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Abstract—The knowledge of the topology of a wired network
is often of fundamental importance. For instance, in the context
of Power Line Communications (PLC) networks it is helpful to
implement data routing strategies, while in power distribution
networks and Smart Micro Grids (SMG) it is required for grid
monitoring and for power flow management. In this paper, we
use the transmission line theory to shed new light and to show
how the topological properties of a wired network can be found
exploiting admittance measurements at the nodes. An analytic
proof is reported to show that the derivation of the topologycan
be done in complex networks under certain assumptions. We also
analyze the effect of the network background noise on admittance
measurements. In this respect, we propose a topology derivation
algorithm that works in the presence of noise. We finally analyze
the performance of the algorithm using values that are typical
of power line distribution networks.

Index Terms—Topology derivation, admittance measurement,
smart micro grids, distribution networks, transmission line the-
ory.

I. I NTRODUCTION

W IRED data transmission networks like telephone and
digital subscriber line (DSL) networks are well estab-

lished communication technologies that allow the exchange
of enormous amount of data among all the users therein
connected. In recent years also power lines have been exten-
sively investigated for data transmission, enabling any user
connected to a power grid to exchange information [1]. This
new technology contributed in fostering the advent of smart
grids [2]: not only mere infrastructures to distribute energy to
users, but also intelligent networks that exchange information
in order to efficiently satisfy the user demands and manage
bidirectional power flows.

In this paper, we address the problem of identifying the
topology of such wired data transmission networks, consider-
ing but not restricting to PLC in the context of distribution
grids and SMG as a possible application. The term topology
herein refers to the network graph that describes the nodes
relative displacement, and the length of the wired connections.

The identification of the network topology is important in
many respects. In the context of DSL networks, it is part of
the line qualification procedures that are used to assess the
ability of a specific wired network to support different DSL
services before the actual deployment. A proper knowledge
of the network topology allows to compute the channel trans-
fer functions and can also be used for support engineering
and maintenance operations [3], [4], [5]. In the context of
SMG, not only communication is involved, but also power

transmission. PLC are used herein as a mean of controlling
and monitoring of the grid. The knowledge of the network
topology is a fundamental requirement to develop routing
strategies for both power and data information, as well as
coordination algorithms for distributed computation [6].

Some recent proposals [7], [8], [9], [10] aim to estimate
the PLC network topology as plug-and-play solutions (i.e.,no
historical data is considered), by using a two-step procedure.
First, the channel response is sensed at different frequencies
to estimate the distances between the nodes. Subsequently,
different algorithms are applied to infer the network topology.
This two-step procedure can be repeated over time, so that the
topology is updated when the state of the network changes.
In [7] Frequency Domain Reflectometry (FDR) is used to
perform a single-end distance measurement between one node
and all the others. However, the FDR reliability is limited by
the maximum observable distance and the number of branches.
Some better performance is achieved using Time Frequency
Domain Reflectometry [8]. In [9], it is assumed that all the
nodes of the network are equipped with a PLC modem. The
distance between nodes is estimated via Time of Arrival (ToA),
i.e., from the propagation delay of the transmitted signal using
an energy detector. ToA estimation deploying PLC modems is
also used in [10], where the energy detector is compared to a
sub-space estimation method that is generally more efficient.

In this paper, we present a novel technique for wired
network topology estimation that does not rely on historical
data and uses admittance measurements operated at all the
network nodes. This last requirement is envisioned for a future
SMG scenario in which all the nodes will be equipped with
PLC modems [9]. To our knowledge, admittance measure-
ments have already been used in power networks in order
to implement efficient fault detection strategies [11],[12], but
never for topology estimation. On the other hand, equivalent
S-parameter and impedance measurement have been used
in DSL to identify the DSL topology [4] and the channel
transfer function [5] under ideal conditions. The purpose of
this paper is to discuss the role of admittance measurements,
the fundamental aspects, the conditions and the assumptions
that have to be made to allow the derivation of a wireline
network topology via admittance measurements. The focal
points are the application of the Transmission Line (TL)
theory [13] and the measurement of the network admittances
at all nodes of the network. Based on this, we formulate an
analytical result and a related algorithm which allow us to
derive the topology exactly and independently from the size
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and complexity of the network, when no noise or measurement
error is present. Hence, in this paper we use the terminology
topology derivation instead of identification or estimation. An
analytical formulation of the line background noise effecton
the admittance measurement is then derived. Furthermore, an
approach to derive the topology in the presence of noisy
measurements is described, and its performance is assessed.

