic input can be split into
a periodic nonlinear time-invariant part ỹ0(t) = yblti(t) +
ys(t) and a non-periodic linear time-variant part yTV(t) =∑Nb

p=1 ỹp(t) (see Fig. 2). While yTV(t) contains signal energy at
all DFT bins (see Fig. 3, right plot, blue arrows), ỹ0(t) contains
signal energy at DFT bins mP , m = 0, 1, . . . , N/P − 1 only.
The latter is the sum of the response of the best linear time-
invariant approximation yblti(t) (see Fig. 3, right plot, black
arrows) and the nonlinear distortion ys(t) (see Fig. 3, right plot,
red arrows). Finally, a filtered white noise output disturbance
ny(t) contains noise energy at all DFT bins (see Fig. 3, right
plot, green arrows).

The fact that the nonlinear distortion ys(t) is zero at DFT
bins mP + r, r = 1, 2, . . . , P − 1 and m = 0, 1, . . . , N/P − 1,
is the key property that allows us to distinguish the noise from
the nonlinear distortion (see Section V-B).

Note that under non-steady state conditions, an additional
transient (leakage) term affects the output DFT spectrum
Y (k) that cannot be distinguished from the spectral leakage
of the non-periodic time-variant contributions yTV(t) (see also
Section V-A).

IV. ASSUMPTIONS

We list here the assumptions concerning the time-variant
system, the excitation signal, the experimental setup, and the
disturbing output noise (see also Fig. 4):

1) The time-variant system belongs to the class of nonlinear
slowly time-variant systems (Definition 2).

2) The excitation u(t) is a random phase multisine (5) and
is known exactly.

3) An integer number P > 2 of signal periods T0 = 1/f0 of
the (transient) response is measured.

4) The output measurements are disturbed by additive,
stationary, discrete- or continuous-time, filtered (band-
limited) white noise ny(t).

Assumption 1 is an approximation which is reasonable for
weakly nonlinear, slowly time-variant systems with small time-
variation (see Section VI). Assumption 3 is a hardware require-
ment called coherent sampling: the arbitrary waveform generator
and the data acquisition channels must be synchronized such
that f0 = fsP/N , with fs = 1/Ts the sample frequency and
N/P the number of samples per period. This condition is easily
fulfilled in practice: either the generator clock is used as external
clock for the acquisition unit, or the generator and acquisition

... ...

Figure 5. Indirect model of a linear slowly time-variant system.

clocks originate from the same mother clock (e.g., VXI1 and
PXI2 based instrumentation). Assumption 4 is also an approx-
imation because the process noise generated by a time-variant
system is likely to be non-stationary. However, for slowly time-
variant systems the non-stationary noise can be approximated
very well by its best linear stationary approximation [26].

V. NONPARAMETRIC ESTIMATION PROCEDURE

Based on the indirect model of a slowly time-variant system
described in Section V-A and generalizing the results of [16],
[19], [20], an indirect nonparametric estimation method for the
time-variant frequency response function (4) is developed in
Section V-B. Finally, the bias error of the estimate is analyzed
in Section V-C.

A. The Indirect Model of a Slowly Time-Variant System

In [16] it has been proven that the direct model of a slowly
time-variant system shown in Fig. 1 can be transformed into an
equivalent indirect model shown in Fig. 5, with the following
relationship between the dynamics

Gr (s) = Hr (s) +
2

T
(2r + 1)

⌊
Nb−r−1

2

⌋∑
i=0

H
(1)
2i+1+r (s) +

4

T 2

⌊
Nb−r

2

⌋∑
i=1

β2i,rH
(2)
2i+r (s) +O

(
T−3

)
(8)

where bxc is the largest integer smaller than or equal to x,
H

(m)
r (s) the m-th order derivative of Hr(s) w.r.t. s, β2i,r the

following coefficients

β2i,r = γr + δr (i− 1) + µr (i− 1)
2 (9)

γr = 1.5 + 4r + 2r2

δr = 2.5 + 6r + 2r2

µr = 1 + 2r

and where O(T−n) with n > 0 means that
limT→∞ TnO(T−n) < ∞. The O

(
T−3

)
bias term in

(8) depends on the higher order derivatives H
(m)
q (s),

with Nb > q > r + 3, and where m ranges from

1VXI is an open bus standard and stands for VME eXtensions for Instrumen-
tation

2PXI is an open bus standard and stands for PCI eXtensions for Instrumen-
tation



3 + (q + 1 + r) mod 2 to q − r in steps of 2 (mod stands for
modulo).

