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 

Abstract—We propose a novel random triggering based 

modulated wideband compressive sampling (RT-MWCS) method 

to facilitate efficient realization of sub-Nyquist rate compressive 

sampling systems for sparse wideband signals. Under the 

assumption that the signal is repetitively (not necessarily 

periodically) triggered, RT-MWCS uses random modulation to 

obtain measurements of the signal at randomly chosen positions.  

It uses multiple measurement vector method to estimate the 

non-zero supports of the signal in the frequency domain. Then, 

the signal spectrum is solved using least square estimation. The 

distinct ability of estimating sparse multiband signal is facilitated 

with the use of level triggering and time to digital converter 

devices previously used in random equivalent sampling (RES) 

scheme. Compared to the existing compressive sampling (CS) 

techniques, such as modulated wideband converter (MWC), 

RT-MWCS is with simple system architecture and can be 

implemented with one channel at the cost of more sampling time. 

Experimental results indicate that, for sparse multiband signal 

with unknown spectral support, RT-MWCS requires a sampling 

rate much lower than Nyquist rate, while giving great quality of 

signal reconstruction. 

 
Index Terms—Random triggering, compressive sampling, 

random demodulation, signal reconstruction, sparse multiband 

signal. 

 

I. INTRODUCTION 

N radio frequency (RF) signal processing systems, such as 

communication and radar systems, the spectrum of wideband 

RF signals are often populated by few sparsely allocated 

narrowband spectrums [1], [2]. Such signals are called sparse 

multiband signals [3]. Due to the wideband nature, high-speed 

analog-to-digital converter (ADC) will be required to capture 

these sparse multiband signals at Nyquist rate. If the required 

sampling rate exceeds the specification of available ADC, 

alternative sampling approaches must be taken to address this 

challenge. 

   Multi-coset sampling (MCS) is a non-uniform periodic 

sampling method [4], [5] for sub-Nyquist rate sampling. MCS 
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consists of a bank of ADCs clocked at the same rate but with 

different phases to facilitate concurrent sampling of the 

wideband RF signal at different delays. The accuracy of MCS 

sample depends on the accuracy of the delay circuitry which is 

very complex and expensive. For periodic wideband signals 

sampling, random equivalent sampling (RES) [6], [7] only 

requires a single ADC clocked at sub-Nyquist rate. It 

accomplishes this by exploiting the phase incoherence between 

the sampling clock and the periodic signal. As such, a single 

cycle waveform of the wideband periodic signal may be 

reconstructed using time-alignment method, giving the 

equivalent effect of sampling the signal at Nyquist rate. 

However, to achieve desirable accuracy, this sampling process 

requires considerable time to complete. For instrumentation 

applications, time-interleaved sampling (TIS) [8], [9], which is 

a special case of MCS, is another widely used sampling 

technique. Its effective sampling frequency is proportional to 

the number of ADCs used in the system. Yet, its accuracy 

suffers when the ADC used is much slower than the Nyquist 

rate. For non-periodic wideband signals, TIS often is the only 

viable choice for signal sampling. While they have different 

pros and cons, the performance of MCS, RES and TIS sampling 

techniques are all limited by the input bandwidth barrier of 

ADC [10]. 

    Compressive sampling (CS) [11], [12] has been proposed as 

an emerging sub-Nyquist rate sampling technique for 

inherently sparse signals. Based on a random demodulation 

technique, Kirolos et al. [13], [14] developed an 

analog-to-information converter (AIC) to realize sub-Nyquist 

rate sampling of wideband signal using CS reconstruction. 

However, to accomplish this, the wideband signal will be 

modulated by a pseudorandom pulse sequence at the Nyquist 

rate. For wideband signals consisting of few scattered 

harmonics, AIC has been shown an effective sampling method. 

