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Curvature and Vibration Sensing Based on
Core Diameter Mismatch Structures
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Abstract— Core diameter mismatch structures are proposed
and experimentally investigated for curvature and vibration
sensing. Two configurations are suggested, one approach uses
a structure formed by splicing an uncoated short section of
multimode fiber between two standard single-mode fibers (SMFs)
single-mode-multimode-single-mode (SMS), combined to a fiber
optical mirror at its end, and the other approach uses a structure
made by splicing a section of SMF between two multimode
fibers (SMSMS). In the curvature analysis, the proposed SMS
sensor generates the destructive interference patterns when it is
bent, varying only the attenuation of the optical signal without
wavelength shifts. The SMSMS vibration sensor proved to be
suitable to monitor very low frequencies such as 0.1 Hz. The
configuration of the proposed sensors presents several interesting
features, such as easy fabrication, low cost, high efficiency, and
high sensitivity. These advantages make such sensors very useful
in a wide range of applications, for instance, structural health
monitoring.

Index Terms—Core diameter mismatch (CDM), optical
curvature sensor, optical vibration sensor, single-mode—
multimode-single-mode (SMS), SMSMS.

I. INTRODUCTION
ECENT advances and cost reductions in optical devices
have stimulated the interest in optical fiber sensors
applied to measure the physical and mechanical parameters,
mainly because of potential applications in several fields, for
instance, structural health monitoring (SHM) [1]-[3]. In this
case, real-time measurements of strain, curvature, vibration,
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and other parameters are crucial for identification, localization,
and quantification of structural damages, and also improve the
maintenance and safety of the monitored structures [4]-[7].

Among the aforesaid parameters, the curvature and vibra-
tion measurements are important to monitor due to their
relationship with the dynamic responses of engineering
structures [8]-[11]. Curvature sensors appear as an alternative
to strain gauges for SHM applications [12], for example, in
the evaluation of a curvature deflection. The usage of electrical
or optical strain gauges to measure the mechanical strain
on the structural surface becomes too expensive when small
deflections must be measured as, in this case, a very high
resolution is required [13]-[15]. Curvature measurements can
be performed at any location across the cross section and
provide an indication of any change in the stiffness of a
structure subject to bending [9], [10], [13]-[15]. Therefore,
curvature sensors are used with the advantage that the curva-
ture deflection does not depend on its structural thickness.

In turn, vibration sensors are essential for the structural
assessment, needful in the early detection of anomalies to
avoid malfunction or collapses [4], [11]. However, vibration
measurements demand acquisition schemes with higher sam-
pling rate than the normally used by optical instruments to
acquire quasi-static signals [16], [17]. Moreover, to detect
the frequencies ranging from 0.1-10 Hz, electronic seismic
accelerometers with high sensitivity (less than one thousandth
of g or 0.01 m/sz) are often used [18].

There are several devices and widespread techniques
to perform optical sensing, such as fiber Bragg
grating (FBG) [19], [20], long period grating [21], [22],
and Fabry—Perot interferometer [23]. In particular, the
intrinsic  sensitivity of FBG makes this technology a
satisfactory candidate, commonly applied in structural sensing.
An FBG sensor is an optical reflection filter that changes
its spectral response according to the temperature and strain
variations [24]. Thereby, to acquire measurements from an
FBG sensor, a specific spectrum analysis is necessary, which
is relatively complex and demands expensive equipment
but also allows multiplexing with several FBGs in series
in the same optical fiber [24], [25]. As strain sensors, the
FBGs can be used to monitor vibrations in a wide range
of frequencies, because the light readily responds to any
geometric change of the FBG structure with delays given
in function of the light speed [26], [27]. Unfortunately, due
to the temperature sensibility of FBG, the compensation
techniques are required. Usually, the FBG strain sensor
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is applied together with an FBG temperature sensor [28].
The FBGs are also used in optical accelerometers, where a
mechanical mounting translates acceleration to displacement
or strain which is measured by an FBG [16], [29], [30]. The
resistance and limited deformation capacity of optical fiber
deteriorate the performance of optical accelerometer when
compared with electronic ones. Optical accelerometers have
not yet fully achieved the sensitivity and frequency response
of electronic seismic accelerometers at frequencies less
than 1 Hz [31], [32].

