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Abstract— This paper proposes a simplified Volterra model able to represent the steady-state behavior of nonlinear systems in quasi-
sinusoidal conditions. A wide class of nonlinear systems can be modeled using the conventional Volterra approach, but as the order of 
nonlinearity or the memory length increases, the number of coefficients grows exponentially, thus making the identification of the Volterra 
model troublesome. By considering a system whose input is a periodic signal containing a main frequency component which is much 
higher than the others, it is possible to drastically reduce the number of coefficients of its frequency-domain Volterra model without 
affecting the model accuracy. The proposed technique is particularly suitable to represent the behavior of the electrical devices connected 
to the ac mains, since they typically operate in quasi-sinusoidal conditions. In particular, its application to voltage and current transducers 
takes on great importance in the field of instrumen-tation and measurement, since it allows overcoming their usual characterization. Thanks 
to the proposed model, dynamics and nonlinearities can be considered simultaneously, while avoiding the complexity usually associated 
with the conventional Volterra approach. For example, the proposed technique is applied to model a Hammerstein system, which is often 
employed to represent the behavior of electrical devices, and the results are deeply discussed.

Index Terms— Nonlinear systems, nonlinearities, power quality, quasi-sinusoidal conditions, system identification, testing, transducers, 
Volterra series.

I. INTRODUCTION

It is well known that all physical systems are inherently 
nonlinear to some extent. The study and the identification of
nonlinear systems are somewhat complicated and nonintuitive,
especially when compared with the straightforwardness of the
well-known theory of linear time-invariant (LTI) systems [1].
For this reason, whenever is possible, scientists and engi-
neers try to approximate nonlinear phenomena using linear
models [2], [3]. In some cases, the weakness of the nonlinear
behavior for a given range of the input signals makes this
approximation acceptable with respect to the target accuracy.
Unfortunately, in other cases, the aforementioned approach
cannot be applied, for example, when the required accuracy 
cannot be met or the nonlinear effects have to be investigated, 
and therefore, nonlinear modeling necessarily has to be faced.
Knowledge about the system allows one to write a set of 
equations containing a (limited) set of parameters to be 
determined that is able to describe its behavior with enough 
detail. Often, this is not possible due to the lack of information 
about the physical insight of the system, therefore it has to be 
treated as a black box, namely, as a mere (nonlinear) relation 
between the input and the output [4]. Among the several 
nonparametric approaches to nonlinear system identifi-cation 
[4]–[6], one of the most widely used is the discrete-time 
Volterra series [7], named after the mathematician Volterra 
[8]. A finite-order Volterra system is defined by its kernels, 
and each of them consists of a set of coefficients whose 
number rapidly grows with the kernel order and the memory 
length [9]; therefore, identifying a Volterra model means 
computing this large number of coefficients.

 Although techniques capable of substantially reducing the 
number of coefficients have been proposed in [10] and [11], in 
usual applications, only low-order Volterra models are 
employed; otherwise, this number can still be extremely high 
and the model identification process critical.

On the other hand, one of the advantages of the Volterra 
approach lies in the fact that using the multidimensional 
Fourier transform, it is possible to derive a frequency domain 
representation [7], [12]. This formulation becomes particularly 
interesting when just the steady-state response to a multitone 
excitation has to be computed, since it leads to a consistent 
reduction in the number of coefficients. Moreover, it should be 
noticed that some nonlinear systems are fed with an input 
signal containing a frequency component whose amplitude is 
much larger than the others. In this paper, this property will be 
exploited to further reduce the number of coefficients 
characterizing the nonlinear model. Its identification can be 
carried out by applying proper quasi-sinusoidal input signals 
and using the ordinary least squares estimator. The accuracy of 
the proposed simplified model will be discussed through an 
example.

Quasi-sinusoidal conditions are typical of the electrical 
components connected to the ac mains. Therefore, the pro-
posed method is particularly suitable for the modeling of these 
devices. For example, the approach can be used to characterize 
the behavior of current and voltage transducers in the presence 
of harmonic distortion. Together with a medium voltage gen-
erator previously developed in [13]–[15], the method allows 
a model-driven evaluation of the metrological performance of
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instrument transformers. In other words, it permits overcoming
the conventional approach based on ratio and angle errors
and on the measurement of the frequency response function,
which are not applicable in the presence of distorted input and
nonlinear effects.

