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Abstract—The classical time-invariance assumption is often not
(exactly) met in real life applications. As a natural extension of the fre-
quency response function (FRF), the time-variant frequency response
function (TV-FRF) provides quickly insight into the complex dynamics
of time-variant systems. Recently a procedure has been proposed to
estimate nonparametrically the TV-FRF from known input, noisy
output measurements of time-variant systems operating in open loop.
However, in quite some applications feedback is present either due
to an explicit control action or due to the interaction between a non-
ideal actuator and the system under test. The extension of the open
loop approach to noisy input, noisy output measurements of time-
variant systems operating in closed loop requires the deconvolution
of the time-variant impulse response of the cascade of two time-
variant systems. In this paper this non-trivial problem is solved for
a particular class of time-variant systems. The robustness of the
approach w.r.t. the system assumption is demonstrated via simulations
and measurements on an electronic circuit.

Index Terms—time-variant frequency response function, nonpara-
metric estimates, time-variant systems, Legendre polynomials, errors-
in-variables, feedback

I. INTRODUCTION

Time-variant dynamics are present in quite some engineer-
ing applications. Think of, for example, pit corrosion of metals
where the time-variation is induced by the changing surface [1];
thermal drift in power electronics [2] and lithium-ion batteries [3]
whose characteristics are temperature dependent; mortification in
ex vivo experiments [4]; muscle fatigue causing time-dependent
relationships between, for instance, the hand-grip force and elec-
tromyographic signals [5]; and airplane dynamics which depend on
the changing flight speed and height [6]. In all these applications
the dynamics evolve in a smooth and non-periodic manner.

The time-variant dynamics can also be smooth and periodic.
This is the case in, for example, myocardial electrical impedance
measurements where the time-variation is induced by the heart
beat [7], [8]; rotating machinery (e.g. helicopters, wind turbines)
where the rotor anisotropy causes the dynamics to be periodically
time-variant [9], [10]; lung acoustical impedance measurements
where the breathing creates the periodic time-variation [11]; and
the stability analysis of power systems around a periodic trajectory
[12]. Periodically time-variant dynamics are not considered in this
paper.

A totally different type of time-variant dynamics are those
produced by the switching between a finite number of linear
time-invariant systems. Examples of such dynamics can be found
in switched power electronics [13], econometrics [14], control

applications [15], and more general, hybrid systems (see [16] and
the references therein). Non-smooth time-variant dynamics are not
considered in this paper.

This paper handles multivariate systems with smooth non-
periodic time-variant dynamics. They are characterised by the time-
variant frequency response function (TV-FRF) introduced in [17],
[18]. The TV-FRF (see Section II for a precise definition) gives a
lot of insight into the dynamic behaviour of a time-variant system
and, hence, it can be used for physical interpretation, and for
model selection and model validation purposes in the parametric
modelling of the time-variant dynamics.

Since the estimated time-variant dynamics are not valid outside
the experiment interval, and since some time-variant experiments
are not exactly reproducible (e.g. pit corrosion, thermal drift
phenomena, fatigue in biomedical experiments), one could wonder
whether it is useful at all to model non-repeatable time-variant
dynamics. The answer is yes because it allows one to quantify and
distinguish the non-repeatability of the experiment from the time-
variation and the noise. Hence, given some prior knowledge about
the physical model structure, the physical phenomena involved
can be quantified from the time-variant transfer function (e.g.
the parameters that influence the pit corrosion of metals). If the
time-variation is controlled by (a) known external parameter(s)
(e.g. flight flutter, extendible robot arm), then the time-variant
experiment is repeatable, and the time-variant model (differential,
difference or state space equations with time-dependent (matrix)
coefficients) is a first step towards the identification of a linear
parameter varying (LPV) model with possible dynamic dependen-
cies on the external parameter(s). An LPV model is valid for other
trajectories of the external parameter(s) and, hence, can be used
for prediction and control (see, for example, [19]).

In [20] a method is presented to estimate nonparametrically the
TV-FRF of single-input, single-output systems with smooth non-
periodic time-variant dynamics from measured data. It is assumed
(i) that the input is known exactly, and (ii) that the time-variant
system operates in open loop. However, in quite some measurement
applications a non-ideal actuator (e.g. a voltage source with non-
zero output impedance or a current source with finite output
impedance) is connected to the system to be measured. This has
two important consequences: (i) the true input of the system is
unknown, and (ii) a feedback loop is present due to the dynamic
interaction between the non-ideal actuator and the system (see [21]
for the details). It emphasizes the practical need to generalise the



results of [20] to noisy input, noisy output observations of systems
operating in feedback.

In this paper the results of [20] are generalised to noisy input,
noisy output measurements of multivariate systems operating in
closed loop. To handle this problem a reference signal should be
known [22], [23], and the impulse response of the cascade of two
time-variant systems should be deconvolved, which is a non-trivial
task [24] that has not been solved yet. The main contributions of
this paper are the development of an estimation algorithm that
tackles the deconvolution issue from measured input-output data
for a particular class of time-variant systems, and the associated
bias/variance analysis.

The outline of the paper is as follows. First, it is shown that
estimating nonparametrically the TV-FRF from a known reference,
and noisy input, noisy output observations of a time-variant system
operating in closed loop, boils down to a deconvolution problem
(Section II). Next, the class of time-variant systems for which the
theory applies is defined (Section III). Further, the nonparametric
estimation procedure is explained and analysed in detail (Section
IV). The proposed approach is illustrated with two simulation
examples (Section V) and measurements on an electronic circuit
(Section VI). Finally, some conclusions are drawn (Section VII).

II. PROBLEM STATEMENT

Consider the generic class of linear time-variant (LTV) systems
for which the ny outputs y0(t) are related to the nu inputs u0(t) by
the general convolution integral

y0 (t) =

ˆ +∞

−∞
g (t, τ)u0 (τ) dτ (1)

where g(t, τ) represents the time-variant impulse response as a
function of time t when a Dirac impulse input has been applied at
time τ (see [17], [18]). For causal systems (g(t, τ) = 0 if t < τ )
the upper integration bound in (1) is replaced by t. In [17], [18] the
time-variant transfer function corresponding to a causal g(t, τ) is
defined as

G (s, t) =

ˆ ∞
0

g (t, t− τ) e−τsdτ (2)

where the real part of s is chosen large enough to guarantee the
existence of the integral. Other definitions exist (see [25], p. 135),
however, (2) is the only one which has the following two properties
[17], [18]. First, the transient response y0(t) to an input u0(t) is
calculated as

y0 (t) = L−1 {G (s, t)U0 (s)} (3)

with U0(s) the Laplace transform of u0(t), and L−1 {} the inverse
Laplace transform operator. Next, the steady state response y0(t)
to a sinewave input u0(t) = sin(ω0t) equals

y0 (t) = |G (jω0, t)| sin (ω0t+ ∠G (jω0, t)) (4)

with G(jω, t) the time-variant frequency response function (ana-
lytic continuation of (2) evaluated along the jω-axis). Note that
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Figure 1. Noisy input u(t), noisy output y(t) observations of a linear time-variant
plant operating in closed loop. The linear feedback and actuator characteristics
might be time-variant. G(s, t) is the time-variant plant transfer function; u0(t) and
y0(t) are, respectively, the true plant input and output signals; r(t) is the known
reference signal; and mu(t) and my(t) are, respectively, the input and output
measurement errors.