Other approaches for curvature sensors use sensitized opti-
cal fibers to induce signal loss, which can be easily measured.
In [14], a step-index multimode optical fiber is subjected to
transversal cuts into its core. High sensitivity is achieved with
hundreds of cuts spread along 75 mm of fiber. In [33], a plastic
optical fiber (POF) is sensitized using a similar approach
as [14], but achieving shorter sensors of ~15 mm. Both
sensors [14], [33] are inexpensive and operate diminishing the
transmitted optical power. However, they also result in rela-
tively large sensors, which restricts the universe of structures
able to be monitored. The loss of the chosen multimode optical
fibers, particularly the POF, also obligates the interrogation
and measurement apparatus to be placed meters away from
the sensor, which is not desirable in structural monitoring
applications. In [34], a fiber core diameter mismatch (CDM) is
made by inserting 4 mm of thin-core fiber (TCF) in the single-
mode fiber (SMF). The resulting sensor has high sensitivity to
curvature, is compact and can be placed far away (several
kilometers) from the interrogation and measurement setup.
Howeyver, the TCF sensor is interferometric in nature, demon-
strating considerable temperature dependence and demanding
interrogation apparatus similar to those used to FBG sensors.

In the last years, single-mode—multimode—single-
mode (SMS) fibers devices have been proposed as optical
sensors due to their low cost and simple fabrication [35]—-[38].
The SMS optical sensor is formed by splicing a section of
multimode fiber (MMF) between two SMFs [39]-[42].
An SMS curvature sensor that uses the CDM technique [43]
is proposed. Different from some multimode interfer-
ence (MMI) structures [44], [45], the SMS structure reported
here generates destructive interference patterns, which
does not vary the optical power with the wavelength, only
introducing a loss in the optical signal [46]. In this regard,
the attenuation of the optical signal will vary when the
fiber is bent allowing to interrogate the sensor. Based on
the aforementioned principle, this paper also proposes an
in-fiber interferometer vibration sensor consisting of an SMF
input fiber, a section of uncoated SMF spliced between two
MMFs, and an SMF output fiber, i.e., an SMSMS structure.
This optical sensor has been reported for refractive index
and temperature measurements [47]. The feasibility of such
structure is extended to measure the vibrations at very low
frequencies, less than 1 Hz.

In this paper, two configurations are proposed: 1) a con-
figuration based on the SMS fiber structure and an
Optical time domain reflectometer (OTDR)-based interroga-
tion technique for a remote curvature sensing and 2) a config-
uration based on the SMSMS fiber structure and an acquisition
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Fig. 1. Configuration of the proposed SMS curvature sensor.

system based on Arduino for vibration sensing. This paper
improves the possibility of such fibers structures for curvature
measurements and vibration detection. The aim is to analyze
the sensitivity response of a remote curvature sensor when it
is bent and a vibration sensor to detect very low frequencies.
The proposed experimental schemes use information from the
OTDR reflection peak variation to evaluate the SMS sensor
response and the data acquired from an acquisition system
based on Arduino to analyze the vibrations measured by the
SMSMS sensor.

This paper is organized as follows. Section II presents the
fabrication and the sensing principle of the SMS structure
as a remote curvature sensor and the SMSMS device as a
vibration sensor. In Section III, the experimental results of the
SMS sensor through displacement variations and temperature
influence, and the SMSMS sensor via frequency identification
tests are described. Experimental results of the SMS sensor
and numerical simulations based on a 3-D beam propagation
method (BPM) are discussed and compared in Section IV.
Finally, in Section V, the conclusions are exposed due to the
utilization of the proposed curvature and vibration sensors.