In Section II, the general theory of the Volterra models is
briefly recalled, and in Section III-A, the proposed simplifi-
cation is presented. Then, Section III-B reports the procedure
to identify the coefficients of the model, which is applied to a
simple nonlinear system in Section IV in order to discuss its
accuracy.

II. VOLTERRA APPROACH

Nonlinear time-invariant (NTI) systems are often modeled
by following the Volterra series approach. According to this
approach, the input/output relation for continuous single-input
and single-output (SISO) homogeneous NTI systems can be
expressed as

y(t) =
∞∑

i=1

yi (t)

yi (t) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
hi (τ1, . . . , τi )x(t−τ1) . . . x(t−τi)

× dτ1 . . . dτi (1)

where x and y are the system input and output, respectively.
According to (1), y is the sum of an infinite number of
terms yi . Each yi is the contribution of a nonlinear homo-
geneous subsystem of order i , and it can be evaluated by
considering the generalized convolution integral of the same
order. The core of the generalized convolution integral is
the function hi (τ1, . . . , τi ), which is called i th order Volterra
kernel. This function can be considered as a higher order
impulse response of the system. Since the integrals in (1) are
not bounded, from a theoretical point of view, the memory
length of each kernel is infinite.

In this paper, the focus is on the modeling of causal and
discrete NTI systems. The causality is a common property of
all physical systems. On the other hand, the interest in discrete
systems is justified by the fact that inputs and outputs are
measured by means of analog-to-digital converters (ADCs),
and therefore, their values are known only for discrete time
instants.

From a practical point of view, when (1) is employed to
model NTI systems, only a finite number of yi contributions
can be considered, i.e., order i has to be upper limited to a
finite number I . Moreover, since each kernel of order i has
to be of finite length, the memory length also has to be upper
limited to a finite number K . Starting from these considera-
tions, the following truncated Volterra series is obtained:

y(n) =
I∑

i=1

yi (n)

yi (n) =
K−1∑

k1=0

· · ·
K−1∑

ki =0

hi (k1, . . . , ki )x(n − k1) . . . x(n − ki ).

(2)

According to (2), the input/output relation is fully represented
by I Volterra kernels of finite length and therefore, by a finite
number of coefficients. The total number of coefficients ctot
can be found [9] as

ctot =
I∑

i=0

K i . (3)

A significant drawback of the Volterra representation is high-
lighted in (3). The total number of coefficients ctot grows
rapidly (exponentially) as I and K increase. As a result, a
huge number of coefficients has to be handled even for limited
values of I and K .

Of course, not all of these coefficients are independent.
The number of independent coefficients can be obtained by
considering that every Volterra system can be represented by
means of infinite kernels, but by a unique set of symmetric
kernels hi

sym. A Volterra kernel of order i is said to be
symmetric when its value is invariant under permutations of
its indices k1, . . . , ki . Therefore, when hi

sym is employed, the
number of independent coefficients for each order i is given
by the i -combination with repetitions of K elements [9], such
that the total number of independent coefficient is

ctot,ind =
I∑

i=0

(K + i − 1)!
(K − 1)!i ! . (4)

Even if ctot,ind is lower than ctot, it may result in an extremely
large number. For this reason, the identification of Volterra
model (2) is, in most circumstances, very complex, unless
low orders and short memory length are considered [10], [16].
This limits the practical application of the approach to mildly
nonlinear systems.

III. PROPOSED SIMPLIFIED VOLTERRA MODEL

A. Model Definition

Under suitable assumptions, the Volterra model (2) can
be drastically simplified by reducing the number of coeffi-
cients. The first one concerns the periodicity of the input
signal x . When the input signal is periodic, with fundamental
angular frequency ω0, computing the steady-state response
of the system is relatively straightforward by considering
the frequency domain expression of (2). Assuming that the
highest significant harmonic component in the spectrum of
the input signal X ( jnω0) is in position n = N , a generic
harmonic component Y ( jmω0) of the output signal can be
found as

Y (m) =
I∑

i=1

Y i (m)

Y i (m) =
∑

−N≤n1,...,ni ≤N

H i
sym(n1, . . . , ni )X (n1) . . . X (ni ) (5)

where

n1 + · · · + ni = m. (6)

The compact notation Y (m) and X (n) is used in (5) in
place of Y ( jmω0) and X ( jnω0), where m and n are the



harmonic orders of the output and input spectral components,
respectively. H i

sym corresponds to the i -D Fourier transform of
the symmetric Volterra kernel of order i , and it is often called
generalized frequency response function (GFRF).