A. Relation with existing solutions and contribution

The main aim of this paper is to introduce and thor-
oughly explain the theoretical aspects of a novel technique
for topology derivation in wired networks, as an alternative or
complement to the present techniques. Moreover, a section is
devoted to expose the open issues and the possible directions
that can be pursued to improve the topology derivation method
presented in this paper, and the topology inference methods
in general.

The proposed technique can tackle some limitations of the
existing plug-and-play topology estimation techniques for PLC
networks, namely [7], [8], [9], [10], but at the same time
introduces some challenges, as discussed below.

Meter: the existing techniques require PLC modems or re-
flectometers. Our approach relies on the use of just impedance
or voltage meters, which can also be embedded in PLC
modems.

Channel model: the existing techniques use a phenomeno-
logical channel model that requires some assumptions about
the channel (propagation velocity equal for each cable, con-
stant reflection coefficients over frequency, propagation con-
stant be linear function of frequency). If some of the assump-
tions do not hold true, this might deteriorate the accuracy of
the topology estimation. Our technique uses a physical channel
model based on TL theory [14], which is more strictly related
to the physics of propagation. On the other hand it requires
information about all the loads and cable parameters, which
might not always be available.

Operating frequency: High frequencies and large band-
widths are needed to obtain reasonable performance of ToA
techniques and good resolution in FDR or TFDR. Our ap-
proach operates at a single frequency that can also be in the
range of the narrow band PLC spectrum, more commonly used
in SMG.

Dimension of the network: a problem of the existing two
step techniques [7], [8], [9], [10], is that the topology is
inferred only if each node (or the main node in the case of FDR
and TFDR) knows the distance between itself and any other
node of the network. Moreover, the multipath propagation
and the strong attenuation of the high frequency signals limit
the maximum distance that can be sensed. This problem
can be solved by splitting the network in many overlapped
subsections (see [15]). In our approach each node finds the
distance only to its neighbor and can contextually infer its
topological position. Hence, our approach is not limited by
the dimension of the network, but by the maximum distance
between two neighbor nodes.

At the same time our work shares some similarities with [4].
Both of them use admittance or equivalent scattering parameter

measurements and assume all the line and load parameters to
be ideal. They however differ on the requirements, the algo-
rithms and the final results. The work in [4] applies a genetic
algorithm to derive the network topology and the number
of nodes starting from single or double end measurements.
However the algorithm is tested on simple networks, and no
parameter error or noise is taken into account. The work
presented in this paper relies on measurements performed at
every node of the network, but it can derive the topology
for any network, when no noise is considered. Furthermore,
an analysis of the impact of network noise on the derivation
algorithm is performed.

The reminder of this paper is organized as follows. In
Section II, a brief review of the basic equations of the TL
theory used for distance computation is given. In Section III,
the main system of equations to solve the topology derivation
problem is derived. In Section IV, the influence of the line
network noise on admittance measurements is discussed. The
topology derivation algorithm is then presented in SectionV.
Numerical results are also reported in Section VI to study the
robustness of the proposed algorithm to noise. Further remarks
and open problems are also discussed in Section VII. Finally,
the conclusion follows.

II. A NALYTICAL EVIDENCE FROM TL THEORY

In this section, we examine the TL theory in order to derive
an equation that relates the length of the line that connectstwo
nodes with the admittance at one end. We start by considering
the simplest case of an unbranched transmission line of length
d that connects a Thevenin generator to a loadL. The network
admittanceY (d) seen by the generator can be written as [13]

Y (d) = YC

1− ρLe
−2Γd

1 + ρLe−2Γd
, (1)

We refer to this relation ascarry-backequation since the load
admittance is carried back to the input of the line to obtain
Y (d). YC is the characteristic admittance of the line andΓ =
α+jβ is the propagation constant of the line, whereβ = 2π/λ
andλ is the wavelength used to perform the measurement.ρL
is the load reflection coefficient written as

ρL =
YC − YL

YC + YL

, (2)

where YL is the load admittance. All the aforementioned
quantities (exceptd) depend on the frequency. Herein and in
the following, this dependency is implicit to ease the notation.
However, as it will be discussed, the choice of the frequency
influences the algorithm.