II. SENSOR FABRICATION

The remote curvature sensor is based on an SMS structure,
which is schematically shown in Fig. 1. The MMF section
in the sensor, due to the large CDM, acts as a core—cladding
coupling mechanism [48]. Multiple modes will be excited in
the MMF section when the light comes in from the SMF.
Due to its short length, the MMF section generates destructive
interference patterns. The MMF couples part of the light
traveling along the core of the first SMF to the cladding of
the second one, and this coupling induces a loss of power
in the transmitted signal traveling in the core. This coupling
is not selective in terms of wavelength, i.e., it is wavelength
independent. Thus, the proposed device does not act as a
common MMI and merely introduces a loss in the optical
signal, which makes it attractive for several applications. When
the sensing structure is bent, the coupling coefficient of the
structure is changed, varying the attenuation in the transmitted
signal.

The SMS device is fabricated by splicing a short section
of uncoated step-index MMF (FG105-LCA from Thorlabs,
Inc.), with a length of 3 mm, between the input and output
standard SMFs (SMF-28 from Corning, Inc.). Regarding the
short section length of the MMF fiber, 3 mm is used due to its
high sensitivity, as demonstrated in [43]. Two SMS sensors,
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Fig. 2. Configuration of the proposed SMSMS vibration sensor.

under the aforementioned parameters, are developed and later
subjected to curvature tests. First, a piece of MMF is spliced to
a section of SMF, and then the MMF is cleaved with a length
of 3 mm, which is measured by a ruler. Finally, another section
of SMF is spliced to the cleaved MMF.

Although the manufacturing process of the sensor head is
simple, it is not very precise, so the heads are not exactly
equal, which tightly affect their sensitivity. However, a solution
for this problem is to improve the fabrication process of the
sensors by using a precision linear stage to measure and
cleave the fiber. The reported sensors are fabricated with the
core/cladding diameters of the SMF ~8.2/125 um; meanwhile
for the step-index MMF section, the core/cladding diameters
are 105/125 pm.

To improve the sensitivity of the SMS structure and extend
the viability of such structure to measure vibrations, an in-fiber
interferometer vibration sensor, consisting of an input SMF, a
section of uncoated SMF spliced between two MMFs and an
output SMF, is developed. This structure, therefore, is called
the SMSMS structure. The two MMFs act as mode couplers
to split and recombine light due to the CDM technique [43].

The SMSMS vibration sensor, as shown in Fig. 2, is
fabricated by splicing a 30 mm long uncoated standard SMF
between two MMFs and the MMFs are spliced to two SMFs
at the input and output of the device, respectively. The
core/cladding diameters of the SMF and MMF are 8.2/125 um
and 105/125 um, respectively. The MMF length, with 3 mm
each, has an impact on the interference spectrum, because it
determines the mode-coupling coefficient when the light in the
MMF couples into the uncoated SMF.

As the source of light, a laser source operating at the
wavelength of 1550 nm with —5 dBm of optical power is
used. The light is launched into the first MMF through the
input SMF, and higher order modes are excited due to CDM.
When light reaches the uncoated SMF, a portion of the light
enters its core, while the remaining portion is coupled into the
cladding of this fiber. These modes reach the second MMF
and propagate through it. The core and cladding modes with
different propagation constants interfere with each other. Then,
the light is recoupled into the output SMF.

The optical power of SMS and SMSMS sensors presents
a loss caused by splicing for both structures. To confirm
these losses, an optical laser source operating at the range
of 1550 nm with —4 dBm is applied to an SMS and
to an SMSMS structure. The measurements are performed
using an optical power meter device. The measurements
results describes a power loss of =11 dB to the SMS
sensor and ~15 dB to the SMSMS sensor. These initial
losses of both sensors, showed on the optical power meter,
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Fig. 3. (a) Experimental setup for remote curvature measurements using the
OTDR. (b) Moveable stage with a translation stage (bend stage).

are obtained when the bent and vibration are not applied,
i.e., the sensors have intrinsic losses due to the splicing process
before any measurement being performed. Besides, when the
experimental results are compared with the simulated ones,
which do not present initial losses, the results are normalized
and the difference between both is mitigated.

