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Abstract—The estimation of the amplitude of a sine wave
from the sequence of its quantized samples is a typical problem
in instrumentation and measurement. A standard approach
for its solution makes use of a least squares estimator (LSE)
that, however, does not perform optimally in the presence of
quantization errors. In fact, if the quantization error cannot
be modeled as an additive noise source, as it often happens in
practice, the LSE returns biased estimates.

In this paper we consider the estimation of the amplitude of
a noisy sine wave after quantization. The proposed technique is
based on a uniform distribution of signal phases and it does
not require that the quantizer has equally spaced transition
levels. Experimental results show that this technique removes
the estimation bias associated to the usage of the LSE and that
it is sufficiently robust with respect to small uncertainties in the
known values of transition levels.

Index Terms—Quantization, estimation, nonlinear estimation
problems, identification, nonlinear quantizers.

I. INTRODUCTION

Almost all modern instruments acquire data by means
of Analog–to–Digital Converters (ADCs). While technology
has progressed to yield ADCs with increasing performance
in terms of power consumption, effective bits and rate–of–
convergence, the nonlinear transformation implied by the con-
version process may still result in inaccurate estimates of input
signal parameters. In fact, the majority of results associated to
the quantization operation performed by ADCs, are derived by
assuming a perfectly uniform input–output characteristic, with
equally spaced transition levels. When this occurs, the ADC
is termed linear with an obvious semantic abuse, given that
even a uniformly spaced stepwise input–output characteristic
results in a nonlinear transformation of the input signal.
Based on these hypotheses, general properties of quantized
signals are derived that refer to the analysis of spectra [3]–[5],
determination of the effect of dithering both in amplitude– and
in frequency–domains [7]–[10], application of the quantization
theorem [11], analysis of the quantization error probability
density function and estimation of the parameters of a sine
wave using its quantized samples [12], [13].

More evolved models recognize that ADCs, in practice, are
characterized by non–evenly spaced transition levels whose
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value may also vary depending on usage conditions and
environmental factors. Fewer results are available on the char-
acteristics of nonlinearly quantized signals. As an example, an
interesting area of research in this field is represented by meth-
ods for the compensation of the input–output characteristics of
an ADC to reduce the effects associated to the non–uniform
spacing of transition levels [32].

The problem of estimating the amplitude of a sine wave
using its quantized samples is relevant in several engineer-
ing applications: for ADC testing purposes [15][16], in the
estimation of power quality associated to electrical systems
[17], in the characterization of waveform digitizers [18]
and in the measurement of impedances [2], just to name a
few. Quantization is always affected by some additive noise
contributions. The noise may be artificially added, as when
dithering is performed [19], or just be the effect of input–
referred noise sources associated to the behavior of electronic
devices. It is known that small amount of additive noise added
before quantization may linearize the stepwise input–output
characteristics, but that large amount of noise is needed for
the linearization of quantizers with non–uniformly distributed
transition levels [20].

To solve this identification problem, the least squares esti-
mator (LSE) is often used [21][22]. However, the nonlinearity
renders the estimator progressively more biased and far from
optimal, as the ADC characteristics increasingly departs from
uniformity. Previous work on this subject was published in
[23], [24] where a general framework for system identification
based on nonlinearly quantized data is described. In [25] a
similar approach was used to provide estimates of amplitude
and initial record phase of a synchronously sampled sine wave.

In this paper we consider the problem of estimating the
amplitude of a noisy sine wave by using quantized samples.
Data are considered quantized by a device having known
transition levels that are not necessarily uniformly spaced in
the signal input range. It will be shown at first that the LSE
fails to provide unbiased estimates. Then a new estimator
is proposed that does not require coherent sampling nor
knowledge of initial record phase as required by the estimator
presented in [25]. Simulation and experimental results will be
used to show that the new estimator:

• removes most of the bias both when the ADC has uniform
or non–uniform transition levels;

• is capable to estimate the sine wave amplitude even under
severe quantization (e.g., with a 2 bit ADC) and thus,

outperforms the LSE.
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Fig. 1. The signal chain considered in this paper.