(3) and (4) are natural extensions of the properties of the transfer
function of a linear time-invariant system.

The goal is to estimate nonparametrically the time-variant fre-
quency response function (TV-FRF) G(jω, t) (2) from noisy input,
noisy output observations (see Fig. 1). In the measurement setup of
Fig. 1 the number of actuators equals the number of system inputs.
Each of the actuators should be driven by a different reference
signal; otherwise the system input u0(t) is not rich enough to
uniquely identify the system dynamics. Therefore, in a natural way
the sizes of the reference signal r(t) and the input u0(t) should
be the same.

To avoid a bias in the nonparametric estimates, the noisy input,
noisy output closed loop problem in Fig. 1 is transformed into
two known input, noisy output open loop problems (see Fig. 2)
which can be solved using the approach of [20], [26]. However,
extracting the plant TV-FRF G(jω, t) from the reference to input
Gru(jω, t) and the reference to output Gry(jω, t) TV-FRFs is a
non-trivial task. Indeed, unlike for LTI systems, the time-variant
transfer function (TV-TF) of a cascade of LTV systems is not equal
to the product of the TV-TFs

Gry (s, t) 6= G (s, t)Gru (s, t) (5)

The exact relationship between the three TV-TFs is given by [24]

Gry (s, t) = L−1p {G (s+ p, t)Gru (s, p)} (6)

with Gru(s, p) the Laplace transform of Gru(s, t) w.r.t. the time
t, and L−1p {} the inverse Laplace transform operator acting on the
variable p. In Section IV we will unravel G(s, t) from (6) for the
class of LTV systems defined in Section III.

Note that the time-variant plant might be unstable (G(s, t) has
poles in the right half plane) so long as it operates in a stabilising
feedback loop.

III. CLASS OF LTV SYSTEMS CONSIDERED

As already mentioned in the introduction we consider LTV sys-
tems with nu inputs and ny outputs whose time-variant dynamics
are a smooth function of time. For such systems the ny×nu TV-TF
(2) can be expanded in series as



Figure 2. Transformation of the noisy input u(t), noisy output y(t) closed loop
problem in Fig. 1 into two known reference r(t), noisy output open loop problems:
from known reference r(t) to noisy input u(t), and from known reference r(t) to
noisy output y(t). Gru(s, t) and Gry(s, t) are the time-variant transfer functions
from, respectively, reference to input and reference to output. The true input
u0(t) and output y0(t) signals are connected via the time-variant plant transfer
function G(s, t).

... ... ...

Figure 3. Direct input-output model of the class of LTV systems considered.
u0(t), y0(t) and Gm(s), m = 0, 1, . . . , Nb, have the size nu × 1, ny × 1 and
ny × nu respectively.

G (s, t) =

∞∑
m=0

Gm (s) fm (t) for t ∈ [0, T ] (7)

with fm(t), m = 0, 1, . . ., a complete set of basis functions
over [0, T ] (e.g. polynomials); T the observation time; and where
Gm (s), m = 0, 1, . . ., are the ny × nu matrix coefficients of the
series expansion. Without any loss in generality we can impose
the following constraints on the basis functions

f0 (t) = 1 and
1

T

ˆ T

0

fm (t) dt = 0 for m > 0 (8)

A. Direct Model

Since (7) contains infinitely many transfer functions Gm (s),
m = 0, 1, . . ., of LTI systems, it is not suitable for nonparametric
estimation. Therefore, the class of LTV systems is restricted to
those systems for which the series (7) can be reduced to a finite
sum

G (s, t) =

Nb∑
m=0

Gm (s) fm (t) for t ∈ [0, T ] (9)

Assumption 1 (Class of input-output LTV systems): The time-
variant transfer function G(s, t) (2) can be written under the form
(9) with fm(t) = lm(2t/T − 1); and where lm(x), x ∈ [−1, 1],
are Legendre polynomials of degree m.

Note that the basis functions lm(2t/T−1) satisfy the constraints
(8) [27]. Moreover, the Legendre polynomials lp(x) are orthogonal

over the interval [−1, 1] [27] and, therefore, guarantee the good
numerical stability of the nonparametric TV-FRF estimates [20],
[26].

Under Assumption 1, the response y0(t) of an LTV system to
an input u0(t) is given by

y0 (t) =

Nb∑
m=0

L−1s {Gm (s)U0 (s)} fm (t) (10)

(proof: combine (3) and (9)). It shows that the response can be
written as the sum of the responses of Nb+1 LTI systems Gm(s),
m = 0, 1, . . . , Nb, weighted with the basis functions fm(t). Eq.
(10) is called the direct model of the LTV system and Fig. 3 shows
the corresponding block diagram.

Note also that (10) resembles the response of a linear parameter-
varying system for a particular trajectory of the scheduling para-
meter when it is modelled using a finite set of orthonormal basis
functions (see [28], eq. (2)). The major difference between the
orthonormal basis function expansion and the direct model (10)
is the parametrisation: (i) the Gm(s) dynamics are unknown and
should be estimated nonparametrically from the data while the
orthonormal basis functions modelling the dynamics are given,
and (ii) the basis functions fm(t) modelling the time-variation are
given while the parameter dependent coefficient functions of the
orthonormal basis function expansion modelling the time-variation
are estimated parametrically from the data.

B. Indirect Model

In [26] it has been shown that the block diagram in Fig. 3 is
equivalent to the block diagram in Fig. 4. The latter is called the
indirect model of the LTV system and its response is calculated as

y0 (t) =

Nb∑
m=0

L−1s {Hm (s)Um (s)} (11)

where Um(s) is the Laplace transform of um(t) = u0(t)fm(t).
Since the inputs um(t) of the LTI systems in Fig. 4 are linearly
independent (the basis functions fm(t) are linearly independent)
and since they are known if u0(t) is known, the transfer function
matrices Hm(s) can be estimated using standard LTI techniques
(see [26]). The Gm(s) transfer function matrices are then recovered
from Hm(s) as

Gm (s) = Hm (s) +
2

T
(2m+ 1)

⌊
Nb−m−1

2

⌋∑
i=0

H
(1)
2i+1+m (s) +

4

T 2

⌊
Nb−m

2

⌋∑
i=1

β2i,mH
(2)
2i+m (s) +O

(
T−3

)
(12)

with H
(n)
m (s) the nth order derivative of Hm(s) w.r.t. s, bxc the

largest integer smaller than or equal to x, and β2i,m coefficients
defined as



... ... ...
Figure 4. Indirect input-output model of the class of LTV systems considered.
um(t), y0(t) and Hm(s), m = 0, 1, . . . , Nb, have the size nu × 1, ny × 1 and
ny × nu respectively.

β2i,m = γm + δm (i− 1) + µm (i− 1)
2 (13)

γm = 1.5 + 4m+ 2m2

δm = 2.5 + 6m+ 2m2

µm = 1 + 2m

(see Theorem 3 of [26]). The bias term O(T−3) in (12) depends
on the higher order (> 2) derivatives of the H-transfer functions
(see [26] for the details). These higher order derivatives are not
calculated because they are of the same order of magnitude as the
numerical approximation errors of H(1)

m (s) and H
(2)
m (s) via the

central differences (see [29] and [30]).