From (1), under the assumption that we know the load
reflection coefficient (2), an equation that related to the
measured network admittance can be found1:

d =
1

2α
(log |ρ(d)| − log |ρL|) (3)

where
ρ(d) = (YC − Y (d))/(YC + Y (d)) (4)

1Actually the equations are two. The second one isd = 1

2β
( ρ(d) − ρL),

but it limits the estimation ofd due to the intrinsic periodicity of the phase.
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Fig. 1: Sketch of a simple 2-loads network

andk is an integer number. (3) is bijective since in real lines
α 6= 0, so that|ρ(d)| is a monotonically decreasing function
of d. We also remark that in two cases it is impossible to find
the length of the transmission line using (3):

1) if the transmission line is ideal, i.e.α = 0. In fact in this
caseY (d) would be a periodic function ofd with period
λ/2.

2) if ρL = 0, i.e. when the load is matched to the trans-
mission line impedance. In fact in this caseY (d) would
simply be a constant.

When branches attached to the main transmission line are
considered, the problem of finding the length of each line
becomes more difficult. In the following sections, we consider
a complex network made ofN nodes. We refer to the nodes as
branch nodes (identified by line intersections) and termination
nodes (leaves). The known parameters in such a network are
the cable parametersΓi, YCi

and the loadsYLi
or equivalently

the reflection coefficientsρLi
∀i ∈ [1, . . .N ], and network

admittancesYi at every node of the network.

III. D ERIVATION OF LINES’ LENGTH WITH UNKNOWN

TOPOLOGY GRAPH

In this section, we derive the analytical formulas and the
theorem that allow us to derive the network topology.

To understand how to proceed, we initially consider the
simple network depicted in Fig. 1. Herein, two loads are
connected by a line with lengthd, and the network admittances
Y1 andY2 are measured at the line ends. Using (1) and (2) it
is possible to relate the network admittanceY1 as a function
of d as follows:



























Y1 = YC

1− ρL2
e−2Γd

1 + ρL2
e−2Γd

+ YL1

ρL2
=

YC − YL2

YC + YL2

=
YC − Y2 + YC

1−ρL1
e−2Γd

1+ρL1
e−2Γd

YC + Y2 − YC
1−ρL1

e−2Γd

1+ρL1
e−2Γd

(5)

A similar system of equations can be written for the network
admittanceY2 measured at node2. In this system, exploiting
the second relation, we can write that

Y1 = f(Y2, YL1
, YC ,Γ, d), (6)

so that the admittance measured at node1 is a function, in
particular, of the network admittanceY2 while the knowledge
of the load admittanceYL2

is not explicitly required. It is
important to point out that in general there can be two values
of d that are admissible, i.e., two possible solutions. This is
because the term (load reflection coefficient)

ρ2 = ρL2
e−2Γd (7)

Smith Chart

ρ
L2

(d = 0)

ρ
2
(d
α
) = ρ

2
(d
β
)

Fig. 2: Smith chart with a possible realization ofρ2 according to
equation (7).

Fig. 3: Sketch of a simple 3-loads network

that appears in the first equation of (5) may be such that

ρ2(dα) = ρ2(dβ)

for dα < λ/4 and λ/4 < dβ < λ/2, depending on the
parameters; in fact,ρ2 is the product of an exponential function
with ρL2

, which also has an exponential trend. Using the Smith
chart, an example ofρ2 as a function ofd is plotted in Fig.
2. It can therein be clearly seen that there are two distances
in correspondence of which the reflection coefficient takes the
same value. Given this fact,ρ2 is not a bijective function of
d, conversely from (4) that exploits the load admittanceYL2

instead of the network admittanceY2. It follows that to grant
a unique solution for the variabled, we must assume that
measurements have to be taken at a wavelengthλ ≥ 4d.