II. SIGNALS AND SYSTEMS

The signal chain considered in this paper is shown in Fig. 1.
In this figure,

xn = sin(2πλn+ φ0) n = 0, . . . , N − 1 (1)

represents a known discrete time deterministic sequence with
φ0 as a possibly unknown initial record phase, not to be
estimated, n the time index and λ = f

fs
, the normalized sine

wave frequency, where f is the sine wave frequency and fs
is the sampling rate. Moreover, in Fig. 1, θ represents the
constant sine wave amplitude to be estimated, ηn is a zero–
mean noise sequence with known probability density function
(PDF) and statistically independent outcomes. Observe that in
this case a basic assumption is that the DC level is exactly
zero.

In Fig. 1, Q(·) models the instantaneous effect of the ADC
on the signal. It is characterized by (L− 1) known transition
levels that do not need to be uniformly spaced in the input
range, given by the normalized interval [−1, 1]. If some of
the assumed parameters are unknown, e.g. noise variance or
threshold levels, they need to be estimated during an initial
system calibration phase. Each record, obtained by collecting
quantizer output data, contains N samples yn, n = 0, . . . , N−
1 that are processed by the algorithms analyzed in this paper.

Each ADC output sample can accordingly be modeled as a
random variable taking values in L possible categories with
probability determined by the input sequence, the noise PDF
and the ADC transition levels. Assume also that the quantizer
output is equal to

y[k] := −
(
L

2
− 1

)
∆ + k∆, k = 0, . . . , L− 1,

when its input takes values in the interval [Tk, Tk+1), where
L = 2b, b is the number of bits, Tk is the k–th quantizer
transition level and ∆ is the quantization step. Observe that
if a uniform ADC is considered, Tk = −

(
L−1

2

)
∆ + k∆.

Accordingly, k = 0 and k = L−1 correspond to the quantizer
output being equal to −

(
L
2 − 1

)
∆ and L∆

2 respectively. Also
define the quantization error en = yn − θxn and consider as
negligible the probability that the quantizer input takes values
outside the interval [−1, 1]. When the noise standard deviation
σ = 0, this occurs when the sine wave amplitude obeys the
bound, θ <

(
L−1

2

)
∆.

A. Problem Statement

With the signals and systems defined above, the estimation
problem can be set as follows: estimate the sine wave ampli-
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Fig. 2. LSE: Estimation of the amplitude of a noisy sine wave quantized
with uniform and non–uniform quantizers: (a) LSE estimator bias associated
to the usage of a 10–bit uniform quantizer; (b) INL of a 10–bit non–uniform
quantizer used to obtain data shown in (c); LSE estimator bias associated to
the usage of the 10–bit non–uniform quantizer with the estimated ±1σ band,
graphed using dashed lines (c). Each sample is obtained by using 100 records
of data with N = 2000 and σ = 0.3∆.

tude θ using an N–length sequence of samples obtained by
quantizing a noisy version of the sinusoidal signal.

B. Problem Analysis

The problem described in subsection II-A has been cus-
tomarily addressed by applying the LSE to the available
data. However, the LSE is not proved to be optimal in
the mean–square sense, when data are quantized: estimates
may be affected by bias or minimum estimation variance
is not attained. A major difference occurs if the quantizer
is uniform or is not uniform, i.e. if transition levels are
equally and uniformly spread over the signal input interval.
While reasonable performance is provided by LSE when the
quantizer is uniform, when integral non–linearity (INL) affects
it, traditional estimators become appreciably biased [1]. This
means that, on the average, the difference between estimates
and θ is no longer negligible. To appreciate this effect, consider
Fig. 2, where the estimator bias associated to the estimation of
θ using an ideally uniform (a) and non–uniform (c) quantizer
having INL shown in plot (b), is graphed normalized to ∆ as a
function of θ. A 10–bit monotone quantizer was assumed and
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100 records, each containing 2000 samples of input quantized
data were used to perform Monte Carlo–based simulations.
Zero–mean Gaussian noise having standard deviation equal to
0.3∆ was further assumed. Fig. 2(a) shows that when threshold
levels are uniformly spaced, the estimation bias is negligible
compared to ∆. On the contrary when the INL shown in
Fig. 2(b) affects the quantizer the bias is no longer negligible
with respect to ∆, as shown by data in Fig. 2(c). Since, in
practice, INL almost always affects the quantizer behavior, it
is of interest to propose new estimators for θ.