For sparse multiband signal, Eldar et al. [3], [15] developed a 

modulated wideband converter (MWC) based on the random 

demodulation technique. In particular, MWC operates multiple 

AIC samplers concurrently so that available MWC channels is 

proportional to the number of sparsely allocated narrow bands 

in the signal spectrum. MWC consumes considerable amount 

of hardware and the realization of the random modulation pulse 

sequence is rather complicated. In [16], frequency 

down-conversion is employed to decrease the number of 

sampling channels of MWC, and it requires additional 

preprocessing circuitry in the channels. 
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    Previously [17], [18], we have incorporated CS theory to 

enhance efficiency of RES signal reconstruction (called 

CS-RES) with satisfactory result. We have shown that with CS 

based reconstruction, much fewer RES samples will be needed 

to reconstruct the periodic signal and the impact of phase 

coherence can also be mitigated. CS-RES can be applied to 

both harmonic sparse signal and sparse multiband signal, the 

accuracy is still limited by the bandwidth restriction of ADC 

operating at sub-Nyquist rate. 

    In this work, we propose a Random-Triggering based 

Modulated Wideband Compressive Sampling (RT-MWCS) 

method. Specifically, a repetitively excited sparse multiband 

signal is sampled under control of level triggering circuitry. 

Once triggered, it is demodulated by a periodic pseudorandom 

sequence at the Nyquist rate. The output then is low pass 

filtered and sampled with an ADC clocked at a sub-Nyquist rate. 

Each excitation yields one sampling sequence. With sufficient 

number of sampling sequences are obtained, a multiple 

measurement vector (MMV) method is applied to estimate the 

non-zero support of the frequency spectrum of the sparse 

multiband signal, and finally, the frequency spectrum is 

recovered based on the estimated support and least square 

estimation. 

    In comparison to the popular sampling approaches, such as 

e.g. MCS, RES, and TIS, the proposed RT-MWCS samples the 

baseband signal, and it is not subject to the input bandwidth 

barrier of ADC. The main contribution of this paper is to 

propose a novel random sampling method that incorporates the 

advantages of both random modulation and random equivalent 

sampling. As such, by introducing the random triggering 

technique, potential hardware implementation may be 

simplified. The numerical simulation and hardware evaluation 

demonstrate that the proposed RT-MWCS is efficient and 

robust to noise. 

    The remaining of this paper is organized as follows. In 

Section II, the wideband sampling problem is formulated. In 

Section III, the RT-MWCS system is proposed, and a 

comparison of RT-MWCS with related work is presented. In 

Section IV, a hardware implementation is  presented. In Section 

V, both numerical simulation and hardware evaluation results 

are reported and discussed. Conclusion is summarized in 

Section VI. 

II. FORMULATION OF THE PROBLEM 

A sparse multiband signal is a bandlimited, square-integrable, 

continuous time signal whose spectrum is zero-valued except a 

set of disjoint narrow frequency bands where signal energy 

concentrates [19]. An example of the spectrum of a sparse 

multiband signal is illustrated in Fig. 1. 

Let x(t) be a real valued sparse multiband signal with the 

Fourier transform [3] 
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Denote fNYQ to be Nyquist rate sampling frequency of x(t), and T 

= 1/ fNYQ to be the sampling period. Let i be the i
th

 narrow 

frequency band where X(f)  0. The band positions are arbitrary, 

and unknown in advance. The support of the frequency 

spectrum of a sparse multiband signal   [1/(2T), 1/(2T)] 

may be defined as:
 1

K

ii
 , i  j =  (empty set) if i  

j. Note that X(f) = 0 if f  . Let [] = [fmin, fmax] denote the 

spectral span, which is the smallest interval containing . One 

may define the spectral occupation ratio Q = ()/|[]| where 

() is the Lebesgue measure of , and |[]| = fmax  fmin. 

Clearly, one has 0 < Q < 1. Since the spectrum may be shifted to 

the origin by modulating the time domain signal, one may 

conveniently set fmin = 0 and fmax = 1/(2T). To be qualified as a 

sparse multiband signal, one requires Q << 1. 