III. EXPERIMENTAL ANALYSIS

First, to ensure that the SMS device can work at different
wavelengths, an optical beam from a broadband source oper-
ating at the range from 1500 to 1580 nm is applied on it.
The measurements are performed using an optical spectrum
analyzer. The results demonstrated that when the bent is
applied, a loss is merely introduced in the signal power. The
induced loss is independent of the wavelength.

Afterward, the SMS sensor is interrogated using an
OTDR, as shown in Fig. 3(a). A commercial OTDR from
YOKOGAWA, model AQ 1200 OTDR-Multi Field Tester with
the operating wavelength of 1550 nm, a pulsewidth of 100 ns,
and an average duration of 30 s, is used. Remote sensing is
obtained connecting 800 m of Corning SMF-28 fiber to the
OTDR and 300 m of Corning SMF-28 fiber with a mirrored
end splicing to the sensor output. The 25% optical fiber mirror
is used to increase the reflected power of the transmitted signal,
and consequently enhances the resolution due to the increment
in the signal-to-noise ratio.

The curvature measurements are performed by straightly
fixing the SMS sensor on two blocks distanced 22 cm by each
other. One of the blocks is mounted on a translation stage to
enable applying displacement and inducing a bending on the
SMS fiber structure, as shown in Fig. 3(b). The measurements
are performed with a displacement range from 0 to 600 um,
with an increment of 100 #m. If the SMS sensor is placed at a
half distance between the two mounting blocks, then the fiber
bend that is defined as the inverse of the bend radius (1/R) [49]
is given by

Co 1 2h )
R h24(d)2)?
where d = Lo — AL, L¢ is the initial distance between

the two blocks, AL is the distance variation and & is the
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bend deepness. An approximation of (1) is used in this paper
as the displacement steps are of the order of some micrometer
and the measurement of the bend size is, therefore, difficult.
The bend radius as a function of Ly and d is achieved as
follows:
1 4 1
C:EzL—%(L(Z)—dZ)2. 2)

When the light from the OTDR is injected into the straight
fiber, light propagation in the MMF section is symmetrically
distributed. For a bent MMF, the refractive index is no longer
symmetrical along the fiber axis and part of the power is lost
in the cladding modes of the fiber. The loss increases if the
curvature is applied.

To analyze the influence of the temperature on the SMS
sensor, a simple experiment is implemented. To perform the
temperature measurements, a variation in the temperature in
the range from 27 °C to 40 °C is applied, whose values
are chosen due to the interest on environmental temperatures.
As well as in the curvature measurements, this analysis used
the wavelength of 1550 nm in the OTDR equipment and the
results are based on a power difference. The experiment is
developed in water as it presents higher temperature stability.

The experimental setup is the same represented in Fig. 3,
but the response of the sensor to the applied temperature is
investigated by introducing the sensor head into a metal cap-
illary, which is within an acrylic chamber, as shown in Fig. 4.
For this analysis, the fiber remained stretched and fixed in two
points separated by 12 cm, then the effects of swelling and
shrinking of fiber become minimum according to theoretical
calculations. Without bending, the temperature variation is the
only parameter to be measured and it causes fiber dilatation.
The water is heated in a hotplate and placed in the acrylic
chamber, where the temperature is measured with a digital
thermometer.

For the vibration sensing analysis, an experimental verifica-
tion of the usefulness of the SMSMS structure as a sensor is
carried out. The schematic of the experimental configuration is
shown in Fig. 5, which comprises a laser source [Fig. 5(a.])],
a vibration exciter from Briiel & Kjer, type 4809 [Fig. 5(a.Il)],
an optical Data Acquisition (DAQ) system based on an
Arduino configuration [Fig. 5(a.lll)], a reference electronic
accelerometer, and the SMSMS sensor [Fig. 5(b)]. The fre-
quency response of the SMSMS sensor is obtained using a
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(a.Il) Shaker with the reference accelerometer and the SMSMS sensor.
(a.Ill) Optical DAQ system based on Arduino. (b) Zoomed-in view of a.Il
with the reference accelerometer and the SMSMS sensor fixed in the shaker.
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Fig. 6. OTDR trace at 1550 nm for the SMS 1 curvature sensor.