C. Discussion

One might wonder how general the direct model (9) is. First,
the direct model has successfully been applied to real life systems
where the finite series condition (9) has not been imposed. See,
for example, [7], [26], and [31] for measurements on time-
varying electronic circuits; [8] for myocardial electrical impedance
measurements; and [32] for measurements on an XY-table. Next,
although one cannot show theoretically that the approximation
error of (9) is always insignificant, one can in practice increase
Nb such that the remaining approximation error is “small enough”
or below the noise level. The estimation procedure described in
Section IV quantifies the remaining approximation error. This is
illustrated in Section V-B by simulations on a time-variant system
operating in closed loop and described by time-variant state space
equations.

IV. NONPARAMETRIC ESTIMATION OF THE PLANT TV-FRF

This section handles the nonparametric estimation of the ny×nu
TV-FRF G(jω, t) from noisy input, noisy output observations of a
plant operating in open or closed loop (Fig. 1). First, the basic idea
of the proposed estimation procedure is explained (Section IV-A).
Solving the deconvolution problem (6) is the non-trivial part of this
procedure. Therefore, the key steps of the proposed deconvolution
algorithm are discussed in detail in Section IV-B. Finally, the
stochastic properties (bias, variance) of the nonparametric TV-FRF
estimates are analysed (Section IV-C).

......... ...
... ... ...

... ...

Figure 5. The indirect model from reference r(t) to output y0(t) (top block
diagram) written as the cascade of the indirect models from reference r(t) to input
u0(t) and from input u0(t) to output y0(t) (bottom block diagram). r(t), u0(t),
y0(t), Hru

m (s), m = 0, 1, . . . Nbu , Hry
i (s), i = 0, 1, . . . , Nby , and Hn(s),

n = 0, 1, . . . Nb, have size nu × 1, nu × 1, ny × 1, nu × nu, ny × nu and
ny × nu respectively.

Figure 6. General parallel branch of the block diagram obtained by shifting the
indirect input-output model in Fig. 5 backward into the indirect reference to input
model.

A. Basic Idea

The proposed estimation algorithm is basically a 2-step proced-
ure. In step 1, following the same lines of [22], [23], the noisy in-
put, noisy output closed loop problem is transformed into a known
input, noisy output open loop problem for which a solution exists
[26]. Therefore, the TV-FRF Grz(jω, t) from reference r(t) to
plant input and output simultaneously z(t) =

[
yT (t) uT (t)

]T
Grz(jω, t) =

[
Gry(jω, t)
Gru(jω, t)

]
is estimated nonparametrically using the known reference and the
noisy input, noisy output observations. In step 2, the plant TV-
FRF G(jω, t) is recovered from Gru(jω, t) and Gry(jω, t) via
(6). This is a deconvolution problem that is handled in the sequel
of this section.

To solve the deconvolution problem (6), the following assump-
tion is made.

Assumption 2 (Class of reference to input-output LTV sys-
tems): The time-variant transfer functions from reference to input
Gru(s, t) and from reference to output Gry(s, t) can be written
under the form (9) with fm(t) = lm(2t/T − 1) and where lm(x),
x ∈ [−1, 1], are Legendre polynomials of degree m. In addition,



the reference signal r(t) and the system input u0(t) have the same
size.

Using Assumptions 1 and 2 and the equivalence between the
direct (10) and the indirect (11) models, the indirect model from
reference r(t) to output y0(t) (see Fig. 5, top block diagram) can
be written as the cascade of the indirect models from reference
r(t) to input u0(t) and from input u0(t) to output y0(t) (see Fig.
5, bottom block diagram). To be compatible, the condition Nby =
Nbu +Nb should be satisfied.

To establish the relationship between the transfer functions
Hry
m (s), Hru

n (s) and Hq(s) in Fig. 5, the cascade of the indirect
models (bottom block diagram) is manipulated to be of the form
of the top block diagram. This is done as follows.

First, the input-output indirect model is shifted backward into
the reference to input indirect model. The resulting block diagram
has (Nbu + 1)(Nb + 1) parallel branches, one of which is shown
in Fig. 6.

Next, the output gain fn(t) of the first LTI system in Fig. 6 is
moved to the input using the transformation of Fig. 7. The resulting
block diagram is of the form of the top block diagram in Fig. 5
but with input gains fm(t)fn(t), m = 0, 1, . . . , Nbu and n =
0, 1, . . . , Nb.

Further, the products of basis functions fm(t)fn(t) are written as
a linear combination of the basis functions fq(t), q = 0, 1, . . . ,m+
n. The resulting block diagram resembles the top block diagram
in Fig. 5 but has multiple branches with the same input gain fq(t),
q = 0, 1, . . . ,m+ n.

The transfer functions of the branches with the same input gain
are added and set equal to the transfer function of the corres-
ponding branch in the indirect reference to output model (Fig. 5,
top block diagram). This results in a linear set of equations in the
unknowns Hq(jω), q = 0, 1, . . . , Nb, that is solved numerically for
each frequency. Using (12), we finally obtain the FRFs Gq(jω),
q = 0, 1, . . . , Nb, of the direct model.

B. Key Steps of the Deconvolution Algorithm

The first step of the deconvolution procedure consists in shifting
the output gain fn(t) of Hru

m (s) (see Fig. 6) to the input. Since
the direct (Eq. (10) and Fig. 3) and indirect (Eq. (11) and Fig. 4)
models are only defined for t ∈ [0, T ], the Laplace transform of
the windowed signals is used

X (s) = L {x (t)} =

ˆ T

0

x (t) e−stdt (14)

in the lemma describing the shifting of the output gain.

Lemma 1. (Shifting the output gain to the input) The Laplace
transforms Un(s) and Rm(s) of the windowed signals un(t) and
rm(t) are related as

Un (s) = L
{
fn (t)L−1s {Hru

m (s)Rm (s)}
}

+ T1 (s) (15)

...... ...

Figure 7. Shifting the output gain fn(t) (top block diagram) to the input results in a
parallel structure with n+1 branches (bottom block diagram). f0(t) = 1; ν = 1 for
n odd and ν = 2 for n even; knq = −αζn−q for q odd, with α = 2/T and
ζi = 2i+ 1; and knq = α2βq,n−q for q even, with βq,n−q defined in (13).

Un (s) = Hru
m (s)Rm,n (s)

− α
dn

2 e−1∑
q=0

ζn−2q−1H
ru(1)
m (s)Rm,n−(2q+1) (s)

+ α2

bn
2 c∑

q=1

β2q,n−2qH
ru(2)
m (s)Rm,n−2q (s)

+ T2 (s) +O
(
α3
)

(16)

with Rm,v (s) = L{rm (t) fv (t)}, α = 2/T , ζi = 2i + 1,
β2i,m defined in (13), and O(α3) a bias term depending on the
higher order derivatives of Hru

m (s). T1(s) and T2(s) are smooth
functions of s depending on the difference between the initial
(t = 0) and final (t = T ) conditions of the experiment. At the
DFT frequencies ωk = 2πk/N , with N the number of time domain
samples and k = 0, 1, . . . N/2, T1(jωk) and T2(jωk) are rational
functions of jωk. dxe is the smallest integer larger than or equal
to x, and bxc is the largest integer smaller than or equal to x.

Proof: See Appendix A.
Note that formula (16) for shifting the output gain to the input

resembles formula (48) of [26] for shifting the input gain to the



output: α is replaced by −α, and the role of the direct and indirect
models is interchanged.