If the positions of the disjoint sub-bands in a sparse 

multiband signal are known, one may modulate x(t) with a 

harmonic signal with a frequency at the middle of i. Then, the 

component associated with i can be isolated from the 

remaining sub-bands by applying a low pass filter (LPF) on the 

modulated analog signal with passing frequency equal to half 

bandwidth of i. As such, the baseband signal can be acquired 

using an ADC operating at sub-Nyquist rate. Unfortunately, in 

practice, the frequency spans of individual i are unknown.  

III. SUB-NYQUIST SAMPLING SYSTEM 

A. System Description 

A block diagram of the proposed RT-MWCS system is 

depicted in Fig. 2. In RT-MWCS, signal is reconstructed from 

multiple acquisitions. Since the sampling system is based on 

RT technique, a fixed reference point is required in each 

acquisition. Generally, periodic signal and repetitively 

triggered signal satisfy the requirement of RT-MWCS. 

Moreover, periodic signal could be treated as a special case of 

repetitively triggered signal. Therefore, we assume the sparse 

multiband signal x(t) has finite duration and is repetitively 

triggered. Examples of such signal include [20]-[23]. The rate 

of repetition need not be constant. Hence x(t) may also be 

treated as an aperiodic signal. To acquire the waveform of x(t), 

we will repeatedly trigger the signal M times. 

During the m
th

 excitation (1  m  M) , when the value of x(t) 

exceeds a preset threshold level, the control module will trigger 

the pseudorandom sequence generator to apply a periodic 

random modulation signal pm(t) to modulate x(t) and result in a 

0 1/(2T)

f

X(f)

• • •

1 2 K

 

Fig. 1. Spectrum-sparse multiband signal. 
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modulated signal ( ) ( ) ( )m mx t x t p t . This modulated signal 

then will pass through an analog LPF with output denoted by 

ym(t). Next, one digitized sampling sequence will be obtained 

from the ADC that runs at sub-Nyquist rate. 

To elaborate, assume x(t) exhibits identical waveform during 

each excitation, if the triggering level remains constant, then 

the triggering positions at the waveform should be the same. 

Yet the sub-Nyquist rate clock that controls the ADC will not 

be in synchrony with the (often irregular) excitation rate. Hence 

the portion of the waveform on ym(t) that will be acquired by the 

ADC will be random. 

The pseudorandom sequence pm(t) is with period of Tp =1/ fp. 

In each period of pm(t), there are L pulses each with duration 

Tp/L and magnitude {m,l} (m,l  {+1, 1}, 1  l  L) [3]. 

The LPF shall have a cutoff frequency equal to fs/2 where fs = 

1/Ts is the sampling frequency of the ADC and Ts is the 

sampling period. In general, it is selected such that 

 

                         fNYQ = L fs,     
1
max i p s

i K
f f

 
  . (2) 

     

    The purpose of this LPF is to minimize the aliasing effect. 

Since the repetitive excitation of x(t) is not synchronized with 

the sampling clock of the ADC, the time difference between the 

threshold triggering of the x(t) to the starting clock edge of 

ADC sampling, denoted by  tm will be in general a random 

quantity between 0 and Ts. tm could be measured using a 

time-to-digital converter (TDC) circuitry [24]. As such, the 

corresponding position of the acquired sample from ADC 

within the duration of x(t) may be determined and used to 

establish the relation between the unknown signal and the 

known samples in the signal reconstruction stage. 

B. Sampling Model Analysis 

The pseudorandom modulation signal pm(t) in the m
th

 

acquisition is a periodic signal with period Tp. Hence it can be 

represented as a Fourier series  expression:  
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where the Fourier series coefficient, 
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The Fourier transform of random-modulated signal ( )mx t  is 

the convolution of the Fourier transform of x(t), denoted by X(f), 

and the Fourier series coefficients of pm(t): 
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The output of the modulator is a linear combination of fp 

shifted copies of X(f). Since X(f) is bandlimited within [fNYQ/2,  

fNYQ/2], and the maximum active band width is smaller than fp, 

the sum in (5) contains no more than fNYQ/fp
1
 nonzero terms. 