The bias associated to the behavior of the LSE can be
explained by observing that the LSE does not include in-
formation about the position of the transition levels, since it
only minimizes a figure–of–merit based on the sum of squared
errors. Thus, improvements in estimation performance can
be obtained by including also information about INL when
processing data.

Recall that noise superimposed on the input signal may act
as a dither signal, linearizing the behavior of the quantizer
and thus rendering the LSE closer to optimality when assum-
ing uniform quantizers. However, when the quantizer is not
uniform, the linearization effect induced by small–amplitude
dithering is not effective, as in this case dithering smooths
the input–output characteristics only locally and not over large
input intervals [7][10]. Thus, only a large increase in the noise
standard deviation would have positive effects on the estimator
bias shown in Fig. 2(c), at the expense of a large estimator
variance and of a higher risk of overloading the ADC.

In the next section it is shown how to exploit information
on the INL and thus on the position of the quantizer transition
levels to remove estimator bias. Solutions differ whether
• samples are collected in a small number of groups: this

case was treated in [25];
• samples cover the phase space densely: the simplified

approach taken in [25] cannot be adopted and a new
estimator is presented here that is based on the evaluation
of statistical moments.

III. A MEAN VALUE–BASED ESTIMATOR (MVBE)
Observe that each output sample carries some information

about the parameter to be estimated. In fact by taking into
consideration that for a given time index n and noise sample
ηn the ADC output is determined by the input value being
lower or larger than each transition level, for all transition
levels we can define the indicator variables:

zn,k =

 1 θxn + ηn > Tk n = 0, . . . , N − 1
k = 0, . . . , L− 1

0 otherwise
(2)

Thus, zn,k is a Bernoulli random variable with probability of
success pn,k = 1 − F (Tk − θxn), where F (·) represents the
noise cumulative distribution function. The summation of zn,k
over the entire set of samples available over time provides,

ZN,k =

N−1∑
n=0

zn,k (3)

that is random variable taking values in [0, N ]. Observe that
ZN,k is not a binomial random variable, because the success

probability varies from sample to sample, as xn in the event
in (2) depends on the time index n. Notice also that a single
instance of (3) is an estimator of the mean value of ZN,k, that
can formally be written as:

E(ZN,k) =

N−1∑
n=0

E(zn,k)

=

N−1∑
n=0

[1− F (Tk − θ sin(2πλn+ φ0))]

=

N−1∑
n=0

[
1− F

(
Tk − θ sin

(
2π

〈
λn+

φ0

2π

〉))]
(4)

where E(·) is the expectation operator and 〈·〉 is the fractional
part operator. This expression relates the value of the unknown
parameter θ to E(ZN,k). If the coefficient of variation of
E(ZN,k) is not too large, by the law of large numbers E(ZN,k)
can be estimated by a single instance of (3) and the inversion of
(4) could provide a value of θ once an estimate of E(ZN,k) is
available and all other parameters are known. The numerical
inversion of (4) becomes cumbersome when the number of
samples increases significantly and requires knowledge of both
λ and φ0, when σ > 0. In the next subsection it will be shown
how to remove both limitations and how to obtain a good
approximation when σ ' 0.