Fig. 7 shows the block diagram corresponding to (15) and (16).
It is exact within an O(T−3) bias term that depends on the higher
order (>2) derivatives of Hru

m (s).
The second step of the deconvolution procedure is the expansion

of the product fm(t)fn(t), n = 0, 1, . . . , Nb and m = 0, 1, . . . Nbu ,
of Legendre polynomials in the Legendre polynomial basis

fm (t) fn (t) =

n+m∑
q=0

C0[q+1,m+1,n+1]fq (t) (17)

where C0 is a (Nbu + Nb + 1) × (Nbu + 1) × (Nb + 1) tensor.
Since no analytical expression for the tensor C0 could be found, the
coefficients C0[q+1,m+1,n+1] of the expansion (17) are calculated
in Matlab via a linear least squares fit of (17) using 1024 time
domain samples uniformly distributed in the interval [0, T ]. All
coefficients smaller than 10−10 are set to zero. Proceeding in
this way, the calculated expansion (17) is accurate within Matlab
precision. From the calculated expansion it is observed that C0 is
sparse. Namely, if m + n is even (odd), then only the even
(odd) degree Legendre polynomials are present in the sum (17).
Moreover, the column C0[:,m,n] (“:” denotes all entries) contains
at most min(n,m) non-zero elements for all values of m.

In the third step of the deconvolution procedure the branches
with the same input gain are joined and set equal to the corres-
ponding branch of the indirect reference to output model. This
results in the following lemma.

Lemma 2. (Joining of branches with the same input gain). Under
Assumptions 1 and 2 the dynamics Hry

i (s) of the indirect reference
to output model are related to the dynamics of the indirect reference
to input Hru

m (s) and input-output Hn (s) models as

Hry
i (s) =

Nb∑
n=0

Nbu∑
m=0

C0[i+1,m+1,n+1]Hn (s)Hru
m (s)

+

Nb∑
n=0

Nbu∑
m=0

C1[i+1,m+1,n+1]Hn (s)Hru(1)
m (s)

+

Nb∑
n=0

Nbu∑
m=0

C2[i+1,m+1,n+1]Hn (s)Hru(2)
m (s)

+O
(
α3
)

(18)

for i = 0, 1, . . . , Nby (Nby = Nbu+Nb), with C0 the 3-dimensional
tensor of the expansion (17) and α = 2/T . The 3-dimensional
tensors C1 and C2 are related to C0 as

C1[i,m,n] =

{
−α

∑dn−1
2 e

q=1 ζn−2qC0[i,m,n−2q+1] n > 1

0 n = 1
(19)

C2[i,m,n] =

{
α2
∑bn−1

2 c
q=1 β2q,n−2q−1C0[i,m,n−2q] n > 2

0 n = 1, 2

(20)

with ζi = 2i+ 1 and β2i,m defined in (13).

Proof: Combine Lemma 1 and (17).
In the fourth step of the deconvolution procedure the set of

equations (18) is solved for Hn(jω). This is the deconvolution of
the indirect models.

Theorem 3. (Deconvolution of the indirect models). Under As-
sumptions 1 and 2 the dynamics Hn(jω) of the indirect input-
output model are the solution of the following linear set of
equations

(Hry
i (jω))

T
=

Nb∑
n=0

C[i+1,n+1] (jω) (Hn (jω))
T

+O
(
T−3

)
(21)

for i = 0, 1, . . . , Nb, with C[i+1,n+1] (jω) nu × nu matrices

C[i+1,n+1] (jω) =

Nbu∑
m=0

C0[i+1,m+1,n+1] (Hru
m (jω))

T

+

Nbu∑
m=0

C1[i+1,m+1,n+1]

(
Hru(1)
m (jω)

)T
+

Nbu∑
m=0

C2[i+1,m+1,n+1]

(
Hru(2)
m (jω)

)T
(22)

and where C0, C1 and C2 are defined in, respectively, (17), (19)
and (20).

Proof: Take for each frequency the matrix transpose of (18)
for i = 0, 1, . . . , Nb and put them on top of each other. This gives
for each frequency Nb+ 1 matrix equations of size nu×ny in the
Nb+1 unknowns (Hn(jω))T of size nu×ny . Solving this linear set
of equations gives the dynamics Hn(jω) within an O(T−3) bias
error.

In the last step of the deconvolution procedure the indirect input-
output model is transformed into the direct model via (12).

C. Stochastic Properties

The stochastic properties are analysed under the following
assumption on the disturbing input-output noise.

Assumption 3: mu(t) and my(t) in Figure 1 are stationary,
(mutually) (un)correlated, filtered white noise disturbances.

In practice the input-output disturbing noise dynamics might be
non-stationary. The proposed procedure estimates then an equi-
valent time-invariant power spectrum of the non-stationary noise
signals. Simultaneous nonparametric estimation of the time-variant
noise power spectra and the TV-FRF is a very challenging problem
that is out of the scope of this paper.

The estimation procedure of Section IV-B has three paramet-
ers that should be chosen: the number of time-variant branches
Nbu and Nby (Nb = Nby − Nbu ) in the reference to input
and reference to output models, and the degree R of the local
polynomial approximation used for estimating the indirect model
from reference r(t) to plant input and output simultaneously
z(t) =

[
yT (t) uT (t)

]T
(see [33], [34] for the algorithmic

details of the local polynomial method for estimating FRFs). To
avoid bias due to a too small number of time-variant branches,
Nbu and Nby are gradually increased until the estimated dynamics



of the time-variant branches m > Nbu , Nby are equal to their
standard deviation. To avoid bias due to a too low degree R of the
local polynomial approximation of the FRFs in the indirect model,
R is progressively augmented until the standard deviation of the
estimated FRFs no longer decreases.

Bias: The bias in the estimated FRFs Ĝm(jωk) of the direct
input-output model (10) has five contributions:

1) An O(T−(R+1)) residual bias term of the local polynomial
approximation of the FRFs in the indirect models [33], [34].

2) An O(T−3) term due to the shifting of the output gain to
the input in the deconvolution of the indirect models (see
Lemma 1).

3) An O(T−3) term introduced by the numerical approximation
of Hru(1)

m (jω) and H
ru(2)
m (jω) in (22) via central differ-

ences (see [29] for a uniform frequency grid, and [35] and
[30] for a non-uniform frequency grid).

4) An O(T−3) term introduced by the numerical approximation
of H(1)

n (jω) and H(2)
n (jω) in (12) via central differences.

5) An O(T−3) term originating from the transformation of the
indirect to the direct model (12).

To verify whether the O(T−2) terms in (22) depending on the
second order derivatives are significant, the linear set of equations
(21) is solved twice, once with the second order derivative terms
and once without. The difference between both solutions is then
compared to the noise standard deviation of the estimates.

Note that bias contributions no. 2 and 3 originating from the
deconvolution of the indirect models are in-existent in the known
input, noisy output open loop problem handled in [26]. Note also
that the FRFs Gm(jωk) of the direct input-output model (10) can
be estimated without the second order derivatives in (12) and (22).
The resulting O(T−2) bias error can then be predicted via the
contributions of these second order derivatives to Ĝm(jωk).

Using (9) it follows that bias results for the FRFs Ĝm(jωk) are
also valid for the estimated TV-FRF Ĝ(jωk, t).