vibration exciter, namely, shaker. The shaker is excited by a
sine signal at selected frequencies covering a low frequency
range, such as 0.1, 0.2, 0.4, 0.8, 1.0, and 10 Hz. The optical
acquisition system based on Arduino presents the following
configuration: measurement data are acquired by an A/D
converter, with a signal period of ~5.194 ms/sample, with
a gain of 11 [dimensionless parameter (volt/volt) configured
in the acquisition software].

IV. RESULTS AND DISCUSSION

In this section, experimental results, using the described
setups and the fabricated sensors (SMS and SMSMS), are
discussed. Besides, the experimental results from the SMS
sensor are compared with numerical simulations using BPM.

A. Curvature Analysis of the SMS Sensor

To evaluate the SMS structure as a curvature sensor, a
difference between optical power levels is analyzed, which
represents the induced loss by the applied curvature. In the
measured data, the signal power is determined as the difference
between the high reflection peak value (P»), and the value
before the loss (P;), as shown in Fig. 6. Thus, the data
analysis is obtained with the power difference defined as
Ppif = P, — Py.
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In Fig. 6, the trace of the OTDR measurement to the
SMS 1 sensor for six different values of curvature, from
C = 0.005 cm™! to C = 0.025 cm™!, obtained with the
applied displacements, is exhibited. The OTDR trace presents
the reflected optical power as a function of the distance from
the OTDR to the optical fiber mirror.

After subjecting the SMS sensor to displacement, the optical
losses accumulated in the full range tested are ~4.9 dB. The
peak signal P, is due to the reflection of the deposited optical
fiber mirror at the output of the 300 m of fiber. When the loss
of SMS sensor is small, a lot of light is reflected, then P, is
greater than P;. On the other hand, if the bent is applied, P>
is significantly reduced when compared with the case without
curvature, due to the increase of optical losses; the arriving
signal to the optical fiber mirror is reduced, coming back
only 25% of light, then P, is smaller than Pj. Ppir for two
SMS sensors as a function of the applied curvature is shown
in Fig. 7.

In the curvature range from C = 0.013 cm™' to
C = 0.025 cm™!, the sensors present satisfactory sensitivity.
SMS 1 presented a slope of ~—255.8 dB/cm~' and a
linearity of R?> = 0.99833. SMS 2 presented a slope of
~ —211.8 dB/cm™! and a linearity of R? = 0.99567. Slope
as a first-order approximation to estimate the sensitivity of the
sensors is used.

Among these results, SMS 1 presents the sensitivity
of 17.2% better than SMS 2, as shown in Table 1. Never-
theless, for sensor multiplexing, the SMS 1 sensor does not
exhibit the best performance, since it introduces high power
loss 4.9 dB. Through the performed experiment, one can
verify that by controlling the attenuation of the sensor, it
is possible to control its performance against curvature. The
higher the attenuation introduced by the CDM, the higher will
be the sensitivity, however depending on the dynamic range of
the OTDR. Thus, one may have a set of multiplexed sensors
with lower sensitivity or a single punctual sensor with higher
attenuation, nevertheless with best performance, depending on
the application. Note that the difference between SMS 1 and
SMS 2 derived from the manufacture process.
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TABLE I
CHARACTERISTICS OF THE TWO SMS SENSORS

Characteristics SMS 1 SMS 2
Sensitivity (dB/cm—T) ~ —255.8 | ~ —211.8
Resolution range (cm™—1) ~ 0.00074 | =~ 0.0015
Range in OTDR trace (dB) | 4.9 2.67
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Fig. 8. Ppjr as a function of temperature for the two SMS sensors.