When the results shown above are extended to a more
complex network, as for example the one depicted in Fig.
3, it is possible to write a system of equations similar to (5).
Now, the second equation of the system changes into

ρL2
=

YC − YL2eq

YC + YL2eq
=

YC − (YL2
+ Ycb3)

YC + (YL2
+ Ycb3)

(8)

whereYcb3 represents the load admittanceYL3
carried back to

node 2. One can also write

YL2
= Y2 − YC

(

1− ρL1
e−2Γ1d1

1 + ρL1
e−2Γ1d1

+
1− ρL3

e−2Γ2d2

1 + ρL3
e−2Γ2d2

)

(9)

so that with some simple algebraic manipulation, (8) finally
becomes

ρL2
=

YC − Y2 + YC
1−ρL1

e−2Γ1d1

1+ρL1
e−2Γ1d1

YC + Y2 − YC
1−ρL1

e−2Γ1d1

1+ρL1
e−2Γ1d1

(10)

that is equal to the second equation in the system (5). Hence,
this proves that equation (6) is still valid when another part of
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the network is branched to node 2 so that to find the distance
d1 we need a network admittance measurement at nodes1 and
2 and apply the first equation in (5). Then, to obtaind2 we can
proceed with a similar reasoning so that we relate according
to a similar set of equationsY2 with Y3.

Furthermore, the system (5) of equations can be written as
a single complex equation in the unknownd. The resulting
equation has the following quadratic form

γe−2Γd + δe−4Γd + ǫ = 0,

whereγ, δ andǫ are polynomial functions ofY1, Y2, YC and
YL1

. The solutions can be written in closed form as

d1 =
1

2Γ
log



−
a
(

√

−b(cY 2
2 + lY2 + e) + fY2 + g

)

h





(11a)

d2 =
1

2Γ
log



−
a
(

−
√

−b(cY 2
2 + lY2 + e) + fY2 + g

)

h





(11b)

wherea, b, c, e, f , g, h, k andl are polynomial functions of
Y1, YC , YL1

andΓ. We wrote (11) as an explicit function of
the soleY2, which is the network admittance of node 2 that
is adjacent to node 1 with measured network admittanceY1.

It should be observed that the admittance measured at
one termination node (leaf) of the PL network depends
only on the physical parameters of the cable to whom it is
branched, on the length of the cable connecting it to the
nearest node, and on the network admittance measured at
this second node. However, although we have measured all
the network admittances, we still do not know the topology
graph and therefore we do not know the association between
the admittances, i.e., we do not know what nodes/admittances
are adjacent and what nodes are not directly connected by
a line. It may be believed, at a first glance, that the system
of equations (5), and therefore (11), applies to any pair of
admittances measured in the network so that we always get a
physically meaningful (although wrong) distance. In reality,
since all the terms inside the logarithm in (11) are complex,
d1 and d2 can be complex depending onY2. Of course the
distance we are looking for must be a real number and this
is the case whenY2 is the true admittance of a node that is
adjacent to the node 1 with admittanceY1. A fundamental
result is then given by the following theorem which turns out
to be instrumental to obtain a topology derivation algorithm.

Theorem 1: Considering a wired network made byN nodes,
the distance between any leafi and another nodej can be
found by applying (11). The result is the correct value with
probability 1 either ford1 or d2, if and only if:

1) the admittanceY2 used in (11) is the one measured at
nodej, to which nodei is directly connected;

2) the actual length of the line connectingi and j is less
thanλ/4, whereλ is the wavelength used to perform the
admittance measurements.

Corollary 1.1: When no parameter or measurement error
exists, the topology (graph and branch lengths) of any line
network in which

max
i,j∈N

di,j ≤
λ

4
,

can be exactly derived by means of a recursive use of (11),
with the exploitation of the measured network admittances and
the available cable parameters and loads.

Proof:
A sufficient condition to obtain a unique and real solution

for the distance is when the pair of nodes are a leaf and
the adjacent node. An this is obvious from the physical
construction of the problem and associated TL equations.