Variance: Under Assumption 3 the local polynomial method
[33], [34] used for estimating the indirect model from refer-
ence r(t) to plant input and output simultaneously z(t) =[
yT (t) uT (t)

]T
also quantifies the covariance matrix of the

FRF estimates Ĥru
m (jω), m = 0, 1, . . . , Nbu , Ĥry

i (jω), i =
0, 1, . . . , Nby via the squared output residuals of the local poly-
nomial approximation. Linearisation of (21) w.r.t. Hru

m (jω) and
Hn(jω), readily gives the covariance of the FRF estimates
Ĥn(jω), n = 0, 1, . . . Nb. Next, the covariance of the FRFs
Ĝm(jω) in the direct input-output model (10) follows immediately
from (12). Note that in the covariance calculations only the
dominant O(T 0) terms are used: the first sum in the right hand
side of (22), and the first term in the right hand side of (12).

Finally, the variance of the estimated TV-FRF Ĝ(jωk, t) is
calculated via (9), taking into account the covariance between the
estimated FRFs Ĝm(jωk).

Undermodelling: The undermodelling is due to a too small order
R of the local polynomial approximation of the FRFs in the indirect
models and/or a too small value Nb in the series expansion of
the TV-FRF (9). The O(T−(R+1)) error of the local polynomial
approximation (bias contribution no. 1) and the approximation
error of (9) result in local bias errors that depend on the random
realisation of the reference signal r(t). Hence, both can be handled

as being random (w.r.t. the random realisation of the input) and
are included in the covariance of Ĝm(jω) which is based on the
squared output residuals of the local polynomial approximation.

V. SIMULATION EXAMPLES

Two simulation examples are discussed in this section. In the
first example the system satisfies Assumption 1, which allows us
to verify the predicted bias and variance properties (see Section
IV-C) of the proposed estimation procedure. In the second example
the system is described by time-varying state space equations, for
which the finite sum (9) is an approximation. It illustrates that
by increasing Nb in (9) the approximation error can be made
(arbitrarily) small.

A. Example 1: System Satisfying Assumption 1

1) Description Simulation Example: The configuration of Fig.
1, without the feedback loop and with actuator characteristics
equal to Gru(s, t), is used as simulation setup. Gru(s, t) and
G(s, t) satisfy Assumption 1 with, respectively, Nbu = 2 and
Nb = 3 time-variant branches. Grum (s), m = 0, 1, 2, are second
order Chebyshev filters with a passband ripple of 2 dB and cut-off
frequencies of 60 Hz, 70 Hz, and 80 Hz respectively. G0(s) is the
cascade of a fourth order Butterworth filter with a passband ripple
of 3 dB and a cut-off frequency of 70 Hz, and a second order
Chebyshev filter with a passband ripple of 6 dB and a cut-off
frequency of 60 Hz; while Gm(s), m = 1, 2, 3, are second order
Chebyshev filters with passband ripples and cut-off frequencies of,
respectively, 15 dB and 65 Hz, 20 dB and 70 Hz, and 15 dB and
75 Hz. A random phase multisine r(t) is applied to the actuator
in Fig. 1

r (t) = A

F2∑
k=F1

sin (2πkf0t+ φk) (23)

with A chosen such that the rms value of r(t) equals 2, φk in-
dependent uniformly [0, 2π) distributed random variables, f0 =
fs/N with fs = 1 kHz the sampling frequency and N the
number of samples in one signal period, F1 = d3 Hz/f0e,
and F2 = b100 Hz/f0c. This signal excites the frequency band
(3 Hz, 100 Hz) and the response to one signal period is calculated.

To check the bias and variance properties of the proposed decon-
volution procedure, simulations without and with disturbing noise
are made. An order R = 4 and a local bandwidth of 43 excited
frequencies are used for the local polynomial approximation in
the estimates of the indirect reference to input-output models
Hry
i (jω) and Hru

m (jω).
2) Results Noiseless Data: In the noiseless case three simu-

lations are performed with increasing values of the number of
samples per period N = 128 × 1024, 256 × 1024, 512 × 1024
(for a fixed value of fs, increasing the value of N decreases the
speed of the time-variation). For each simulation the direct model
is estimated once without (Ĝm(jω)) and once with ( ˆ̂

Gm(jω)) the
second order derivatives in (13) and (22).

The results are shown in Fig. 8. As predicted by the theory (see
Section IV-C), per doubling of N , the bias decreases with about
12 dB (22) for Ĝm(jω) (grey lines), 18 dB (23) for ˆ̂

Gm(jω) (red
lines), and 30 dB (25) for the bias resulting from the local
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Figure 8. Estimated dynamics of the direct model for increasing values of N –
Example 1: noiseless case. Left column (black lines): true frequency response
function Gm(jω). Right column: the corresponding relative (w.r.t. the true FRF)
bias of the estimates. Grey lines: |(Ĝm(jω) − Gm(jω))/Gm(jω)|; red lines:
|( ˆ̂
Gm(jω) − Gm(jω))/Gm(jω)|; cyan lines: relative bias resulting from the

O(T−(R+1)) bias of the local polynomial estimate of the indirect model from
reference to input-output (R = 4). Ĝm(jω) and ˆ̂

Gm(jω) are, respectively, the
estimates obtained without and with the second order derivatives in (13) and (22).
The bias terms (grey, red and cyan lines) decrease for increasing values of N .

polynomial approximation of order R = 4 in the indirect estimate
from reference to input-output (cyan lines, except for the largest
value of N in those frequency bands where the bias is close to the
Matlab accuracy of -300 dB).

3) Results Noisy Data: A Monte-Carlo simulation of hundred
runs is made with N = 128 × 1024. For each run a new random
phase realisation of the random phase multisine (23) is generated
and the response to one signal period is calculated. Next, zero
mean normally distributed noise is added to the true input and
output signals. The input noise is white with a standard deviation of
0.003, while the output noise is discrete-time filtered white noise.
The output noise filter is a third order discrete-time Chebyshev
filter with a passband ripple of 15 dB and a cut-off frequency of 70
Hz, and the driving white noise source of that filter has a standard
deviation of 0.015. For each Monte-Carlo run, the direct model
and its variance is estimated without the second order derivatives
in (13) and (22). Next, the mean value over the hundred estimates
of the direct model and its variance is calculated.

From Fig. 9 it can be seen that the estimated standard deviations
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Figure 9. Estimated dynamics of the direct model – Example 1: noisy case. Left
column (black lines): true frequency response function Gm(jω). Right column: the
corresponding relative error and relative standard deviations of the mean FRF es-
timates (relative w.r.t. the true FRF). Grey lines: |(Ĝm(jω)−Gm(jω))/Gm(jω)|;
green lines: estimated relative standard deviations; red lines: Monte Carlo relative
sample standard deviations (coincide with the green lines). Ĝm(jω) is the mean
FRF estimate obtained without the second order derivatives in (13) and (22).

of the mean FRF estimates (green lines) coincide with the Monte
Carlo sample standard deviations of the mean FRF estimates (red
lines). Since 37.7% of the differences between the mean FRF
estimates and the true values (grey lines) lie outside the corres-
ponding standard deviations (red lines), no bias can be detected (for
circular complex normally distributed noise the theoretical fraction
outside the noise standard deviation is 36.8%; see [36], p. 48).