According to (5), the mth harmonic component of the output
is the sum of the contributions of I subsystems of order i .
For each order i , the subsystem contribution is given by all
possible intermodulation products between the input harmonic
components X (n1) . . . X (ni ), such that n1 + · · · + ni = m,
weighted by the GFRF H i

sym(n1, . . . , ni ).
Following (5), the number of coefficients for each

order i is again given by the i -combination with repetitions
of M = 2N + 1 elements, such that the total number of
coefficient is again given by (4), where K has now to be
replaced with M . This is the main advantage of the frequency
domain approach (5). In fact, in the time domain approach (2),
the memory length K has to be selected according to the
system dynamics, which can also be very slow with respect to
the sampling frequency. On the other hand, in the frequency
domain approach (5), the number of harmonic components M
has to be selected considering the harmonic content of the
input signal, which in most practical cases is considerably
lower than K . It follows that the number of coefficients
needed to compute the steady-state response in the frequency
domain is much smaller than that required in the time
domain.

Approach (5) can be further simplified by considering that,
in this paper, it is applied to NTI systems fed with an input
signal containing a frequency component whose amplitude is
much larger than the others, i.e., matching the quasi-sinusoidal
assumption.1 This is the case of the electrical devices con-
nected to the mains and, in particular, current and voltage
transducers. Let us assume that the fundamental X (1) and its
complex conjugate X (−1) are the greatest harmonic compo-
nents of the input signal. In this case, for a generic order i ,
all the intermodulation products that consider more than once
a harmonic component different from X (1) and X (−1) give
a negligible contribution to the output y, considering (5).
In other words, the contribution of a specific intermodulation
product of order i is significant only if i − 1 harmonic
components correspond to the fundamental component X (1)
or to its complex conjugate X (−1). Following these consid-
erations, the input/output relation (5) up to the i th order can
be found by considering i p times the fundamental positive
harmonic component X (1), im times the fundamental negative
component X (−1), and just once a generic component X (n):

Y (m) =
I∑

i=1

Y i (m)

Y i (m) =
∑

−N≤n≤N

H i
sym

⎛

⎜⎝1, . . . , 1︸ ︷︷ ︸
i p

,−1, . . . ,−1︸ ︷︷ ︸
im

, n

⎞

⎟⎠

×X (1)i p X (−1)im X (n) (7)

1At this stage, only a qualitative definition of the considered quasi-sinusoidal
assumption can be provided. A quantitative definition will be provided
a posteriori, at the end of this section.

where due to (6) and considering the i th order

{
i p − im + n = m
i p + im + 1 = i.

(8)

For the sake of simplicity, it is advisable to express H i
sym as

a function of numbers i p and im as

H i
sym

⎛
⎜⎝1, . . . , 1︸ ︷︷ ︸

i p

,−1, . . . ,−1︸ ︷︷ ︸
im

, n

⎞
⎟⎠ = H i

sym(i p, im, n). (9)

According to (7), a further reduction in the number
of coefficients is obtained, which is now M times the
(i − 1)-combination with repetitions of elements 1 and −1

c′
tot =

I∑

i=0

M
(2 + (i − 1) − 1)!
(2 − 1)!(i − 1)! = M

I∑

i=0

i = M
I (I + 1)

2

= M · L . (10)

Not all of these coefficients are independent due to the com-
plex conjugate symmetry of the two spectra X and Y . Even
neglecting these symmetries, by comparing (10) with (4), it
can be immediately concluded that under specific assumptions
on the spectrum of the input signal, a drastic reduction in the
number of coefficients has been obtained.