To prove the necessity, i.e., that there exists a unique
Y2 for which the solutiond to (11) is real, we follow a
probabilistic reasoning. Firstly, let’s consider the plane where
the impedanceY2 can possibly lay and let’s define an arbitrary
value of it with y2. Then, we note that the locus of points for
which the imaginary part ofd is zero is a line, becaused is
the logarithm of a polynomial function. Since any complex
polynomial is holomorphic [16], it cannot be locally constant,
so its imaginary part can assume one value only along a line,
or a sequence of lines (and the logarithm does not influence
the function in this sense).

As an example,ℑ(d1) is plotted as a function ofy2 in
Fig. 4. The bold-dashed line in this figure highlights the locus
of points where the imaginary part of the distances is zero.
Secondly, let’s assume to randomly picky2, i.e., the real
and imaginary parts of it are independent, continuous random
variables. Then, the probability thaty2 lays on a line is zero
and consequently the probability thatℑ(d2) = 0 orℑ(d1) = 0
is also zero.

We can therefore state that with probability 1, the only case
for which d1 or d2 are real valued is the case corresponding to
the sufficient condition, i.e., whenY1 andY2 are the network
admittances of the leaf and the adjacent node. Furthermore,
only one amongd1 andd2 will be real valued. This is because
the problem of finding whereℑ(d1(y2)) = ℑ(d2(y2)) = 0
implies to find the intersection between two lines. Observing
the form of (11), the number of intersection points is finite,
so thatP [ℑ(d2(y2)) = ℑ(d1(y2)) = 0] = 0.

Finally, the assumption that the distance among the two
nodes is less or equal toλ/4 is a prerequisite to invert equation
(5) since, as we have already explained, that equation is
bijective only whend < λ/4.

The corollary is an immediate consequence of the theorem.
It will be constructively used in an algorithm to derive the
topology graph and branch lengths in the next section.

IV. A DMITTANCE NOISE

In real scenarios admittance measurements are perturbed
by noise. In this section, a mathematical derivation of the
admittance noise is performed. This noise will be related to
the signal-to-noise ratio (SNR) normally defined in communi-
cations.
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Fig. 4: Example of one possibleℑ(d1) as a function of the soley2.

Fig. 5: Sketch of a voltage measurement device.VS and YS are
the equivalent voltage generator and admittance,Ym is the network
admittance at nodem to be measured.

An admittance meter can be represented as its Thevenin
equivalent, beingVS the equivalent generated voltage phasor
andYS the equivalent output admittance. When an admittance
measurement is performed, then a voltage divider is created
betweenYS andYm, the unknown network admittance at node
m (see Fig. 5). Using the voltage divider equation,Ym can be
derived asYm = YSVS/Vm − YS , whereVm is the phasor of
the voltage drop acrossYm. Vm is affected by the background
noise present in the network, so that it can be written asVm =
Vm0

+ VmN
, whereVmN

∼ CN (0, σ2
N ) and Vm0

= E [Vm].
CN (0, σ2

N ) denotes a complex Gaussian variable with zero
mean and varianceσ2; E[·] denotes the expectation operator.
The real and imaginary noise are assumed to be independent
and with the same varianceσ2

N/2.
If we assumeVS and YS to be ideal, the noisy load

admittanceYm can be written as

Ym =
YS (VS − Vm0

− VmN
)

Vm0
+ VmN

(12)

=
YS (VS − Vm0

)

Vm0
+ VmN

−
YSVmN

Vm0
+ VmN

. (13)

In particular, if the SNR at the nodem, i.e.
E

[

|Vm0
|2
]

/E
[

|VmN
|2
]

, is sufficiently high, then (13)
can be simplified as

Ym =
YS (VS − Vm0

)

Vm0

−
YSVmN

Vm0

= Ym0
+ YmN

, (14)

thusYm can also be considered as a perfect measurementYm0

corrupted by the Gaussian noiseYmN
. To experimentally prove

∣

∣
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Fig. 6: Normalized plot of (15) for different values ofVm0

it, we generated thousands of realizations ofYm with different
parameters and SNRs. By applying the standard Kolmogorow-
Smirnow Test [17], we discovered that the simplification
introduced in (14) is valid when SNR> 35 dB. Such a value of
SNR is easily exceeded for example when the measure is done
according to the PLC standards, where in the worst condition
at few kHz the background noise can reach -70 dBm, while
the corresponding transmit power is around -15 dBm [18].