In this work, the filter H(f) is assumed to be an ideal LPF as 

illustrated in Fig. 2 (In practical implementation, the designed 

LPF circuitry is nonideal, and it can be approximated and 

compensated in the digital domain [25]). Therefore, only 

frequencies in pass band s = [1/(2Ts), 1/(2Ts)] are retained in 

the Fourier transform of ym(t): 

 

        
0

0

,( ) ( ) ( ) ( )

L

m m m l p

l L

Y f X f H f c X f lf


   ,  f  s. (6) 

 

To simplify the expression we assume fp = fs. In order to make 

Ym(f) contain all nonzero contributions of X(f), L0 is chosen as 

the smallest integer satisfying 2L0 + 1  fNYQ/fp. 

For each acquisition, the phase difference between the 

trigger pulse and sampling clock is asynchronous, while, 

relating to the underlying signal, the trigger pulse is fixed. 

Equivalently, tm is the time offset between ym(t) and sampling 

clock, and ym(t) is sampled after left shifted tm. Consequently, 

the m
th

 random sampling sequence has following expression: 

 

                      
 [ ]m m s my n y n T t   ,   nZ (7) 

 

and its discrete-time Fourier transform (DTFT) is 
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,  f  s. (8) 

 

 
1 x denotes the ceiling operator, which returns the smallest integer not less 

than x. 

ym[n]x(t)

pm(t){1,1}

h(t)
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Fig. 2. RT-MWCS block diagram. 
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Combining (6) and (8), one has 
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Eqn. (9) ties the DTFTs of known ADC measurements ym[n] to 

the unknown signal X(f). 

Denote 

 

                             m,l = cm,l, 1  m  M, (10a) 

 

    0( ) 1l ps f X f l L f    , 1  l  L = 2L0 + 1, (10b) 

 

and 

 

                       2 2
( ) ( )m sj f t j fT

m mz f e Y e
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 . (10c) 

 

In (10a), the reverse order is due to the enumeration of sl(f) in 

(10b). Then (9) may be represented in a matrix-vector 

formulation: 
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                             ( )f f sz  ,    f  s. (11) 

 

Fig. 3 depicts the relation between s(f) and X(f) with K = 2 pairs 

of sub-bands. 

To reconstruct signal x(t), we need to find a unique solution 

for (11). Eqn. (11) is constructed in the frequency domain. 

Therefore, signal reconstruction process could be divided into 

two stages: support estimation in the frequency domain and 

signal reconstruction in the time domain. 

In RT-MWCS model, the entries of measurement matrix  

are Fourier series coefficients of pseudorandom sequences. 

Therefore, rank() = min{M, L}, and there are two cases to 

solve (11). 

Case 1: M  L. Eqn. (11) is an over-determined linear system 

of equations and s(f) may be solved as the least square solution. 

However, large M implies more rounds of sampling 

acquisitions, and hence longer measurement time to produce a 

sufficiently accurate reconstruction. Moreover, according to (2), 

smaller L implies higher ADC sampling rate fs. 

Case 2: M < L. Eqn. (11) is an under-determined linear 

system of equations and may have infinite many solutions. 

However, being a sparse multiband signal, the vector s(f) 

inherently will have a sparse structure that may be exploited 

using compressive sensing reconstruction [26] to estimate the 

non-zero entries (supports) of the vector s(f). 

The task of support estimation is to identify which elements 

of s(f) contain active bands. Since X(f) is partitioned into L 

equal width frequency slices that comprise s(f), identifying the 

nonzero entries of s(f) can only approximate the true frequency 

band of x(t) upto a resolution of 1/(LT) Hz. Similar to spectrum 

sensing using MCS [27], support recovery could be realized by 

examining the covariance matrix of the random sampling 

sequences. 