A. An Approximation of (4)

Both the inversion of (4) when N becomes large and the
necessity of knowing λ and φ0, result in a procedure that
is difficult to be applied in practice. While writing a simple
exact expression for the sum in (4) appears as a difficult task,
a good approximation can be found either by using the Euler–
Maclaurin formula [26] or the equidistribution theorem [27].
While the Euler–Maclaurin formula still requires knowledge
of λ and φ0, the equidistribution theorem states that for any
function g(·), and coefficients a and b, with a being irrational,
[27]:

lim
N→∞

1

N

N∑
n=1

g (〈an+ b〉) =

∫ 1

0

g(u)du (5)

Thus, when λ is irrational,

lim
N→∞

1

N
E(ZN,k) =

∫ 1

0

[1− F (Tk − θ sin (2πu))] du

=: E(Zk)

(6)

so that, for sufficiently large values of N , E(Zk) can be con-
sidered an approximation of E(ZN,k)

N . Moreover, by defining
U as a uniform random variable in [0, 1], this term can also
be written as

E(Zk) =E ([1− F (Tk − θ sin (2πU))])

=E (1− F (Tk − θX))
(7)
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where X = sin(2πU) is a transformed random variable with a
PDF characterized by an arcsin distribution, whose expression
is given by

fX(x) =


1

π
√

1− x2
−1 < x < 1

0 otherwise
(8)

Thus, from (7) we have:

E(Zk) =

∫ 1

−1

1

π
√

1− x2
[1− F (Tk − θx)] dx (9)

When N is sufficiently large, E(Zk) ' E(ZN,k)
N , as defined in

(4) where E(ZN,k) is estimated by a single instance of ZN,k.
To verify this statement, consider the absolute error sequence
defined as

e(N,R) =

∣∣∣∣∣E(Zk)− 1

NR

R∑
i=1

ZN,k,i

∣∣∣∣∣ (10)

where R represents the number of records, each containing N
samples and ZN,k,i represents the value of ZN,k in the i–th
record. Expression e(N,R) is plotted in Fig. 3 as a function of
N = 103, . . . , 120 · 103 for R = 103, 5 · 104, when assuming
Tk = 1 and θ = 1. Gaussian noise with known variance is
assumed so that F (x) = Φ

(
x
σ

)
, where Φ(·) is the cumulative

distribution function of a standard Gaussian random variable.
It can be observed that for a given number of records R, by
increasing N , overall lower values of the absolute error are
attained.

Observe that E(Zk) does not depend on φ0, the initial
record phase, which does not need to be known. For suf-
ficiently large values of N , ZN,k

N can be made equal to
(9) so that the equality can be solved for θ. To appreciate
how the procedure operates, consider the behavior of (9)
represented in Fig. 4 as a function of θ, for various values
of −0.9 < Tk < 0.9 and assuming zero–mean Gaussian noise
with σ = 1.5∆. For a given value of Tk, the corresponding
curve can be inverted to yield a value for θ once a value on the
y–axis is known. The calculation of E(Zk) over all possible
values of k provides such information.

Observe that curves cannot be inverted in 3 cases: when
E(Zk) = 0, 0.5, 1. Thus, the inversion procedures discards
these values if they are returned by experiments. A special
case is the case E(Zk) = 0.5. When this occurs there are
infinite solutions for θ. This corresponds to the fact that (9)
always provides the value 0.5 when Tk = 0, independently
from the value of θ. Since derivatives of the curves in Fig. 4
with respect to θ are close to 0 when the mean value is close
to 0.5, to maintain a safety margin that will guarantee possible
numerical inversion of (9), all values of E(Zk) such that
|E(Zk) − 0.5| < 0.2 will be discarded, where the threshold
0.2 is determined heuristically. By iterating the inversion of
(9) over all possible values of Tk several estimate of θ results.
The number of such estimates, defined in the following by
M , equals the number of ADC transition levels, diminished
by 1 every time E(Zk) = 0, 1 or |E(Zk) − 0.5| < 0.2. The
above procedure is true for each Tk. Thus, we have estimates
of θ using each transition level. A straightforward combination
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Fig. 3. Absolute value of the approximation error of summation (4) by the
integral (7), e(N,R) as a function of N , for two values of the number of
records R. A single transition value is considered, Tk = 1 with θ = 1.
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Fig. 4. Behavior of (9) as a function of 0.01 < θ < 1 for various values
of −0.9 < Tk < 0.9. For a given value of Tk and for a given estimate of
E(Zk), the corresponding curve is numerically inverted to provide a single
estimate of θ.

of these estimates is their arithmetic mean; a better estimate
can be derived by considering the variance of each singular
estimate. The general estimation procedure is described by the
pseudocode of Algorithm 1 in the table.