When (14) holds, we can define the Admittance to Noise
Ratio (ANR) as

ANR =
E

[

|Ym0
|2
]

E

[

|YmN
|2
] ≃

|Ym0
|2

σ2
N

=
|VS − Vm0

|2

σ2
N

, (15)

whereσ2
N is the variance ofVmN

and the second equivalence
holds whenYm0

can be considered static over time, i.e. within
the coherence time of the channel. As we can see in Fig. 6,
whenVm0

is close toVS , the admittance noise is amplified,
leading to an ANR lower than the SNR. Vice versa, when a
high value of ANR is wanted, thenVm0

has to be as little as
possible. A little value ofVm0

can be easily achieved by using
|YS | ≪ |Ym0

|.

V. TOPOLOGYDERIVATION

In this section, we present an algorithm that relies on
Theorem 1 and that allows to derive the topology of a general
tree-structured wired network, together with the length ofall
the lines connecting the nodes.

Let T = (N ,L) denote the topology of a network, where
N is the set of all theN nodes of the network andL is
the set made of all the physical connections between two
network elements. The terminal nodes, i.e. those nodes that
are connected to the rest of the network with a single branch,
are referred to as leafs.

To each node of the networki ∈ N we associate a load
admittanceYLi

, that is characteristic of the device plugged
to the network, and a network admittanceYNi

that is the
admittance measured at nodei comprising the load at that
node. The cable parameters for each linel ∈ L departing from
nodei are assumed to be known. Such cable parameters are
the propagation constantΓl and the characteristic admittance
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of the lineYCl
. Clearly, in a uniform network all cables have

identical parameters.

Algorithm 1 offers a method to deriveT taking as inputs
the parametersYL, Γ, YC , YN , that are known for each node
and branch of the network. The last parameter needed is the
ANR that is assumed to be the same for every node and can
be sensed by the modem during the calibration period of each
data transmission. The core idea of the algorithm is that if the
imaginary part of one of the two computed cable lengths is
small enough, then also the error on the real part is small, and
the two nodes considered are with high probability connected.

The algorithm firstly considers the full set of nodesN , and
it assumes them to be, potentially, leafs. With this assumption,
(11) is applied to every pair of nodesi and k. If the result
provides a solution whose imaginary part is greater than a
certain threshold, then nodei cannot be a leaf andk cannot be
a directly connected node. If instead the imaginary part of one
solution is lower than the threshold, the algorithm states that i
is a leaf and the two nodesi andk are directly connected with
a branch having real lengthℜ[d]. After having found all actual
leafs, their load admittances are carried back to the connected
internal nodes, to form a reduced network. The information
about the connections and line lengths is contextually stored.
The algorithm can also detect false positives and false nega-
tives; in case of detection, the algorithm is interrupted.

The procedure described in the previous paragraph iterates
until the whole network is reduced to a single node. The
final outputs are the complete topologyT = (N ,L) and the
complete set of lengths for theL links.

Algorithm 1 Topology derivation

Require: Ym andYL for each node,Γ andYC for each cable.

1: procedure [D, T ] = DERIVATION(yL,ym,yC ,γ ,ANR)
2: gl← 1: length ofyL
3: thr← f(ANR)
4: while length of (gl) > 1 do
5: for i ∈ gl do
6: j = 0
7: for k ∈ (gl \ i) do
8: x(gl(i),gl(k)) ← equations 11
9: if (ℑ[d] ⊂ x(gl(i),gl(k))) < thr then

10: j ← k
11: end if
12: end for
13: d(gl(i),gl(j)) ← d
14: N ← N ∪ gl(i)
15: L ← L ∪ (gl(i), gl(j))
16: yL(j)← yL(j) + carryback (yL(i), d)
17: end for
18: gl← gl \ gl(i)
19: end while
20: end procedure

Ensure: Network topology and length of all the branches.
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Fig. 7: Sketch of a network realized by the simulator.