To further clarify the proposed approach, a specific non-
linearity order I has to be chosen; in this paper, I = 5
is considered. It is worth noting that this choice has no
theoretical implications about the validity of the proposed
method. In fact, all the following equations can be refor-
mulated considering a different order I . Having thus set the
nonlinearity order, (7) can be expressed with a compact matrix
equation

Y (m) = X(m)H(m) (11)

where

X(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (m)

X (1)X (m − 1)

X (−1)X (m + 1)

X2(1)X (m − 2)

X2(−1)X (m + 2)
X (1)X (−1)X (m)

X3(1)X (m − 3)
X3(−1)X (m + 3)

X2(1)X (−1)X (m − 1)

X (1)X2(−1)X (m + 1)

X4(1)X (m − 4)

X4(−1)X (m + 4)

X3(1)X (−1)X (m − 2)
X (1)X3(−1)X (m + 2)

X2(1)X2(−1)X (m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T



H(m) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H 1
sym(0, 0, m)

H 2
sym(1, 0, m − 1)

H 2
sym(0, 1, m + 1)

H 3
sym(2, 0, m − 2)

H 3
sym(0, 2, m + 2)

H 3
sym(1, 1, m)

H 4
sym(3, 0, m − 3)

H 4
sym(0, 3, m + 3)

H 4
sym(2, 1, m − 1)

H 4
sym(1, 2, m + 1)

H 5
sym(4, 0, m − 4)

H 5
sym(0, 4, m + 4)

H 5
sym(3, 1, m − 2)

H 5
sym(1, 3, m + 2)

H 5
sym(2, 2, m)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

According to (11), all the output harmonic compo-
nents Y (m) are generated by independent sets of intermodula-
tion products of the input harmonics X (n). Since the indices
of the input harmonics are limited, by assumption, in the range
−N ≤ n ≤ N , the indices of the output harmonics generated
according to (11) are limited in the range −N − 4 ≤ m ≤
N + 4. However, not all of these harmonic components have
to be evaluated. In fact, by exploiting the complex conjugate
symmetry of the spectrum Y , it is sufficient to evaluate Y (m)
in the subinterval 0 ≤ m ≤ N + 4.

In general, for the fifth-order Volterra model (11), the
value of a single harmonic component Y (m) is provided
by 15 coefficients Hsym. However, due to the assumption
of the input spectrum X (n) being limited in the range
−N ≤ n ≤ N , vectors X(m) and H(m) have no full length
for some indices m. For example, let us consider the last
harmonic component produced by the considered Volterra
system: m = N + 4. For this component, (11) reduces to

Y (N + 4) = X(N + 4)H(N + 4)

= X4(1)X (N)H 5
sym(4, 0, N). (13)

In other words, the last harmonic component is produced
by the single intermodulation product of fifth order which
considers four times the fundamental input harmonic X (1)
and one time the last input harmonic X (N), and therefore,
the single coefficient H 5

sym(4, 0, N) is associated with this
harmonic component.

Moreover, for some m values, the coefficients H i
sym may

be mutually dependent. In fact, considering the invariance
of H i

sym to the permutation of the harmonic indices, four
constraints can be identified for the fifth-order Volterra model

H 3
sym(1, 1, 1) = H 3

sym(2, 0,−1)

H 4
sym(2, 1, 1) = H 4

sym(3, 0,−1)

H 5
sym(3, 1, 1) = H 5

sym(4, 0,−1)

H 5
sym(2, 2, 1) = H 5

sym(3, 1,−1). (14)

These constraints can be easily identified since
the intermodulation products corresponding to the
H i

sym pairs in (14) are equal. To eliminate the
dependence, these intermodulation products have to
appear once and, therefore the H i

sym coefficients
in the right side of (14) are excluded from the model.
By excluding these coefficients, the shortened vectors
Xred(m) and Hred(m) are obtained, and thus, (11) becomes

Y (m) = Xred(m)Hred(m). (15)

Other constraints can be identified for the output dc com-
ponent Y (0). Being y a real output signal, Y (0) has to be a
real number. Therefore, the contribution of each order in (11)
for m = 0 has to be real. By imposing this condition and con-
sidering the complex conjugate symmetry of the spectrum X ,
some constraints are obtained for coefficients H i

sym for m = 0.
In order to identify these constraints, X(0) and H(0) have to
be rewritten as real vectors