As a final remark, consider that the solution is much simpler
when there is no or very little noise that is when σ ' 0. In this
case F (·) can be approximated using a unity step function, so
that (9) can be solved to yield:

E(Zk) ' − 1

π
arcsin

(
Tk
θ

)
+

1

2
, σ ' 0 (11)

By equating (11) to ZN,k

N and solving for θ, when 0.2 <∣∣∣ZN,k

N − 0.5
∣∣∣ < 0.5 we have:

θ̂k '
Tk

sin
[(

1
2 −

ZN,k

N

)
π
] , σ ' 0 (12)

When σ is not negligible, (11) is not accurate, since the arcsin
function needs to be convolved by the noise PDF. In such
cases, a good approximation can be obtained using a Taylor
series expansion of the sin/arcsin function.

IV. ESTIMATOR PROPERTIES

The properties of the MVBE, as resulting from the solution
of (9), were determined both by simulations and measure-
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Algorithm 1 A procedure for the estimation of θ
1: procedure ESTIMATOR(zn,k, Tk, λ, φ0) . Need all Tk’s
2: for k ← 0, L− 1 do . for every transition level
3: for n← 0, N − 1 do . for every sample
4: zn,k ← (count of samples > Tk)
5: end for
6: ZN,k ← 1

N

∑N−1
n=0 zn,k . A count for every k

7: end for
8: M ← 0 . now calculate several estimates of θ
9: for k ← 0, L− 1 do . for every count ZN,k

10: if 0 < ZN,k < 1 and |ZN,k − 0.5| > 0.2 then
11: g(θ) =

∫ 1

−1
1

π
√

1−x2
[1− F (Tk − θx)] dx

12: θ̂M ← θ such that g(θ) = ZN,k . one estimate
13: M ←M + 1 . count the number of estimates
14: end if
15: end for

16: θ̂ ← 1

M

M−1∑
j=0

θ̂j . final estimate as the mean value

17: return θ̂
18: end procedure
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Fig. 5. Simulation results obtained with a monotonous 12–bit non uniform
ADC: (a) INL normalized to ∆ as a function of the code–bin; (b) normalized
absolute estimation error as a function of the sine wave amplitude in the case
of the LSE and of the MVBE.

ments.

A. Simulation Results

Algorithm 1 was first implemented in C–code using the
GNU Scientific Library that was needed for the numerical
calculation of the integral in (9) and for its inversion. A
12–bit non–uniform ADC was simulated by using a resistor
ladder characterized by normally distributed resistance values
to realize the 212−1 transition levels. This approach guarantees
monotonicity of the simulated ADC and allows values of the
INL greater than ∆. The behavior of INL normalized to ∆, is
plotted in Fig. 5(a), as a function of the code bin. Sine waves
with amplitude θ varying between 0.05 and 1 were assumed as
the input signal, and R = 10 records of N = 32193 samples
each were collected and processed with λ = 1050π/N and
σ = 0.21∆. Results obtained by using the LSE and the MVBE
are shown in Fig. 5(b), where the estimator bias normalized
to ∆, is plotted for both cases using a solid and a dashed
line, respectively. It can be observed that the MVBE removes
the bias associated to the behavior of the LSE. In this case,
the additional error associated to the usage of the simplified
version of this estimator provided by (12) is negligible for all
practical purposes with the exclusion of very small values of
θ. In this latter case the number of excited thresholds is limited
and neglecting the effect of noise produces a small detectable
difference between the two estimation approaches.

Consider that, being based on the knowledge of the thresh-
old levels, the MVBE is characterized by a negligible bias even
if severe quantization is performed. To prove this statement
a 2–bit uniform quantizer was assumed and the algorithm
was applied with parameters: σ = 0.12∆, λ = 0.723457,
φ0 = 0.4876, N = 106777. The estimator bias in the case of
the MVBE and the LSE is shown in Fig. 6. The LSE not being
optimal in this case performs very poorly while the MVBE
provides a very good performance.