VI. RESULTS

In this section we firstly introduce the physical layer simu-
lator that we developed in order to test Algorithm 1; then we
present and comment the results, and finally we discuss the
open issues.

To test Algorithm 1, we developed a network simulator
that creates a random tree network (see Fig. 7) and computes
the network admittance at each node. The network simulator
is based on the TL theory and exploits the concentrated
parameter model used in [14, Sec. III.C] to describe the cable
parameters.

Then, complex Gaussian noise is added to each network
admittance according to the ANR specified by the user. Algo-
rithm 1 is finally applied to derive the topology. The simulator
outputs whether a topology has been found or not, and in the
positive case it outputs also[d, T ]. As an empirical proof of
Theorem 1 and Corollary 1.1, we found that when no noise is
added to the measurements,[d, T ] is correctly derived in 100%
of the cases, independently from the size of the network and
the number of nodes.

A. Results with background noise

As explained in Section IV, the network background noise
causes the network admittance measurements to be affected by
error. This noise deteriorates the performance of Algorithm
1, as shown in Fig. 8. For the depicted test, an adaptive
threshold has been used in order to get the best performance
for each ANR. The results confirm that the performance of
the algorithm decreases with the increasing number of nodes.
Moreover lower measurement frequencies give better results:
in fact, using a noisyY2 in (5), we see that the error in
Y1 grows as a function of the measurement frequency and
the length of the cable. We remark that if a topology is
correctly identified, it means that also all the branch lengths
are identified with a negligible error. In fact, a consistenterror
in the computation of a single branch length would deeply
affect the subsequent iterations of Algorithm 1, thus leading
to a topology identification error.

Fig. 9 shows the percentage of correctly detected topology
elements, i.e. branches, when the topology is not completely
derived. Since the full topology is finally not derived, we



7

ANR [dB]
60 80 100 120 140

P
er

ce
nt

ag
e 

of
 u

nd
et

ec
te

d 
to

po
lo

gi
es

 [%
]

0

20

40

60

80

100
5 nodes
10 nodes
20 nodes
30 nodes

(a) f0 = 10 kHz

ANR [dB]
60 80 100 120 140

P
er

ce
nt

ag
e 

of
 u

nd
et

ec
te

d 
to

po
lo

gi
es

 [%
]

0

20

40

60

80

100
5 nodes
10 nodes
20 nodes
30 nodes

(b) f0 = 30 kHz

Fig. 8: Percentage of correctly derived topologies as function of the
ANR. Test run with a maximum cable length of 1.4 km.

ANR [dB]
60 80 100 120 140C

or
re

ct
ly

 d
et

ec
te

d 
to

po
lo

gy
 e

le
m

en
ts

 [%
]

40

45

50

55

60

65

70

75

80
5 nodes
10 nodes
20 nodes
30 nodes

(a) f0 = 10 kHz

ANR [dB]
60 80 100 120 140C

or
re

ct
ly

 d
et

ec
te

d 
to

po
lo

gy
 e

le
m

en
ts

 [%
]

40

45

50

55

60

65

70

75

80
5 nodes
10 nodes
20 nodes
30 nodes

(b) f0 = 30 kHz

Fig. 9: Percentage of correctly detected junctions when thetopology
has not been completely derived. The same test conditions ofFig.8
are used.

infer that correctly detected topology elements of Fig. 9 are
affected by an error in the branch length derivation that is not
negligible. However two aspects arise: the percentage does
not change with the ANR, and it increases with the number
of nodes. Both these aspects are a consequence of the fact
that when the ANR decreases, also the number of correctly
derived topologies decreases, so more topologies are taken
into account for the computation here considered. The steep
increments at low ANR for 20 and 30 nodes are due to the
fact that for low ANRs almost no topology is completely
derived. Nevertheless, Fig. 9 shows that a consistent part of
the topological information of the network can be retrieved
even when the topology is not completely derived.