Y (0) = X0H0 (16)

where

X0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (0)

2X (1)X (−1)

2 Re(X2(1)X (−2))

−2 Im(X2(1)X (−2))
X (1)X (−1)X (0)

2 Re(X3(1)X (−3))

−2 Im(X3(1)X (−3))

2X2(1)X2(−1)

2 Re(X4(1)X (−4))

−2 Im(X4(1)X (−4))

2 Re(X3(1)X (−1)X (−2))
−2 Im(X3(1)X (−1)X (−2))

X2(1)X2(−1)X (0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H 1
sym(0, 0, 0)

H 2
sym(1, 0,−1)

Re(H 3
sym(2, 0,−2))

Im(H 3
sym(2, 0,−2))

H 3
sym(1, 1, 0)

Re(H 4
sym(3, 0,−3))

Im(H 4
sym(3, 0,−3))

H 4
sym(2, 1,−1)

Re(H 5
sym(4, 0,−4))

Im(H 5
sym(4, 0,−4))

Re(H 5
sym(3, 1,−2))

Im(H 5
sym(3, 1,−2))

H 5
sym(2, 2, 0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Thus, (15) and (16) represent the proposed approach for
the characterization of nonlinear systems with quasi-sinusoidal



input. Starting from the definition of this approach, it is now
possible to give a more quantitative definition of the consid-
ered assumption of quasi-sinusoidal input signal. Considering
a given target accuracy in the estimated output spectrum,
the input signal is quasi-sinusoidal when the output spectrum
predicted by the proposed model differs from that of the
complete Volterra model by less than the target accuracy.

B. Model Identification

In order to characterize nonlinear systems by means
of (11), Hred(m) and H0 have to be identified by invert-
ing (15) and (16). Considering a single input signal x and
its response y, these expressions are heavily underdetermined
since the (unitary) ranks of Xred(m) and X0 are much smaller
than the maximum lengths of Hred(m) and H0, i.e., the
maximum number of coefficients that have to be identified.
For the considered fifth-order model, this number L is 15; for
a generic order I , L = I · (I + 1)/2, in accordance with (10).

On the contrary, a proper identification of the coef-
ficients requires that the ranks of Xred(m) and X0 are
greater than the lengths of Hred(m) and H0. This can
be obtained by measuring the responses yact

1 , . . . , yact
L to

a suitable set of at least L input signals x1, . . . , xL .
Of course, models (15) and (16) need to be rewritten con-
sidering the multiple input signals

Yid(m) = Xred
id (m)Hred(m) (18)

Yid(0) = X0
idH0 (19)

where Xred
id (m), Yid(m) and X0

id, Yid(0) are constructed by
concatenating the respective vectors obtained for a single
signal

Xred
id (m) =

⎡

⎢⎢⎢⎢⎢⎣

Xred
1 (m)

Xred
2 (m)

...

Xred
L (m)

⎤

⎥⎥⎥⎥⎥⎦
Yid(m) =

⎡

⎢⎢⎢⎣

Y1(m)
Y2(m)

...
YL(m)

⎤

⎥⎥⎥⎦ (20)

X0
id =

⎡
⎢⎢⎢⎢⎣

X0
1

X0
2

...

X0
L

⎤
⎥⎥⎥⎥⎦

Yid(0) =

⎡
⎢⎢⎢⎣

Y1(0)
Y2(0)

...
YL(0)

⎤
⎥⎥⎥⎦. (21)

Supposing that the considered input signals are chosen
so that Xred

id (m) and X0
id are, at least, of full rank L, the

coefficients Hred(m) and H0 can be estimated using the
least square approach, i.e., by computing the Moore–Penrose
pseudoinverse of Xred

id (m) and X0
id. This corresponds to min-

imize, for the different spectral components m (including
m = 0), the quantity

N2(m) = ‖Yid(m) − Yact(m)‖2 (22)

where Yact(m) is concatenated as Yid(m) in (20) and (21), but
starting from the spectra Y act

1 , . . . , Y act
L of the actual responses

yact
1 , . . . , yact

L , while ‖ · ‖ denotes the l2-norm of the complex
vector.

k(x) G(s)x(t) y (t)act

Fig. 1. Block diagram of a Hammerstein system.