B. Analysis of the Temperature Influence on the SMS Sensor

The effect of temperature in the SMS sensor can be
explained by the sensitivity of the silica matrix to the tem-
perature through its thermal expansion coefficient (a) and
thermo-optic coefficient (¢) [50], [51]. The thermal expansion
coefficient describes the physical expansion or contraction
of the fiber resulting from the temperature change, and the
thermo-optic coefficient describes the refractive index change
of the core in response to a temperature variation. Both effects
will lead small changes in the optical path of light and,
consequently, slight changes in the transmitted or coupled
optical power by the CDM section [52].

The SMS 1 sensor presented a slope of &~ —0.01 dB/°C
and a linearity of R? = 0.92217, while for the SMS 2 sensor,
the values attained are, respectively, ~—0.02 dB/°C and
R? = 0.96541. Variations in Ppjs as a function of the applied
temperature are shown in Fig. 8. The results demonstrate that
the SMS 2 sensor showed a slightly different temperature
sensitivity compared with the SMS 1 sensor although they
exhibited similarity in their power levels. This analysis shows
low sensitivity to temperature for both sensors. Thus, the
influence of temperature in the curvature measurements can
be considered as negligible.

C. Vibration Analysis

The feasibility of the SMSMS configuration is only evalu-
ated for vibration. This configuration is not tested for curvature
due to the fact that if the sensor is sensitive to vibration, it is
also capable of measuring curvature.

In the performed experiment, the shaker system, type 4809,
from Briiel & Kjer is used, which has a uniform excitation
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Fig. 9. Frequency spectrum of the SMSMS sensor in the range of 0.1-10 Hz (left) and a zoomed-in view of frequency spectrum of the SMSMS sensor in

the range of 0.1-1 Hz (right).

in the operation range from 5 Hz with high stability. As an
optical source, a laser source operating in the wavelength of
1550 nm with —5 dBm of optical power is used, and as the
interrogation system, an optical DAQ system based on an
Arduino configuration is used. Note that the fixed SMSMS
sensor on the shaker is semibent to enhance the sensitivity,
and the sensor captures the vibrations produced by the shaker.

The light of the laser source is injected in the SMSMS
structure, and with the optical DAQ system based on an
Arduino configuration, the optical power in time domain for
each different frequency applied in the shaker is measured.
Afterward, to obtain the spectral response of the sensor in the
frequency domain, a fast Fourier transform (FFT) is applied
to the signal.

When the frequencies lower than the operational range of
the shaker are applied, the peaks in the frequency spectrum
obtained by FFT are clearly defined, as shown in Fig. 9 (left).
Thus, even with noise, the resonances at 0.1, 0.2, 0.4,
0.8, 1, and 10 Hz are measured by the SMSMS sensor. These
frequencies are excited by the shaker, but are not measured by
the reference accelerometer, shown in Fig. 5(b). Fig. 9 (right)
shows the frequency response of the SMSMS sensor for the
range of 0.1-1 Hz to highlight this part of the spectrum.

In the frequency spectrum, the noises are generated by
applying frequencies lower than the operation range of shaker,
by environmental noise, from computer and other instruments,
and thus, amplitude variations appear, as shown in Fig. 9. For
instance, the resonance at 0.4 Hz shows a higher amplitude
than 0.1 and 0.8 Hz resonances.

The results indicate that the proposed SMSMS as a vibration
sensor has a higher sensitivity to very low frequencies in com-
parison with the most commercial accelerometers. This implies
that the proposed SMSMS sensor can be used in frequency
ranges below 1 Hz with a satisfactory precision to measure
the low vibration frequencies of engineering structures.

D. Numerical Simulation

To validate the experimental response of the SMS struc-
ture as a curvature sensor, numerical simulations based

TABLE I

PARAMETERS OF THE SMS SENSOR USED
IN THE NUMERICAL SIMULATION

SMEF-28 Corning

Core diameter 8.2 um Core refractive index 1.4552
Cladding diameter 125 pum | Cladding refractive index  1.45
MMEF (FG105-LCA Thorlabs)

Core diameter 105 um | Core refractive index 1.457
Cladding diameter 125 pm | Cladding refractive index  1.440
Numerical diameter 160 um | External refractive index 1.0

on 3-D BPM are carried out at a wavelength of 1550 nm, using
BeamPROP software from RSoft Company. The simulations
apply the transverse electric (TE) polarization mode and the
parameters of the SMS structure are based on the SMS
sensor configuration used in the experiments, as summarized
in Table II.