There is an important conceptual difference between the di-
rect (Fig. 1) and indirect (Fig. 5) models. Indeed, while the iden-
tification of the direct model requires single-input u(t), single-
output y(t) linear time-variant estimation techniques [15], the
indirect model can be identified using algorithms for multiple-
input u(t), u1(t), . . . , uNb

(t), single-output y(t) linear time-
invariant systems (the inputs up(t) = fp(t)u(t) are known). The
transfer functions Gp(s) are then recovered from Hp(s) via (8).

The noiseless input-output DFT spectra of the indirect model
of a linear slowly time-variant system are related as

Y0 (k) =

Nb∑
p=0

Hp (jωk)Up (k) + TH (jωk) (10)

with Y0(k) = DFT(y0(t)), Up(k) = DFT(u(t)fp(t)), U0(k) =
U(k) (f0(t) = 1), and TH(jω) a rational function of jω. For
nonlinear slowly time-variant systems (Definition 2), the DFT
spectrum YS(k) of the nonlinear distortion ys(t) is added to the
right hand side of (10) (proof: apply the indirect model to the
bottom block diagram of Fig. 2).

Note that under non-steady state conditions TH(jωk) in (10)
also depends on the leakage term of the time-invariant branch
in Fig. 5. However, this does not affect the estimation of
the dynamics Hp(jωk), p = 1, 2, . . . , Nb, in the time-variant
branches.

B. The Indirect Method

Following the same lines of Section III-B, it can be seen
that the DFT spectrum of P consecutive signal periods of
y̌0(t) in the indirect model (see Fig. 5) is zero at DFT bins
mP + r for r = 1, 2, . . . , P − 1 and m = 0, 1, . . . , N/P − 1;
while

∑Nb

p=1 y̌p(t) contains signal energy at all DFT bins. Hence,
the right plot of Fig. 3 remains valid for the response of the
indirect model: the black arrows represent y̌0(t) and the blue
arrows stand for

∑Nb

p=1 y̌p(t). This observation results in the
three-step procedure discussed in detail in the sequel. Using the
non-excited DFT bins the FRFs in the time-variant branches
of the indirect model and their noise variances are estimated
in the first step. In step 2 the contribution of the time-variant
branches is subtracted from the output at the excited DFT bins.
What remains is the output of the time-invariant branch whose
dynamics and total variance (= sum noise variance and variance
nonlinear distortions) are estimated. Finally, the indirect model
is converted to the direct model in step 3.

Step 1 – From (10) it follows that the known input, noisy
output DFT spectra evaluated at the non-excited DFT bins k =
mP + r, with r = 1, 2, . . . , P − 1 and m = 0, 1, . . . , N/P − 1,
satisfy

Y (k) =

Nb∑
p=1

Hp (jωk)Up (k) + TH (jωk) +NY (k) (11)

with NY (k) = DFT(ny(t)). Using (11), the FRFs Hp(jωk),
p = 1, 2, . . . , Nb, the transient term TH(jωk), and their noise

covariances are estimated nonparametrically at the excited DFT
bins k = mP via the local polynomial method (LPM) for
arbitrary excitations with a given number of degrees of freedom
dofnoise [27]. The latter quantifies the difference between the
local number of equations (non-excited frequencies) and the
local number of parameters in the linear least squares estimate
of the FRFs and the transient term. Note that the number Nb of
time-variant branches is unknown and is also estimated from the
data: start with Nb = 1 and increase its value until the estimate
Ĥr(jωk) is of the same order of magnitude as its standard
deviation for all values of k and for all r > Nb. Nb − 1 is
then the significant number of time-varying branches.