B. Example 2: System described by Time-Varying State Space
Equations

1) Description Simulation Example: The system is described
by the following time-varying state space equations

dx (t)

dt
= A (t)x (t) +B (t)u0 (t) (24)

y0 (t) = C (t)x (t) (25)

with



A (t) = A0 + (A1 −A0) t/T

B (t) = B0 + (B1 −B0) t/T

C (t) = C0 + (C1 − C0) t/T

for t ∈ [0, T ]. (Ar, Br, Cr), r = 0, 1, are the controller canonical
forms of a fourth order transfer function

s2

ω2
0

+ 2ζ0
s
ω0

+ 1(
s2

ω2
1

+ 2ζ1
s
ω1

+ 1
)(

s2

ω2
2

+ 2ζ2
s
ω2

+ 1
) (26)

with ωi = 2πfi, i = 0, 1 and 2, and where f0 = 13 Hz, ζ0 =
0.05, f1 = 10 Hz, ζ1 = 0.35, f2 = 20 Hz, ζ2 = 0.2 for r =
0, and f0 = 16 Hz, ζ0 = 0.05, f1 = 12 Hz, ζ1 = 0.30, f2 =
22 Hz, ζ2 = 0.15 for r = 1. Equations (24) to (26) mimic a
vibrating mechanical structure with time-varying (anti-)resonance
frequencies fi and damping ratios ζi.

Since the true TV-FRF corresponding to (24–26) is unknown,
two types of simulations are performed: (i) system (24–26) op-
erating in open loop with u0(t) = r(t), and (ii) system (24-26)
operating in closed loop with

u0(t) = r(t)− y0(t) (27)

The open loop simulations are handled using the estimation
procedure of [26] and the resulting TV-FRF serves as reference
value for the closed loop simulations. For all simulations r(t) is a
random phase multisine excitation (23) with A = 1, F1 = 20,
F2 = 6000, and f0 = 0.005 Hz, and the transient response
to one signal period (T = 1/f0) under zero initial conditions
(x(0) = 0) is calculated using the ODE45 solver of Matlab™
at the sampling period Ts = 1/fs with fs = 300 Hz, resulting
in N = 60000 samples. The relative and absolute tolerance of
the solver are set to 10−10 and 10−15, respectively. No noise is
added to the input-output signals because we want to analyse the
approximation error of the finite series expansion (9).

2) Results Identification in Open Loop: Two data sets are
generated: an identification data set and a validation data set, which
differ in the random phase realisation of the multisine excitation
(23). The procedure of [26] is applied to estimate the TV-FRF.
First, the indirect input-output model Hn(jω) with Nb = 9 is
estimated using an order R = 8 and a local bandwidth of 199
frequencies for the local polynomial approximation. Next, the
estimates Ĝm(jωk), m = 0, 1, . . . , Nb, of the direct model (9)
are calculated without the second order derivatives. The latter are
used to quantify the O(T−2) bias error of Ĝm(jωk). Figure 10
shows the corresponding TV-FRF estimate (28)

Ĝ (jωk, t) =

Nb∑
m=0

Ĝm (jωk) fm (t) (28)

The bias error of (28) has two contributions: (i) the undermodelling
(R and/or Nb are too small) quantified by the covariance of
Ĝm (jωk) (see Section IV-C–Undermodelling) and (ii) the con-
tributions of the second order derivatives in (9) quantified by the

Figure 10. Nonparametric TV-FRF estimate (28) – Example 2: open loop case.
Top left: amplitude TV-FRF; top right: phase TV-FRF; bottom left: frequency-time
plot amplitude TV-FRF; and bottom right: predicted relative bias error TV-FRF
estimate.

bias of Ĝm (jωk). Both contributions can be calculated resulting
in the predicted relative bias error shown in the bottom right plot
of Figure 10. At the borders the predicted relative bias is -98
dB (almost 5 significant digits are correct) while elsewhere the
predicted error is below -124 dB (more than 6 significant digits
are correct).

Since the true TV-FRF corresponding to the time-varying state
space equations (24–26) is unknown, the predicted bias error
in Figure 10 cannot be compared to the true bias. Therefore,
we indirectly assess the quality of the nonparametric TV-FRF
estimate via the simulation error on both the identification and
validation data sets. The output of the time-variant system (24–26)
is simulated as

Ŷ (k) =

Nb∑
m=0

DFT
(

IDFT
(
Ĝm (jωk)U0 (k)

)
fm (nTs)

)
(29)

with Ĝm (jωk) the nonparametric estimate of the direct model (9),

X (k) = DFT (x (nTs)) =
1√
N

N−1∑
n=0

x (nTs) e
−j2π kn

N (30)

x (nTs) = IDFT (X (k)) =
1√
N

N−1∑
n=0

X (k) ej2π
kn
N (31)

and where U0(k) is the DFT spectrum of the random phase
multisine excitation u0(t) of the identification or validation data
set.

Note that Eq. (29) implicitly assumes that the LTI blocks
Gm(s) operate in periodic steady state which is not the case in
the time domain calculation of the output of the time-varying
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Figure 11. Open loop simulation error of the nonparametric TV-FRF estimate – Ex-
ample 2: open loop identification. Top figures: output DFT spectrum Y0(k) (black
lines), estimated transient term T̂Y (jωk) (black dashed lines), actual simulation
error Ŷ (k)−Y0(k)− T̂Y (jωk) (grey lines) with Ŷ (k) the simulated output (29),
and predicted simulation error (red lines). Bottom figure: relative simulation error
(Ŷ (k)−Y0(k)− T̂Y (jωk))/Y (k) on the identification (black line) and validation
(grey line) data sets.

state space equations (24). Hence, the simulated output DFT
spectrum Ŷ (k) (29) and the true output DFT spectrum Y0(k) =
DFT(y0(nTs)) can only be equal within a transient (leakage) error
TY (jωk) which is a smooth function of the frequency. Moreover,
the transient terms in the identification and validation data sets
are different. Therefore, the transient term TY (jωk) is removed
nonparametrically in the simulation error Ŷ (k)− Y0(k) using the
local polynomial method for output observations only (see [33],
[34]). Finally, the simulation error Ŷ (k)− Y0(k) is also predicted
using the predicted covariance and bias error of Ĝm (jωk) (see
Appendix B for the details).

Figure 11 shows the results on the identification and validation
data sets. It can be seen that the transient contribution (dashed
black lines) is significantly larger than the simulation error (grey
lines), and that the actual (grey lines) and predicted (red lines)
simulation errors coincide. Note also that the simulation errors
of the identification and validation data sets are very similar and
almost everywhere at least 120 dB (6 significant digits are correct)
below the true output DFT spectrum.

3) Results Identification in Closed Loop: An identification data
set of the time-variant system (24–26) operating in feedback (27)
is generated as described in Section V-B1. The procedure of
Section IV-B is applied to estimate the TV-FRF. First, the indirect
reference to input-output models Hry

i (jω) and Hru
m (jω) with

Nb = 13 are estimated using an order R = 12 and a local band-
width of 482 frequencies for the local polynomial approximation.
Next, the deconvolution of the indirect models (Theorem 3) is
performed without the second order derivatives in (22). Finally,
FRFs Ǧm(jωk) of the direct model (9) are calculated without
the second order derivatives. Note that compared with the open
loop identification more time-variant branches are needed for the
identification in closed loop. This is due to the fact that the poles

Figure 12. Relative bias |Ǧ(jωk, t) − Ĝ(jωk, t))/Ĝ(jωk, t)| of the nonpara-
metric TV-FRF estimate Ǧ(jωk, t) (32) – Example 2: closed loop identification.
Ĝ(jωk, t) is the nonparametric TV-FRF estimate (28) obtained in open loop.

of Hry
i (s) and Hru

m (s) are closer to the imaginary axis than those
of Hn(s).