Finally, the variances of MVBE and LSE were evaluated
against the Cramer–Rao lower bound (CRLB), by assuming
an 8–bit uniform ADC. The CRLB was calculated by the
same approach described in [28], without resorting to the
simplifying assumption introduced by noise model of quan-
tization [11]. Variances were normalized to the corresponding
CRLB as a function of θ/∆. Results based on 100 records
obtained with σ = 0.2∆ and N = 1024 are shown in Fig. 7.
Simulations show that because of its bias, the variance of LSE
becomes smaller than the CRLB for some values of θ/∆.
Conversely, MVBE is capable to reduce the bias at the expense
of a larger than the CRLB variance.

B. Experimental Results

To prove the validity of the MVBE proposed in this paper,
experimental results were obtained using the measurement
chain depicted in Fig. 8. A rubidium source (Standford Re-
search Systems PRS10) controlled the waveform synthesizer
(Agilent 33220A) used to generate the sine wave signal fed to
a 12–bit commercial data acquisition board (DAQ, National
Instruments NI6008). The instruments were connected to a
portable PC using the Ethernet network, while the DAQ
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Fig. 6. Simulation results obtained with a monotonous 2–bit ideally uniform
ADC: normalized estimator bias as a function of the sine wave amplitude
in the case of the LSE and of MVBE (σ = 0.12∆, λ = 0.723457, φ0 =
0.4876, N = 106777).
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Fig. 8. The measurement set–up used to obtain experimental data. The
controlled synthesizer sources a sine wave to the 12–bit data acquisition board,
whose amplitude is measured by the digital multimeter in AC mode. A PC
uses Ethernet and USB to control the measurement chain.
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Fig. 9. Normalized mean value of the DAQ input/output characteristic as
a function of the normalized input voltage (bold solid line). Shown are
also estimated transition voltages normalized to ∆ (thin vertical solid lines).
Experimental results are obtained by averaging 2000 records, each based on
1200 DC input voltage values provided by the synthesizer shown in Fig. 8.
The input was measured by the DMM in averaging mode, to provide the
reference value shown on the x–axis.

board was connected using the Universal Serial Bus (USB).
A 61/2 digit multimeter (DMM, Keithley 8845A) was used
as a reference instrument to obtain an accurate value of
the generated signal amplitude, given that its accuracy is in
the order of 0.06% of the measurement result in the used
measurement range (100 mV). This setup was first used to
estimate the transition levels of the ADC embedded in the
DAQ and its voltage gain. The values of the transition levels,
normalized to ∆ = 5.096 mV are shown in Fig. 9 using thin
solid vertical lines. In the same figure it is shown the mean
input/output characteristics of the DAQ, obtained by averaging
2000 records of 1200 input voltage values, distributed in the
interval [−0.3986, 0.4007] V. The shape of the input/output
curve does not show the typical staircase behavior associated
to a perfect quantizer because of the smoothing effect of
wide–band noise as shown in [7], [29]. Observe also that
the transition voltages are not uniformly spaced, thus causing
nonlinearity in the quantizer.

Also the standard deviation of the equivalent input–referred
noise source σ was determined as being about equal to 0.17∆.
It must be observed that a much larger value of σ resulted
when the screen of the portable PC was used, because of
electromagnetic disturbances. The best measurement condition
was obtained by using an external monitor.

This setup was then used to collect 3 records of N =
287431 samples of a sine wave with frequency 99.3715 Hz,
sampled at a nominal sampling rate equal to 9135 samples
per second, so that λ = 0.0108781 . . . resulted. Records were
taken by varying θ/∆ in the interval (21, 52). In this interval,
the magnitudes of the measured INL and DNL of the DAQ
were all upper bounded by ∆/2, thus making the ADC very
linear.