Define the M  M covariance matrix of z(f) 

 

                               
1/(2 )

1/(2 )

: ( ) ( ) d
LT

H

LT

f f f


 R z z . (12) 

 

R cannot be evaluated directly. Instead, using the Parseval 

theorem, 

 

                        
*

, [ ], [ ] [ ] [ ]i k i k i k

n

z n z n z n z n





  R . (13) 

 

where {zi[n];  < n < } is the time domain Fourier series 

corresponding to z(f). From (10c), zm[n] is the time-shifted 

sequence of output sample ym[n]. However, the amount of 

desired time shift tm is not an integral multiple of the ADC 

sampling time Ts. To resolve this difficulty, we choose to 

up-sample (interpolate) ym[n] L times by inserting L1 zeros 

between successive elements, and then passing the sequence 

through a LPF with cutoff frequency fs/2. The resulting 

up-sampled sequence, denoted by [ ]my n , will now have a 

sampling rate of fNYQ (= Lfs). Finally, denote 

 

                           m = tm /T = tm  fNYQ (14) 

 

then, 

 

                              zm[n] =  m my n . (15) 

 

With {zm[n]} estimated, one may proceed to compute R in (13). 

Once R is obtained, CS idea is employed to directly estimate 

the support of s(f) [26], and the time domain signal could be 

reconstructed based on inverse Fourier transform. 

1/(2T)

f

X(f)

s(f)
01/(2T)

 

Fig. 3. X(f) is partitioned into L equal width frequency slices that are 

the entries of vector s(f). 
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C. Comparison to Related Work 

MWC is also a sub-Nyquist sampling system based on 

random demodulation technique, as shown in Fig. 4 [3]. Signal 

is fed into a bank of modulators and demodulated by 

pseudorandom sign waveforms to alias the spectrum into 

baseband. Then, the demodulated signals are low pass filtered 

and uniformly sampled using a bank of ADCs clocked at low 

rate. Finally, the signal is reconstructed by solving MMV 

problem. MWC system could be used to sample the sparse 

multiband signal at sub-Nyquist rate. However, in order to 

stably reconstruct signal, MWC requires roughly [3] 

 

                                
 8 log / 4M K L K  (16) 

channels to estimate the signal support while RT-MWCS 

requires only one channel. Moreover, with the presence of 

multiple channels, synchronizing M ADC clocks also presents 

significant implementation challenges. 

Despite the somewhat similar mathematical analysis of 

MWC and RT-MWCS, their system architectures are quite 

different. In MWC, multiple channels synchronously sample 

the demodulated signal, and signal is reconstructed from 

sampling sequences captured in the same acquisition run. 

While, under control of trigger pulse, our proposed RT-MWCS 

uses a single channel to sample signal. In order to collect 

enough information of signal, multiple acquisition runs are 

required in RT-MWCS, and the number of acquisition runs 

needs to satisfy (16). Consequently, in comparison to MWC, 

RT-MWCS requires more sampling time. For each acquisition 

run, signal is demodulated by a different pseudorandom sign 

waveform. Obviously, RT-MWCS has much simpler 

architecture. 

Table I presents the comparison between MWC and 

RT-MWCS. 

IV. HARDWARE IMPLEMENTATION 

    The proposed RT-MWCS was implemented in hardware 

module, which consists of two modules: a sampling module 

and a reconstruction module, as shown in the block diagram in 

Fig. 5. The sampling module processes the input analog signal 

and acquires the sub-Nyquist samples. In the reconstruction 

module, the obtained digital sample data are transmitted 

through universal serial bus (USB) to a personal computer (PC). 

Then, signal is reconstructed using Matlab algorithm that is 

performed offline. 