First, the nonparametric TV-FRF estimate Ǧ (jωk, t) obtained
in closed loop

Ǧ (jωk, t) =

Nb∑
p=0

Ǧp (jωk) fp (t) (32)

is compared in Figure 12 to the TV-FRF estimate obtained in
open loop. At the borders the relative bias is -88 dB (more than
4 significant digits are correct) while elsewhere the error is below
-125 dB (at least 6 significant digits are correct).

Next, the TV-FRF estimate (32) is used to simulate the output
of the open loop setup

Y̌ (k) =

Nb∑
p=0

DFT
(
IDFT

(
Ǧp (jωk)U0 (k)

)
fp (t)

)
(33)

where U0(k) is the input DFT spectrum of the validation data set.
The simulation error of (33) is here mainly due to the undermod-
elling (R and/or Nb are too small) quantified by the covariance of
Ǧm (jωk) and to the contributions of the second order derivatives
in (12) and (22) quantified by the bias of Ǧm (jωk). Hence, it can
be predicted (see Appendix B for the details). Comparing Figure
13 to Figure 11 it can be seen that the actual simulation errors of
the TV-FRF estimates (28) and (32) on the open loop validation
data set are almost equal. Although the predicted simulation error
(red line) is somewhat too conservative, it gives a useful estimate
of the order of magnitude of the actual simulation error (grey line).
Except at a few frequencies, the relative bias error in Figure 13 is
smaller than -120 dB.

VI. MEASUREMENT EXAMPLE

A. Experimental setup

The electronic circuit is a second order time-variant bandpass
filter (see Fig. 14) operating in feedback (Fig. 1 with unity
feedback loop and linear time-invariant actuator). Three variable
resistors controlled by the scheduling voltage p(t) induce the time-
variation. The reference signal r(t) in Fig. 1 is a random phase
multisine (23) with A chosen such that its rms value equals 48
mV, φk independent and uniformly [0, 2π) distributed random
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Figure 13. Open loop simulation error of the nonparametric TV-FRF estimate – Ex-
ample 2: closed loop identification. Left figure: output DFT spectrum Y0(k) (black
line), estimated transient term ŤY (jωk) (black dashed line), actual simulation
error Y̌ (k)− Y0(k)− ŤY (jωk) (grey line) with Y̌ (k) the simulated output (33),
and predicted simulation error (red line). Right figure: relative simulation error
(Y̌ (k)− Y0(k)− ŤY (jωk))/Y (k).

p t( )

Figure 14. Electronic circuit consisting of three high gain operational amplifiers
(TL071), two capacitors (C1 = C2 = 10 nF), four resistors (R1 = R2 = 10 kΩ,
R3 = 5.31 kΩ, and R4 = 100.8 kΩ), and three voltage dependent resistors
R(p(t)) made with an electro-optical component VTL5C1 (see [21] for the details).
The rms values of the measured input u(t) and output y(t) signals are, respectively,
72 mV and 88 mV; and the scheduling voltage p(t) varies between 0.8 V and 1.1
V.

variables, f0 = fs/N with fs = 625 kHz the sampling frequency
and N = 128 × 1024 the number of samples in one period,
F1 = d200 Hz/f0e = 42, and F2 = b40 kHz/f0c = 8388. This
signal excites the frequency band (200 Hz, 40 kHz) and the input-
output responses to one reference signal period are measured for
two different random phase realisations. The first data set is used
for identification and the second for validation. Fig. 14 also shows
the variation of the scheduling voltage p(t) that modifies the time-
variant resistors during the experiments. Note that p(t) is not used
in the estimation procedure.

Two HP 1445A generator cards (50 Ω output impedance) are
used for generating the random phase multisine r(t) and the
scheduling voltage p(t). To avoid loading of the electronic circuit,
the input-output signals u(t) and y(t) are first buffered ( > 5MΩ in-
put impedance, 50 Ω output impedance) before being connected to
the HP E1430A data acquisition channels. Both generator and data
acquisition cards of the VXI measurement setup are synchronised
(coherent sampling at fs = 625 kHz). Fig. 14 shows the measured
input-output signals of the identification data set.

B. Results

First, the indirect reference to input-output models Hry
i (jω) and

Hru
m (jω) with Nb = 13 are estimated using an order R = 4 and

a local bandwidth of 875 frequencies for the local polynomial
approximation. Next, the deconvolution of the indirect models
(Theorem 3) is performed without the second order derivatives in
(22). Finally, FRFs Ǧm(jωk) of the direct model (9) are calculated

Figure 15. Nonparametric TV-FRF estimate (32) – Measurement example. Top
left: amplitude TV-FRF; top right: phase TV-FRF; bottom left: frequency-time plot
amplitude TV-FRF; bottom right: predicted relative bias error TV-FRF estimate in
the frequency band [3 kHz, 40 kHz] and the time interval [0.01 s, 0.19 s].
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Figure 16. Simulation error of the nonparametric TV-FRF estimate – Measurement
example. Left: identification data set; and right: validation data set. Black lines:
measured output DFT spectrum Y (k). Grey lines: actual simulation error Y̌ (k)−
Y (k) − ŤY (jωk), with ŤY (jωk) the estimated transient term, and Y̌ (k) the
simulated output (33) where U0(k) is replaced by the measured input DFT spectrum
U(k). Red lines: predicted simulation error (eq. (42) where U0(k) is replaced by
U(k)).

without the second order derivatives. The latter are used to quantify
the O(T−2) bias error contribution of Ǧm(jωk) to the TV-FRF
and to the mean square error of the simulated output. Figure 15
shows the corresponding TV-FRF estimate (32). It can be seen that
the predicted relative bias error of the TV-FRF estimate is almost
everywhere smaller than - 40 dB. Note also that the time evolution
of the resonance frequency has the same shape as the scheduling
voltage p(t) in Fig. 14.

Finally, the nonparametric TV-FRF estimate and the measured
input are used to simulate the output of the identification and valid-
ation data sets via (33) where the true input DFT spectrum U0(k) is
replaced by the measured spectrum U(k). Via the predicted bias
and variance of the Ǧm(jωk) estimates, the mean square error of
the simulated output is calculated (see Appendix B). The results
are shown in Fig. 16. It can be seen that the simulation error
(grey lines) is within the predicted bound (red lines) for both the
identification and validation data sets, which validates the estimated
TV-FRF model (9) with Nb = 13 time-variant branches.



VII. CONCLUSIONS

A nonparametric method for estimating the time-variant fre-
quency response function from noisy input-output measurements
has been presented. The proposed method accounts for possible
linear time-variant interactions between the actuator and the plant
and/or the presence of a (time-variant) feedback loop. The key to
solve this problem is the deconvolution of the impulse response
of the cascade of two linear time-variant systems. Although the
deconvolution issue has been solved for a particular class of time-
variant systems only, the many simulations performed of which
only one example is reported here, and the real measurements
suggest – but do not prove – that the proposed estimation procedure
is robust w.r.t. the system assumption made. Matlab software is
available on demand.
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APPENDIX

A. Proof of Lemma 1

In this appendix (16) is first proven for n = 1, 2, and 3. Next,
it is shown by induction that (16) is valid for any n ∈ N.