Step 2 – Using the estimates obtained in Step 1, the
response of the time-variant branches and the leakage term
are subtracted from the output at the excited DFT bins k = mP

Y (k)−
Nb∑
p=1

Ĥp (jωk)Up (k)− T̂H (jωk) (12)

giving a nonparametric estimate of the response Y̌0(k) =
DFT(y̌0(t)) of the time-invariant branch in Fig. 5 that is dis-
turbed by noise and nonlinear distortion. From the residual (12),
the FRF H0(jωk) and its total variance (= sum noise variance
and variance nonlinear distortion) are estimated nonparametri-
cally following the same lines of the local polynomial method
(LPM) for periodic excitations with a given number of degrees
of freedom dof [28]. The latter quantifies the difference between
the local number of equations (excited frequencies) and the local
number of parameters in the linear least squares estimate of
H0(jωk). Using the noise covariances obtained in Step 1, the
noise variance of Ĥ0(jωk) is calculated. Comparison of the
noise variance with the total variance quantifies the variance of
the stochastic nonlinear distortions YS(k) = DFT(ys(t)).

Step 3 – Finally, following the same lines of [19], nonpara-
metric estimates Ĝp(jωk), p = 0, 1, . . . , Nb, and their noise
and total variances are obtained via (8), where the first and
second order derivatives H(n)

r (jωk), n = 1, 2, are approximated
numerically by (non-)central differences

H(1)
r (jωk) =

+1∑
i=−1

w1,kiHr (jωki) +O
(
T−2

)
(13)

H(2)
r (jωk) =

+1∑
i=−1

w2,kiHr (jωki) +O
(
T−1

)
(14)

(see [20], [29]) with k0 = k, and where the weights w1,ki and
w2,ki are calculated as



w1,k−1 =
jωk1 − jωk(

jωk−1
− jωk

) (
jωk1 − jωk−1

)
w1,k =

−jωk−1
+ 2jωk − jωk1(

jωk−1
− jωk

)
(jωk1 − jωk)

w1,k1 =
jωk − jωk−1

(jωk1 − jωk)
(
jωk1 − jωk−1

)
w2,k−1

=
2(

jωk−1
− jωk

) (
jωk−1

− jωk1
)

w2,k =
2(

jωk − jωk−1

)
(jωk − jωk1)

w2,k1 =
2(

jωk1 − jωk−1

)
(jωk1 − jωk)

Note that for uniformly distributed excited harmonics, the non-
central differences (13) and (14) simplify to the central differ-
ences and the O(T−1) bias in (14) becomes an O(T−2) [31].

C. Bias Error

Since the (non-)central differences (13) and (14) equal
the true derivatives within a bias error of, respectively, an
O(T−2) and O(T−1), and since the bias error of the LPM
estimates Ĥp(jωk), p = 0, 1, . . . , Nb, is an O

(
T−(R+1)

)
,

with R > 2 the order of the local polynomial approximations
of Hp(jω) and TH(jω) [22], [27]; the bias on Ĝp(jωk),
p = 0, 1, . . . , Nb, is an O(T−3) (proof: combine (8), (13), and
(14)).

If a simplified estimate of Gp(jωk), p = 0, 1, . . . , Nb, is
calculated as

Ĝr (s) = Ĥr (s) +
2

T
(2r + 1)

⌊
Nb−r−1

2

⌋∑
i=0

Ĥ
(1)
2i+1+r (s) (15)

then the resulting O(T−2) bias can be estimated as

E
{
Ĝr (jωk)

}
−Gr (jωk) ≈ 4

T 2

⌊
Nb−r

2

⌋∑
i=1

β2i,rĤ
(2)
2i+r (s) (16)

(proof: use (8), (13), and (14)). Note that approximation (15) is
useful if its variance is larger than its bias (16); a condition that
can easily be verified.