    In the sampling module, the input signal is mixed with a high 

speed pseudorandom binary sequence. In order to sense the 

underlying signal in the frequency domain, the  pseudorandom 

sequence should be clocked at a rate that is no lower than the 

signal Nyquist rate. This rate is also the equivalent sampling 

rate of the reconstructed signal. It is a challenge to generate 

high speed sequence. Considering configurability of sequence, 

we propose a field-programmable gate array (FPGA) 

(EP4CE10F256, Altera) device based pseudorandom binary 

sequence generation module. Due to speed limitation of FPGA, 

parallel to serial converter (MC100EP446, ON Semiconductor) 

is employed in hardware implementation. In CS based 

sampling techniques, the measurement matrices constructed by 

the pseudorandom sequences should satisfy the restricted 

isometry property (RIP). In particular, it has been proved that a 

measurement matrix with independent and identically 

distributed Bernoulli entries meets the RIP condition [28]. 

Therefore, the encoded parallel data with Bernoulli distribution 

are generated using Matlab and stored in the read only memory 

(ROM) of FPGA. Considering multiple acquisition runs, there 

should be enough pseudorandom sequences stored in the 

ROM(In this implementation, 100 sequences are stored in the 

ROM, and each sequence is with length of 197). The converter 

converts 8-bit width parallel data into a bit stream. In this 

implementation, the equivalent sampling rate is set to 2.5 GHz. 

Consequently, the converter operates at a rate of 2.5 GHz, and 

the parallel data output from FPGA is with rate of 312.5 MHz 

that is within the speed capacity of FPGA pins. In order to 

obtain a sequence pm(t) as depicted in Fig. 2, the bit stream is 

alternating current (AC) coupled and conditioned. 

    The output of mixer (SYM-30DHW, Min-Circuits) is low 

TABLE I 

COMPARISON BETWEEN MWC AND RT-MWCS 

Sampling approach           MWC                    RT-MWCS 

Work for sparse 

multiband signal 

            Yes                            Yes 

Subject to ADC 

bandwidth limitation 

             No                             No  

Reconstruction 

performance 

           Good                         Good 

Time consumption             Less                          More 

Power consumption            More                          Less 

Architecture 

complexity 

        Complex                      Simple 

Implementation 

area 

           Large                         Small 

 

x(t)

nTs

y1[n]

h(t)

nTs

yi[n]

nTs

yM[n]

p1(t)

pi(t)

pM(t)

•  •  •
•  •  •

1
( )x t

( )
i

x t

( )
M

x t

y1(t)

yi(t)

yM(t)

h(t)

h(t)

 

Fig. 4. Block diagram of MWC. MWC contains of multiple channels. 
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pass filtered before sampling. The filtered signal is sampled 

using a low speed ADC (AD9648, Analog) under control of 

trigger pulse. In this work, the trigger pulse is generated using a 

comparator (ADCMP562, Analog). The signal is compared 

with a level that is set using a digital to analog converter (DAC) 

(AD5322, Analog). In RT-MWCS, the trigger pulse and 

sampling clock are asynchronous. The shift time t between the 

trigger pulse to sampling clock provides a relative position in 

signal reconstruction and is required to be measured. We 

measure t using a TDC module, which is implemented with 

fast charging and slow discharging circuits. In this paper, TDC 

stretches  the t (narrow pulse). Then, the output of TDC is fed 

into FPGA, and counted using a high speed clock [17]. 

    Once the sampling sequences are obtained, they are 

transmitted to PC through USB interface device (CY7C68013, 

Cypress). The USB interface device integrates an "8051" micro 

processor unit, in which the acquisition software is operated. 

Picture of the RT-MWCS prototype is shown in Fig.6. 

    In hardware implementation of RT-MWCS, the designed 

LPF is nonideal, and it will introduce mismatch between circuit 

implementation and (6). The designed LPF can be calibrated at 

the cost of sampling frequency [25]. On the other hand, the 

stretch ratio of TDC may be affected by the temperature. To 

measure the time difference accurately, TDC needs to be 

calibrated using the preset pulses [29]. 

V. EXPERIMENT 

    In this section, numerical simulation and hardware 

evaluation are reported to investigate the proposed RT-MWCS. 

A. Numerical Simulation 

To evaluate the performance of the proposed system (see Fig. 