Table I provides some information about typical values
of ANR that we could encounter by operating in the PLC
band and fulfilling PLC norms. According to Table I, if the
measurement is performed atf0 = 10 kHz, the ANR is
approximately 100 dB, so that from Fig. 8 we see that for 10
nodes more than 90% of the topologies is correctly detected.
Moreover, about 60% of the connections within the remaining
topologies is correctly identified (see Fig. 9).

VII. R EMARKS AND OPEN ISSUES

The analysis reported so far has shown that admittance
measurements can be exploited to gain knowledge about
the topology of a wired network. In particular, admittance
measurements can be used to provide a real-time solution that
can partially or completely derive the network topology, as
well as the length of the branches connecting the nodes, all
in a unified algorithm. The algorithm in presence of noise has
been tested using typical values from PLC in the context of
SMG.

The approach that we have discussed opens further ques-
tions on some open issues as we discuss in the following.

1) The frequency at which measurement have to be made,
depends on the node distances and cannot be freely
chosen. However, this is not very restrictive.

2) The speed of the measurement is also important since
the status of the network may change over time. In fact,
although the length and the node connections can be con-
sidered time-invariant, the loads may change. Therefore,
the coherence time of the topology must be larger than
the measurement time.

3) Synchronization and coordination of the admittance mea-
surements can also be required in a network with a time
variant status. This could be done for example with a GPS
coordination system or with communication modules.

4) An important aspect is the presence of measurement
errors and uncertainty in the required parameters, i.e.,
loads and cable parameters. Proper estimation techniques
can be used to tackle such a problem and also to enhance
the performance of Algorithm 1 in the presence of noise.
Interestingly, the proposed topology derivation technique
may be used inversely to track the cables deterioration,
by sensing the increment of the error in the derivation of
the branch lengths over time.

We point out that the open issues 2 and 3 mentioned in this
section have not yet been fully considered in the literature
of wired network topology estimation, while open issue 4 is
shared with [4]. All these open issues provide stimulus for
further research endeavors.

VIII. C ONCLUSION

In this paper, we have addressed the question: “Can we
exploit admittance measurements to derive the topology of a
wired network ?” The approach differs from others presented
in the literature, which use reflectometry or ToA estimation
followed by topology inference algorithms. We have shown
that the admittance measurement based approach can allow
the derivation of the topology and the length of all branches
by performing admittance measurements at all nodes. It is
the direct application of the derived Theorem 1, which states
that it is possible to identify whether a pair of nodes in a
network are respectively a leaf and a directly connected node,
and if so, a solution to the derivation of the length of the line
connecting them can be found. We have further shown that the
admittance measurements are perturbed by complex Gaussian
noise in the presence of line background noise when the SNR
at the receiver is greater than 35 dB. Moreover, the ANR
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TABLE I: Typical parameter values used to evaluate the proposed algorithm.

Cenelec (3–150 kHz) FCC (150–500 kHz) Broad-Band (2–30 MHz)

Maximum cable length 16.6 km 330 m 25 m
Average Ground noise [18] -70 – -90 dBm/Hz -90 – -110 dBm/Hz < -110 dBm/Hz
Transmitted power ∼-15 dBm/Hz -22 dBm/Hz -55 dBm/Hz
ANR 99 – 135 dB 122 – 158 dB >99 dB

Remarks: the maximum cable length depends on its propagation constant (herein light velocityvc = 2e8 m/s). The data about the transmitted
power has been retrieved from [1] and from the standard IEEE 1901.2a-2015. As for the ANR, here we consider the condition in which
the measured network voltage has a small absolute value compared to the voltage provided by the voltmeter, so that ANR = 1.8 SNR (see
Fig. 6).

is greater than the SNR when the internal impedance of the
measurement device is greater than the measured impedance.
These findings have been used to develop an algorithm that
derives the topology of a wired network provided that admit-
tance measurements are done at all the network nodes and
that the cable parameters and the loads are known. Future
research directions in this topic have also been discussed
and include: robust topology derivation in the presence of
parameter errors; application of the admittance based topology
derivation algorithm to track the cables deterioration.
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