VI. ILLUSTRATION ON A TIME-VARIANT ELECTRONIC
CIRCUIT

Although the indirect method described in Section V-B has
extensively been verified on simulations examples satisfying
the assumptions of Section IV (see, for example, [30]), we
prefer to report the results of a measurement example where the
conditions of Section IV have not been imposed by construction.

Figure 6. Time-variant second order bandpass filter consisting of a high gain
operational amplifier (CA741CE), a JFET transistor (BF245B) with gate voltage
p(t), three resistors (R1 = R2 = 10 kΩ and R3 = 470 kΩ), and two capacitors
(C1 = C2 = 10 nF). The electronic circuit is excited by a random phase
multisine and P = 4 multisine periods of the input u(t) and output y(t) signals
are measured.

A. Measurement Setup

The device under test is a second order bandpass filter whose
pole position is modified by the gate voltage p(t) of a JFET
transistor (see Fig. 6). This bandpass filter is a linear parameter
varying circuit with parameter p(t). However, since the gate
voltage p(t) is not used in the estimation procedure, the device
under test acts as a linear time-variant circuit. A random phase
multisine excitation u(t) consisting of F = 8347 harmonics
uniformly distributed in the band [200.27 Hz, 39.997 kHz] (Eq.
(5) with k1 = 42, k2 = 8388, and f0 = 4.7684 Hz), constant
amplitudes Ak, and uniformly [0, 2π) distributed random phases
φk, is applied to the electronic circuit. During the experiment,
the gate voltage changes as

p(t) = p0 + p1((t/T )3 − t/T ) (17)

with T = 4/f0 the experiment duration. Experiments are
performed for three different input rms values 92 mV, 184 mV,
and 368 mV (three different choices of the constant Ak’s in (5))
and five different peak-to-peak variations of the gate voltage 50
mV, 197 mV, 295 mV, 392 mV, and 589 mV (five different
choices of p0 and p1 in (17); see Fig. 7).

The generator (HP E1445A) and data acquisition (HP
E1430A) cards of the VXI measurement setup are synchronized
(coherent sampling: f0 = fsP/N , with fs = 156.25 kHz the
sampling frequency, N/P = 32768 the number of samples per
signal period, and N the total number of acquired samples per
signal), and four periods (P = 4) of the steady state response
are measured for each of the three input rms values and each of
the five peak-to-peak gate voltage values. To reach steady state,
the generation is started before the acquisition and 5 periods are
measured of which the first is removed. To avoid loading of the
electronic circuit, voltage buffers (Zin > 5 MΩ, Zout = 50 Ω)
are put in front of the data acquisition channels (Zin = 50 Ω).

B. Results

All LPM estimates (see Section V-B) are performed with the
following settings: a fourth order (R = 4) local polynomial
approximation of the FRFs and the leakage term in Steps 1
and 2, dofnoise = 200 in Step 1, and dof = 5 in Step 2.
For increasing peak-to-peak variation of the gate voltage p(t),
the significant number of time-variant branches in (4) equals
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Figure 7. Variation of the gate voltage during the experiment. The gate voltage
is of the form p(t) = p0+p1((t/T )3−t/T ), with T the experiment duration (4
multisine periods). The peak-to-peak variation of the five different gate voltages
are, respectively, 50 mV, 197 mV, 295 mV, 392 mV, and 589 mV.

Nb = 6, 7, 8, 9, and 10 for all input rms values. The results are
shown in Figures 8–10.