To simplify the notations, the interval [0, T ] is replaced by
[−T/2, T/2]. Proceeding in this way the basis functions fn(t) are
related to the Legendre polynomials ln(x), x ∈ [−1, 1], as
fn(t) = ln(αt), with α = 2/T and t ∈ [−T/2, T/2]. Hence,
they satisfy the following recurrence formula

(n+ 1)fn+1(t) = (2n+ 1)αtfn(t)− nfn−1(t) (34)

with n > 1, f0(t) = 1, and f1(t) = αt [27]. For notational
simplicity, the transient terms T1(s) and T2(s) in (15) and (16) will
be discarded in the calculations. The equalities in the remainder
of the proof should be interpreted as exact within a transient term
that is accounted for by T1(s) and T2(s).

Since the interval [0, T ] is replaced by [−T/2, T/2], the one-
sided Laplace transform (14) is replaced by the two-sided Laplace
transform [37] of the windowed signals

Y0 (s) = L {y0 (t)} =

ˆ +T/2

−T/2
y0 (t) e−stdt (35)

A key property of the Laplace transform (35) used in the proof is
that L{trx(t)} = (−1)rX(r)(s) [37]. Note that (15) remains valid
for the two-sided Laplace transform (35) (proof: see Appendix A
of [38]).

Base case: (16) is valid for n = 1, 2, and 3

Consider the top block diagram of Fig. 7 with n = 1, and where
the output of the dynamic block is denoted as u(t). Using f1(t) =
αt, u1(t) = f1(t)u(t), U(s) = Hru

m (s)Rm(s), and L{tx(t)} =
−X(1)(s), we find

U1(s) = −αU (1)(s)

= Hru
m (s)(−αR(1)

m (s))− αHru(1)
m (s)Rm(s)

= Hru
m (s)L{f1(t)rm(t)} − αHru(1)

m (s)Rm(s)

= Hru
m (s)Rm,1(s)− αHru(1)

m (s)Rm(s)

which equals (16) for n = 1 and O(α3) = 0.
Consider now the block diagram in Fig. 7 with n = 2. Using

f2(t) = (3α2t2−1)/2, u2(t) = f2(t)u(t), U(s) = Hru
m (s)Rm(s),

and L{trx(t)} = (−1)rX(r)(s) for r = 1, 2, we find via similar
calculations as for n = 1

U2(s) =
3

2
α2U (2)(s)− 1

2
U(s)

= Hru
m (s)Rm,2(s)− 3αHru(1)

m (s)Rm,1(s)

+
3

2
α2Hru(2)

m (s)Rm(s)

which proves (16) for n = 2 and O(α3) = 0.
Repeating the calculations for n = 3 in Fig. 7 with f3(t) =

(5α3t3 − 3αt)/2 gives after some calculations

U3(s) = −5

3
α3U (3)(s) +

3

2
αU (1)(s)

= Hru
m (s)Rm,3(s)− 5αHru(1)

m (s)Rm,2(s)

− αHru(1)
m (s)Rm(s) +

15

2
α2Hru(2)

m (s)Rm,1(s)

− 5

2
α3Hru(3)

m (s)Rm(s)

which demonstrates (16) for n = 3 and O(α3) =

− 5
2α

3H
ru(3)
m (s)Rm(s).

Inductive step: (16) is valid for any natural number n

Assuming that (16) is valid for all natural numbers smaller than
or equal to n, we will prove that (16) holds for n+ 1. Combining
(15), where n is replaced by n + 1, with (34) using L{tx(t)} =
−X(1)(s), gives

Un+1(s) = −2n+ 1

n+ 1
αU (1)

n (s)− n

n+ 1
Un−1(s) (36)

By the induction hypothesis (16) holds for Un(s) and Un−1(s).
Using (16), the term −αU (1)

n (s) in (36) can be calculated. This
involves derivatives of the form −αR(1)

m,p(s) which, using (34), can
be simplified as

−αR(1)
m,p(s) = L{αtrm(t)fp(t)}

=
p+ 1

2p+ 1
L{rm(t)fp+1(t)}+

p

2p+ 1
L{rm(t)fp−1(t)}

=
p+ 1

2p+ 1
Rm,p+1(s) +

p

2p+ 1
Rm,p−1(s) (37)



Substituting in (36) the expressions for U
(1)
n (s) (derivative of

(16), where the terms −αR(1)
m,p(s) are replaced by (37)) and

Un−1(s) ((16), where n is replaced by n − 1), gives after some
calculations Eq. (16), where n is replaced by n+ 1.

B. Prediction of the Simulation Error

Using (30) and (31), the simulated output (29) can be rewritten
as

Ŷ (k) =
1√
N

Nb∑
m=0

N−1∑
l=0

Ĝm (jωl)U0 (l)Fm (k − l) (38)

where Fm(k) = DFT(fm(nTs)). In the sequel the mean squared
error of Ŷ[r] (k), the rth entry of Ŷ (k), is calculated under the
following assumptions on the true input u0(t).

Assumption 4 (true input): The true input DFT spectrum
U0(k) (i) is uncorrelated over the frequency, (ii) has a diagonal
power spectrum (E{U0(k)UH0 (k)} is diagonal), and (iii) is inde-
pendently distributed of Ĝm(jωl).

Assumption 4(i) is exact for random phase multisine excitations
(23) and is asymptotically (for N → ∞) true for filtered white
noise. Assumption 4(ii) requires that the nu input signals are
uncorrelated, and Assumption 4(iii) is fulfilled for the validation
data set.

The mean squared error (MSE) of Ŷ[r] (k) is given by

MSE(Ŷ[r] (k)) = E
{∣∣∣Ŷ[r] (k)− Y0[r] (k)

∣∣∣2} (39)

Ŷ (k)− Y0 (k) =
1√
N

Nb∑
m=0

N−1∑
l=0

∆Ĝm (jωl)U0 (l)Fm (k − l)

(40)

with Y0(k) the true output DFT spectrum, ∆Ĝm (jωl) the sum of
the noise and bias contributions of the estimate Ĝm (jωl), and
where the expected value is taken w.r.t. Ĝm (jωl) and U0(k).
Elaboration of (39) requires the diagonal elements of the following
matrix

Cmp = E
{

∆Ĝm (jωl)U0 (l)UH0 (l′) ∆ĜHp (jωl′)
}

= E
{

∆Ĝm (jωl)E
{
U0 (l)UH0 (l)

}
∆ĜHp (jωl)

}
(41)

where the second equality uses Assumptions 4(i, iii). Note that
(41) is only approximately true for the identification data set
(Ĝm (jωk) depends on U0(k)). Combining (39) and (41) taking
into account Assumption 4(ii) finally gives

MSE(Ŷ[r] (k)) =
1

N

Nb∑
m,p=0

N−1∑
l=0

Cmp[r,r] (l)Qmp (k − l)

=
1√
N

Nb∑
m,p=0

DFT
(

IDFT
(
Cmp[r,r] (k)

)
IDFT (Qmp (k))

)
(42)

with

Cmp[r,r] =

nu∑
v=1

MSE
(
Ĝm[r,v] (jωl) , Ĝp[r,v] (jωl)

)
E
{∣∣U0[v] (k)

∣∣2}
Qmp (k) = Fm (k)Fp (k)

where x is the complex conjugate of x, and MSE(x, y) = E{(x−
x0)(y − y0)}, with x0, y0 the true values. An estimate of the
MSE of Ĝm[r,v] (jωl) is obtained from the residuals of the local
polynomial approximation (see [33] for the details).
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