TABLE I

COEFFICIENTS OF THE POLYNOMIAL FUNCTION k(x)

Fig. 2. Polynomial function k(x).

To prove the effectiveness of approach (11) and its iden-
tification procedure, in Section IV, the characterization of a
simple nonlinear dynamic system is considered.

IV. EXAMPLE

In Section III, a simplified approach allowing the modeling
of nonlinear SISO systems driven by quasi-sinusoidal signals
has been proposed. In this section, the technique is applied to
compute the frequency-domain model of a simple nonlinear
dynamic system in these conditions. A Hammerstein model is
considered here, since it is often used to represent many non-
linear systems, such as power converters, electrical machines,
transducers, and ADCs [17]–[20]. This model is composed by
the cascade of a static nonlinearity and of an LTI system [21],
as shown in Fig. 1. The proposed approach is here applied to a
Hammerstein system whose static nonlinearity is represented
by a fifth-order polynomial function k of the input x

k(x) = α5x5 + α4x4 + α3x3 + α2x2 + α1x + α0 (23)

whose coefficients are reported in Table I. The values of k(x)
in the considered input range are plotted in Fig. 2.

Furthermore, let us suppose that the dynamic part of the
system is represented by a transfer function G(s) characterized
by three poles and a zero

G(s) =
g ·

(
s
ωz

+ 1
)

(
s

ωp1
+ 1

)
·
[(

s
ωp2

)2 + 2ξ
ωp2

s + 1

] . (24)

Its parameters can be found in Table II and its magnitude and
phase response are shown in Fig. 3.

According to Section III-A, when the considered input
signal is quasi-sinusoidal, the Hammerstein model can be
represented following the proposed approach (11). It can
be proved [7] that when the static nonlinearity of the



TABLE II

PARAMETERS OF THE TRANSFER FUNCTION G(s)

Fig. 3. Magnitude and phase response of G(s).

Fig. 4. Magnitude and phase of input identification signals (blue dashed lines)
and input test signal (green lines).

Hammerstein model consists in a I th order polynomial
function, the model is exactly represented by a I th order
Volterra system. Therefore, an order I = 5 is first chosen.
Moreover, according to Section III-B, this system can be
identified by means of 15 independent signals. Of course, the
power spectra of the identification signals should match the
quasi-sinusoidal assumption. A possible set of identification
signals is shown in Fig. 4 (blue dashed lines). It consists
of 15 signals that have been obtained by imposing that all
harmonic components have the same magnitude, equal to
a fraction (1%) of the fundamental amplitude, and random
phases, generated according to a uniform probability density
function in the range [0, 2π].

Starting from the system responses to the identification
signals, the coefficients Hred(m) and H0 can be estimated in
a least square sense. In order to quantify the goodness of this
estimate, the following definitions of residual errors can be

Fig. 5. Residuals ε and ε1.

considered:

ε(m)= ‖Yid(m)−Yact(m)‖
‖Yact(m)‖ ε1(m)= ‖Yid(m)−Yact(m)‖

‖Yact(1)‖ .

(25)

That is, ε represents the residuals normalized over the mag-
nitude of each harmonic component and ε1 represents the
residuals normalized over the magnitude of the fundamental
harmonic component. These errors are shown in Fig. 5.
Of course, ε is not evaluated for negligible harmonic compo-
nents of the output signal, i.e., with amplitude lower than one
thousandth of the fundamental component (−60 dB). These
harmonics fall in positions m = 6, 8, 9 corresponding to f =
300, 400, 450 Hz, having considered a fundamental frequency
f0 = 50 Hz. The maximum ε value is 0.03%, obtained for the
seventh harmonic. For the same component, ε1 is significantly
lower than ε, meaning that this component has an extremely
small amplitude with respect to the fundamental amplitude.
The small values of the residuals confirm the validity of
the proposed simplified model. In fact, since the considered
Hammerstein system is exactly represented by a fifth-order
Volterra model, the residuals shown in Fig. 5 are only due to
the intrinsic approximation of the proposed approach.