Fig. 8 shows the estimates of the direct model (4) for the
smallest peak-to-peak variation of the gate voltage and all input
rms values. It can be seen that for increasing input rms values,
the signal-to-noise ratio (SNR) of the estimates increases (light
green to dark green lines in all plots), while the signal-to-
distortion ratio (SDR) decreases (light pink to red lines in the
top left plot). Hence, for the smallest peak-to-peak variation
of the gate voltage the hypothesis that the output can be split
into a nonlinear time-invariant part and a linear time-variant
part (see Definition 2) is fulfilled. This is no longer true for
all other peak-to-peak variations of the gate voltage, which is
illustrated in Fig. 9 for p(t) = 392 mVpp. Indeed, it can be
seen from Fig. 9 that for increasing input rms values the SNR
of the estimates (light green to green lines in all plots) increases
in the band [22 kHz, 40 kHz] while it decreases in the band
[200 Hz, 22 kHz]; a phenomenon that can only be explained
by the nonlinear behavior of the time-variant branches in that
frequency band. This is consistent with the observation that the
time-variants effects are the largest in the band [200 Hz, 22 kHz]
(see Fig. 9, FRFs Gp(jω), p = 1, 3, 4, . . . , 9). Although the
time-variant electronic circuit does not satisfy Definition 2
for the larger peak-to-peak variations of the gate voltage, the
nonlinear behavior is still detected (the light pink/red lines are
still well above the light green/green lines in the top left plot)
and the difference between the total (light pink to red lines) and
the noise (light green to green lines) variances of Ĝ0(jωk) is
now a lower bound for the variance of the nonlinear distortion
YS(k).

Note that Ĝ2(jωk) = 0 for all input rms values and peak-
to-peak variations of the gate voltage (see, for example, Figs. 8
and 9). This can be explained as follows. The time-variant FRF
G(jω, t) depends on the time t via the gate voltage p(t), viz.
G(jω, t) = G̃(jω, p(t)). First order Taylor series expansion of
G̃(jω, p(t)) w.r.t. p(t) gives

G̃(jω, p(t)) ≈ G̃0(jω) + G̃1(jω)p(t) (18)

Combining (17) and (18) shows that G(jω, t) (4) does not
depend on t2 which implies that G2(jω) = 0.

Finally, using the nonparametric FRF estimates Ĝp(jωk),
p = 0, 1, . . . , Nb, a three dimensional plot of the time-variant
FRF G(jω, t) (4) can be drawn. Fig. 10 shows the corresponding
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Figure 8. Nonparametric estimates of the FRFs in the direct model (4) for
increasing input rms values (92 mV, 184 mV, and 368 mV) and 50 mV peak-
to-peak variation of the gate voltage. Black lines: the estimated FRFs Ĝp(jω),
p = 0, 1, . . . , 6; light green to dark green lines: noise variance FRF estimates
for increasing input rms values; and light pink to red lines: total variance FRF
estimates for increasing input rms values.

frequency-time plots for an input rms value of 368 mV and
increasing peak-to-peak variation of the gate voltage (from top
to bottom). As expected, there is a large similarity between
the time-dependency of the time-variant FRFs at the resonance
frequency in Fig. 10 and the gate voltages in Fig. 7.

VII. CONCLUSIONS

An indirect estimation procedure has been presented for
detecting and quantifying the noise level and the level of
the nonlinear distortions in time-variant frequency response
function (TV-FRF) measurements using random phase multisine
excitations. The proposed method is nonparametric in the dy-
namics and parametric in the arbitrary time-variation, and only
requires estimation tools developed for multiple-input, single-
output linear time-invariant systems.

If the actual response of the nonlinear time-variant system can
be split into a nonlinear time-invariant part and a linear time-
variant part, then the quantification of the nonlinear distortion
is exact, otherwise it is a lower bound for the true value. In the
former case the estimated TV-FRF is the best (in mean square
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Ĝ1(jωk)

0 10 20 30 40

−100

−50

0

Frequency (kHz)

A
m

pl
itu

de
 (

dB
)
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Figure 9. Nonparametric estimates of the FRFs in the direct model (4) for
increasing input rms values (92 mV, 184 mV, and 368 mV) and 392 mV peak-
to-peak variation of the gate voltage. Black lines: the estimated FRFs Ĝp(jω),
p = 0, 1, . . . , 9; light green to dark green lines: noise variance FRF estimates
for increasing input rms values; and light pink to red lines: total variance FRF
estimates for increasing input rms values.

sense) linear time-variant approximation of the nonlinear time-
variant system.
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