A nonuniform grid with maximum and minimum size in
the transverse axis of 0.5 and 0.01 um, respectively, is used.
The grid length at the propagation axis is 0.5 um at the
SMS regions and 1.5 um elsewhere. For the bend simulation,
the values of the wavelength variations and the curvature
radius are based on the spectral range of the OTDR and
the displacement range used in the experimental analysis,
respectively. The propagation of the light field through the
sensor is shown in Fig. 10. The bend in the MMF section
has a significant influence on the mode distribution [53].
The response of the transmitted light as a function of bend
radius variations is numerically analyzed. The fundamental
mode is launched at the input of the device and the bend-
ing of the device is varied. The simulations are performed
through the BPM in association with a conformal mapping
technique [54].

The percentage of optical power as a function of the wave-
length for different curvatures is shown in Fig. 11. An average
of this percentage of optical power is calculated and the
simulated spectral response of the SMS sensors is obtained,
as shown in Fig. 12. The normalized reflected power of the
SMS sensors as a function of the bend radius is compared
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with the experimental results. The calculated power variations
as a function of the bend radius at a wavelength of 1550 nm
using BeamPROP is highlighted in Fig. 12.
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In addition to the two first tests, a new SMS sensor is
fabricated to attest the reproducibility of the sensor in compar-
ison with the simulated results. The curve of the simulation
follows the same behavior as the curve of the experimental
analysis, which confirms that the SMS structure is adequate
for curvature sensing. Although the curve shows the same
behavior, the simulated response is closer to the experimental
results presented by the SMS 2 and SMS 3 sensors, with
a difference of 0.0892 and 0.1322 dB for the bend radius
of 4E5, respectively. The difference of ~2.0508 dB from the
experimental results of the SMS 1 sensor to the simulated
results, SMS 2 and SMS 3 sensors, is justified due to the
manufacturing process which is not very precise, thereby
the sensor heads are not exactly equal, which tightly affect
the sensitivity. Furthermore, the splice insertion losses can also
influence the results.

V. CONCLUSION

This paper proposed the use of an SMS structure as a
remote curvature sensor and an SMSMS device as a vibration
sensor. The SMS sensor with an MMF length of 3 mm for
remote curvature sensing used an OTDR interrogation system.
This paper extends the feasibility of such fiber structure for
curvature measurement. To increase the reflected power a fiber
optical mirror was used. The results of the displacement from
0 to 600 xm applied to the two SMS sensors evidenced linear
behaviors with slopes of ~—255.8 and ~—211.8 dB/cm™!,
respectively.

The achieved bend resolutions are ~0.00074 and
~0.0015 cm~!, and a variation of 4.9 and 2.67 dB in the
OTDR traces for the SMS 1 and SMS 2 sensors, respectively.
The measurements also attested the low dependence of the
SMS curvature sensor to temperature. Several sensors, such as
strain, temperature, and vibration, can be used simultaneously
to perform quasi-distributed curvature measurements for
applications, such as SHM, depending on the dynamic range
of the interrogation system only.

The SMSMS structure as a vibration sensor was
used to measure vibrations in the low frequency range
of 0.1-10 Hz. Experimental investigation demonstrated that
this sensor is capable of detecting low frequencies, with
satisfactory sensitivity and most importantly, with appropriate
selection of operating frequencies and clearly defines peaks
in the frequency spectrum. Compared with the conventional
in-fiber accelerometer sensors, the SMSMS sensor provides
a higher sensitivity in the low frequency range with a lower
cost, improving the sensing robustness and simplifying the
fabrication process. The proposed cost-effective device can be
exploited for various sensing applications such as SHM.
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