2), numerical experiments with a test signal are performed. An 

interesting application of RT-MWCS is sampling and 

reconstruction of sparse multiband signal, whose active band 

locations are unknown. In the experiments, the test signal is 

defined as following 

 

           
1

sinc cos 2

K

i i i i

i

x t E B B t t f t t


     (17) 

 

where K is the number of pairs of active bands, Ei is the energy 

coefficient, B is the sub-band bandwidth, ti is the time offset 

with respect to t = 0, and fi is the carrier frequency. In all 

experiments, B = 10 MHz, ti is randomly chosen in [0, 10] s, 

and Ei is randomly chosen in [1, 10]. If fi + B/2  fNYQ/2, then the 

signal may be equivalently sampled without aliasing. Therefore, 

fi is randomly chosen in [B/2, (fNYQ  B)/2]. The equivalent 

sampling rate of reconstructed signal is fNYQ = 2.5 GHz. 

In the sampling stage, fs and fp satisfy the following relation 

 

                         
NYQ

s p

f
f f B

L
   . (18) 

 

In each acquisition, signal is first mixed with a pseudorandom 

sequence, which is with equivalent sampling rate of fNYQ. In the 

following experiments, the sampling rate is chosen as fs = fp = 

fNYQ/197  12.7 MHz, which meets the requirement of (18) and 

is much lower than the Nyquist rate of fNYQ. A sampling 

sequence is randomly captured, and the time interval tm is 

quantized into an integral multiple of T. This integral value will 

 

Fig. 6. Picture of the RT-MWCS prototype. 
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Fig. 5. Block diagram of RT-MWCS implemented in hardware module. 
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be used as the delay in the equivalent Nyquist samples. After 

collecting enough random sampling sequences, model (11) is 

constructed based on time intervals and pseudorandom 

sequences. And then, based on (11), signal is reconstructed 

with CS algorithm. 

In general, more sampling sequences are required to 

reconstruct a less sparse signal with a desired accuracy. In the 

first experiment, we investigate the reconstruction performance 

with respect to the sparsity level K. Sparsity levels over range 

of 1 to 15 in increment of 1 are investigated. For each specific 

sparsity level, 200 random trials are performed. In this 

experiment, M = 20 sampling sequences are considered in each 

reconstruction. The average signal-to-noise ratio (SNR) of 

reconstruction is depicted in Fig. 7. Obviously, larger sparsity 

level degrades the signal reconstruction accuracy, and more 

sampling sequences  are required. Fortunately, more sampling 

sequences (larger M) means longer sampling time, and it does 

not complicate the system architecture. 

In practical application, the signal may be corrupted by noise, 

or the noise may be introduced in the sampling stage. In this 

experiment, we consider more practical situation that the 

underlying signal is corrupted by noise. In the sampling stage, 

the white Gaussian noise is added in the test signal, and signal 

parameters (K = 3) are fixed in all trials. M = 20 random 

sampling sequences are used to reconstruct signal. The input 

signal with SNR over the range of 10 to 50 dB in increment of 5 

dB are tested. 200 random trials are performed for each specific 

SNR value, and the averaged output SNR is shown in Fig. 8. 

Clearly, the proposed compressive sampling system is robust 

against additive white Gaussian noise. 

The last simulation is performed to compare the performance 

of the proposed RT-MWCS against the existing CS-based 

sub-Nyquist rate sampling approach. As we know, MWC also 

works for the sparse multiband signal. In this simulation, we 

consider the reconstruction performance with respect to the 

number of sampling sequences. For range of 10 to 20 sampling 

sequences in increment of 1 sequence, 200 random trials are 

performed for each specific number. The test signal is the same 

as that of the previous simulation. The reconstructed SNR 

values averaged over 200 trials with different numbers of 

sampling sequences are shown in Fig. 9. For both MWC and 

RT-MWCS, the reconstruction performance is improved with 

the increase of sampling sequence number. In the experimental 

signal, sparsity level is K = 3. It is clear that after the number of 

sampling sequences increases beyond 12, the reconstruction 

yields SNR about 20 dB. Obviously, the MWC reconstruction 

achieves a bit higher SNR in most of sampling sequence 

numbers. However, for MWC, more sampling sequences 

means that more sampling channels are required (one channel 

takes one sampling sequence). This would be a great challenge 

in circuit implementation. While, for RT-MWCS, multiple 

acquisition runs need to be performed, and we do not need to 

change the system architecture to capture more sampling 

sequences. 