Once the coefficients Hred(m) and H0 are identified, one
can compute the estimated magnitude and phase response
Y (m) to an input test signal. The spectrum of the considered
test signal is shown in Fig. 4 (green lines). The magnitudes
of the harmonics are slightly different from those in the
identification signals, while their phases are set to zero. The
estimated output is shown in Fig. 6 (green lines) where it is
also compared with the actual magnitude and phase response
Y act(m) (red dashed lines). Fig. 6 shows that the magnitude
and phase estimates are very close. In particular, the predicted
magnitude is noticeably different from the actual one only
for output harmonic component with a negligible amplitude,
i.e., lower than −60 dB with respect to the fundamental
component.

Starting from Y (m) and Y act(m), it is possible to compute
the total vector error (TVE) as

ξ(m) = |Y (m) − Y act(m)|
|Y act(m)| ξ1(m) = |Y (m) − Y act(m)|

|Y act(1)|
(26)



Fig. 6. Magnitude and phase of the estimated Y (m) (green lines) and actual
Y act(m) (red dashed lines).

Fig. 7. TVE and TVE1.

Fig. 8. TVE and TVE1 in the Y ( jω) estimate for I = 5 (green circles),
I = 4 (blue squares), and I = 3 (red triangles).

where | · | denotes the magnitude, ξ represents the TVE
normalized over the magnitude of each harmonic component,
and ξ1 represents the TVE normalized over the magnitude
of the fundamental harmonic component. These errors are
shown in Fig. 7. Once again, it is proved that approach
(11) provides an effective nonlinear model of the considered
Hammerstein system.

Finally, the model robustness to the considered order I is
discussed, since, in the practical applications, this order is
often lower than that of the physical system. Fig. 8 shows the
resulting ξ and ξ1 values when the fifth-order Hammerstein

system is undermodeled, namely, modeled by considering an
order I = 4 and I = 3. For I = 4 (blue squares), the
estimates of the harmonic components in positions m = 5, 7
( f = 250, 350 Hz) get worse since some relevant intermod-
ulation products are neglected in this model. For example,
for the fifth harmonic, ξ increases from 0.7% to 9.2%,
while ξ1 rises from 0.02% to 0.23%. On the other hand,
the estimates of the other components are not affected. For
I = 3 (red triangles), also the estimate of the fourth har-
monic gets worse, since ξ and ξ1 become 12.6% and 0.11%,
respectively (1% and 0.01% using the fifth-order model).
Therefore, for this component, the contribution of the
fourth-order intermodulation product of the input fundamental
harmonic component is significant.

According to these results, the model remains stable also
in case of severe undermodeling. In these conditions, the
TVE values can noticeably increase for some harmonic com-
ponents. Of course, these values are acceptable (or not)
depending on the desired target accuracy. In other words, the
final user of the simplified model shall find a compromise
between the increase in the complexity of the model (its
number of coefficients is approximately proportional to the
square of the order, in accordance with (10)) and the loss of
accuracy due to undermodeling.

V. CONCLUSION

In this paper, a simplified Volterra-based steady-state model,
specifically devised for nonlinear systems operating under
quasi-sinusoidal conditions, has been presented. In general, the
main drawback of Volterra models is related to their intrinsic
complexity, which, from a practical point of view, restricts the
model applicability to weakly nonlinear systems or with small
memory length. In this respect, the key feature of the proposed
approach is the drastic reduction in the number of coefficients,
which has been achieved by exploiting a peculiarity of the
input signal, thus making it applicable to a wider class of
nonlinear systems.

The proposed technique has been applied to the modeling
of a Hammerstein system capable of representing the behavior
of a wide variety of nonlinear devices. According to the
simulations, the model provides an accurate estimate of the
output harmonic components by considering all nonnegligible
intermodulation products of the input harmonic components.

A possible application of this method is the modeling
and testing of voltage and current transducers employed in
the mains power grid, since they typically operate in quasi-
sinusoidal conditions. In this case, the proposed technique
allows overcoming the conventional characterization of these
devices, which is not suited to deal with distorted input
and nonlinear phenomena. It is worth reminding that a more
accurate testing of these transducers is extremely important
in power quality applications, where the measurement of the
harmonic components may also involve economic issues.
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