Processing experimental data highlighted new issues not
previously considered during the modeling phase. Data were
processed both by the LSE method resulting in the sine–fit
algorithm and by the MVBE. In some cases also data post–
processing was performed before applying the LSE. It was
observed that:
• the 3–parameter sine–fit algorithm (amplitude, offset and

initial record phase) did not perform satisfactorily be-
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cause of the uncertainties in the determination of λ,
primarily due to tolerances in the DAQ sampling rate.
Thus, a 4–parameter sine–fit method was used to also
estimate the frequency parameter;

• the performance of the sine–fit algorithm in estimating the
sine wave amplitude depended on whether data were or
were not corrected for the effect of the ADC gain that was
about equal to 1.001; since uncompensated data resulted
in a worse performance, data were first compensated for
the effect of the gain before applying the LSE;

• before applying the LSE data could alternatively be post–
processed to correct the ADC behavior for the non–
uniform distribution of the transition level. This was done
by applying the midpoint correction technique to raw
ADC data [30][31][32]. Accordingly, to the k–th output
code was assigned the value 1

2 (Tk+Tk+1), with Tk, Tk+1

being the corresponding code boundary transition levels,
so to guarantee that an ideal 45◦ line would pass through
the centers of all steps in the ADC quantization input–
output characteristic [30].

The performance comparison between estimators is shown in
Fig. 10 where the bias, i.e. the mean error, associated to
the usage of both the sine–fit and the MVBE are displayed.
Graphs show that the MVBE almost uniformly reduces the
bias even in this case, when the magnitude of the INL and
DNL of the considered ADC are very small. The difference
in performance would be much larger with an ADC with a
more severe nonlinear behavior. Observe also that the MVBE
is even slightly superior over the 4–parameter sine fit based
on midpoint–corrected data. The ratio between the squared
bias summed over all records and values of θ is about equal
to 0.75, in favor of the MVBE. This can be explained by
the fact that the midpoint correction is optimal according
to the Lloyd’s approach [33], only when the input signal
has a PDF that is constant within the quantization bin. This
happens, for instance, when the input amplitudes are uniformly
distributed as when using a deterministic ramp signal [32].
Observe also that, data post–processing using the midpoint
correction would not however be able to remove the effects of
coarse quantization, resulting in a poor behavior of the LSE,
as shown in Fig. 6.

V. CONCLUSION

Direct processing of the codes provided by an ADC to
estimate parameters associated to ADC input quantities may
result in biased estimators, especially when using non uniform
quantizers. In this paper we considered the problem of esti-
mating the amplitude of a sine wave by means of a set of
its samples quantized using a non uniform ADCs. By taking
into account knowledge about the actual ADC transition levels
it was possible to show that the proposed technique removes
most of the bias associated to the usage of more traditional
estimators such as the leasts square one. Both simulation and
experimental results were used to verify the new estimator
properties under several different values of the noise standard
deviation. Observe that only overall statistical information on
the signal amplitudes in the form of a probability density
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sine-fit with gain-only compensation
sine-fit with midpoint correction
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Fig. 10. Experimental results based on a 12–bit commercial data acquisition
board: estimator bias as a function of the sine wave amplitude θ, both
normalized to a nominal value ∆ = 5.096 mV. Comparison between the
performances of the MVBE and of 4–parameter sine–fit estimator based on
gain–compensated or post–processed data. Post–processing is performed using
the midpoint correction approach [30][31][32]. Results obtained by averaging
3 records each containing N = 287431 samples obtained at a nominal sine
wave frequency of 99.3715 Hz and sampled at a nominal rate of 9135 samples
per second. Input noise standard deviation was estimated as 0.17∆. The ADC
transition levels and amplitude gain were estimated in a preceding calibration
phase.

function was considered by the estimator proposed in this
paper. By including also time–related information among input
samples and thus using knowledge about the correlation of
processed data, further accuracy improvements are expected.

The idea presented here can be generalized to other types
of input signals and suggests that processing ADC output data
by also incorporating knowledge about the position of the
transition levels provides superior performance over the usage
of code–domain only approaches.
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