B. Hardware Evaluation 

    The waveform data of noise-free signal (defined in (17)) is 

generated using Matlab and transmitted to an arbitrary 

waveform generator (AWG7082C, Tektronix), and it is with 

sampling rate of 2.5GHz. The synthetic test signal is fed into 

signal channel of RT-MWCS. For each sample acquisition run, 

a new pseudorandom sequence is generated and mixed with test 

signal. Different from numerical simulation, in hardware 

implementation, the LPF is nonideal. In order to compensate 

the stop band that is with long tail, sampling sequence is 

captured at rate of  fs = 2fp and filtered by the compensation 

 

Fig. 8. Reconstruction performance with respect to different SNR of 

input signal. 

 

Fig. 9. Comparison between RT-MWCS with MWC. 
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filter that is constructed according to [25]. Before 

reconstruction, sampling sequence is decimated, and the 

sampling rate is reduced by factor of 2 to match (11). 

   Fig. 10 shows the comparison between the spectrum analyzer 

(ESPI7, Rohde&Schwarz) measurements and the proposed 

RT-MWCS reconstructions. Fig. 10(b) and Fig. 10(c) depict the 

reconstructions from M = 20 and M = 40 sampling sequences, 

respectively. Note that the three carrier frequencies (572MHz, 

760MHz and 964MHz) are successfully reconstructed. Due to 

the nonideal amplitude-frequency response of the designed 

channel, there are some differences in the signal amplitude 

values between the measured reference and the reconstruction. 

In the reconstruction stage, we recover 6 sub-bands with 

maximum energy. It is clear that there are 3 unwanted  

sub-bands exist in the reconstruction, which are marked by 

ellipses. These 3 unwanted sub-bands are introduced by the 

noise. Since only a part of noise bands are recovered, they look 

like the sub-bands of signal. Note that the amplitude values of 

unwanted sub-bands are minimized with the increase of 

sampling sequences. The reconstructions achieve SNRs of 21.5 

dB (M = 20) and 24.7 dB (M = 40), respectively. 

VI. CONCLUSION 

We present a random triggering based modulated wideband 

signal compressive sampling system, which can be used to 

sample a sparse multiband signal at sub-Nyquist rate. Our main 

contributions describe the architecture of compressive 

sampling system that can be implemented in circuitry, and give 

the concrete mathematical model that is used to reconstruct 

signal. The blind spectrum recovery is accomplished by an 

MMV problem in the framework of CS theory. Compared with 

the existing sub-Nyquist sampling models, the proposed 

RT-MWCS model not only achieves low sampling rate but also 

is with simple system architecture. In RT-MWCS, the 

reconstruction accuracy can be improved with more random 

sampling sequences, which is at the cost of sampling time, not 

complexity of system. A hardware implementation of proposed 

RT-MWCS is presented. For sparse multiband signal with 

unknown spectral support, we have tested this sampling model 

using random sampling sequences with satisfactory results. 

In hardware implementation, the time difference of each 

sequence is generated in FPGA, the uncertainty may exist in the 

time difference measurement, and the sampling technique 

based on random triggering method suffers from uncertainty of 

time difference. Future work includes a comprehensive analysis 

of the impact of uncertainty of time difference on the 

reconstructed signal. We wish to construct a relational model 

between reconstruction and  uncertainty of time difference. As 

a kind of sequential compressive sampling approaches, we also 

plan to design a halting criterion to adaptively estimate number 

of active bands with minimum acquisition runs. 
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