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Abstract—Motor current signature analysis (MCSA) is a
well-proven technique for electrical and mechanical faults
detection in induction motors. The appearance of stator
current components or increase of magnitude of some
components at characteristic frequencies indicates a motor
fault condition. In this paper, we propose a new MCSA
fault detector based on a matched subspace technique. The
proposed detector consists of three steps. First, the influ-
ence of the fundamental supply frequency is removed from
the current signal using an interference cancellation tech-
nique based on oblique projection. Then, the fault-related
frequency is estimated from the interference-free signal
using the maximum likelihood (ML) principle. Finally, the
fault detection is performed using a generalized likelihood
ratio test. Simulation and experimental results illustrate
the effectiveness of the proposed approach for eccentricity
fault, bearing faults and broken rotor bars detection.

Index Terms—Induction motor, Diagnosis, Fault detec-
tion, Eccentricity fault, Broken rotor bars, Bearing faults,
Subspace Matched Detector, Oblique projection, MCSA.

I. INTRODUCTION

INDUCTION motors are one of the most commonly used
motors in industrial applications. Despite their efficiency

and robustness, induction motors can breakdown due to several
faults such as bearings, stator, rotor, or eccentricity faults [1].
These unexpected breakdowns are very expensive in terms
of time and money. In this context, reducing operation and
maintenance costs is of main concern in such industrial ap-
plications. Consequently, preventive maintenance is preferred
over the corrective maintenance. In fact, the preventive mainte-
nance is intended to reduce the probability of failure, minimize
downtime and maximize productivity. It includes the scheduled
and condition-based maintenance [2]. Unlike the scheduled
maintenance, the condition-based one monitors the current
state of the induction machine and schedules the maintenance
actions at the optimum time. Several techniques have been
proposed for induction machines condition monitoring such
as vibration, torque, temperature, current/power monitoring or
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Lôme, Rue de Kergoat, CS 93837, 29238 Brest Cedex 03, France (e-
mail: Youness.Trachi@univ-brest.fr, Vincent.Choqueuse@univ-brest.fr,
Mohamed.Benbouzid@univ-brest.fr). Mohamed Benbouzid is also with
the Shanghai Maritime University, 201306 Shanghai, China.

François Auger is the University of Nantes/IUT of Saint-Nazaire, EA
4642 IREENA , 58 Rue Michel Ange, 44606 Saint-Nazaire, France.

oil/debris analysis [3]. Among them, motor current signature
analysis (MCSA) is one of the most promising solutions since
this technique is non-invasive and avoids the use of extra
sensors [4].

In this context, MCSA has been widely investigated for
induction machine condition monitoring as the stator currents
constitute a reliable information source. In fact, an induction
machine is a highly symmetrical electromagnetic system.
Consequently, any fault may cause some degree of asymmetry.
This asymmetry induces a disturbance of the rotating electro-
magnetic field in the air gap, which straightforwardly affects
the stator currents. Several works have presented numerical
machine models under faults based on finite element methods
or analytical methods based on modified winding function ap-
proach (MWFA). Moreover, the consequences of mechanical
and electrical faults have been also theoretically investigated
using the magnetomotive force (MMF) and permeance wave
approach for airgap magnetic flux density computation [5].
These contributions allow to understand the effect of some
phenomena, but do not provide the exact sub-harmonics am-
plitude introduced by the fault. The faults effects on the stator
currents can be grouped into three major contributions, which
are: the impact on the stator current power spectral density
(PSD) [6], the amplitude and/or phase modulation of the stator
currents [7], [8], and the impact over the negative-sequence
component [9].

Induction machine faults diagnosis based on MCSA consists
of faults characteristics extraction based on signal processing
techniques followed by a fault detection procedure. Several
approaches have been presented for stator currents processing
and reliable fault detection [5], [6]. Nevertheless, the detection
step is often performed manually, based on visual inspection
of the fault signature on the stator currents. To automatically
detect a fault, several authors have proposed algorithms based
on threshold detectors [10], [11]. However, the implementa-
tion of these techniques requires the user to set a threshold
manually, based on the knowledge of the induction machine
to be supervised. To avoid the need of manual setting, sev-
eral pattern recognition techniques have been investigated for
decision making. These techniques include Artificial Neural
Networks [12], Support Vector Machines [13], Fuzzy Logic
[14], and combined techniques. Nevertheless, these techniques
are black-box methods whose parameters are difficult to tune
in practice. Moreover, the detection performance critically
depends of the learning database. In fact, the training phase is
critical for optimal operation and may be misleading or pro-
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duce results limited to a particular set of faults. Moreover, the
learning database must be sufficiently large depending on the
studied faults and the induction machine operating conditions.
However, a large learning database may lead to over-fitting
problems thus limiting the generalisation capabilities of the
detector [15].

Induction motor stator currents contain several spectral
components due to the supply voltage, rotor slotting and iron
saturation [16]. In case of faults, additional frequency com-
ponents also appear in the current spectrum. To reveal these
additional components, several spectral analysis techniques
can be used such as the FFT [17], MUSIC [18], [19], and
ESPRIT algorithms [10], [20]. However, these general spectral
estimators do not exploit the particular spectrum structure
induced by the fault. Moreover, these approaches only focus on
the current spectral analysis and do not provide any algorithm
for automatic fault detection. In [10], [21], the authors have
proposed a Maximum Likelihood (ML) parametric estimator
for current spectral analysis, and a simple ad-hoc fault crite-
rion. In [11], the same fault criterion is used in conjunction
with an interference cancellation technique for the removal of
the supply component at 50Hz. However, in these two studies,
no strategy has been provided to automatically detect a fault
from the estimated spectral components.

As compared to the techniques in [11], [21], this paper
directly focuses on the MCSA fault detection problem. Specifi-
cally, we propose a new matched subspace detector that treats
the supply frequency components as an interference signal.
To remove the supply frequency component, the authors
in [18] have proposed a Kalman-based technique. However,
this technique is suboptimal from a statistical sense when
the fundamental frequency is quasi-stationary (i.e. when the
frequency and the amplitude vary smoothly with time). In
this study, the interference signal is removed from the raw
data using an oblique projection. Then, the fault detection
problem is formulated as a binary hypothesis test and solved
using the Generalized Likelihood Ratio Test (GLRT). In [22],
a general GLRT-based approach has been investigated for
induction motors fault detection using the raw data. This
approach is time consuming and difficult to implement since
it requires many matrix inversions. In this paper, the proposed
detector allows reducing the computational cost and can be
easily implemented using FFT algorithms, which are almost
available on DSP-boards. In our case, the GLRT is referred to
as a matched subspace detector [23].

The remaining parts of this paper are organized as follows.
Section II presents the signal model under faulty conditions.
Section III describes the proposed approach for interference-
free signal estimation and the MLE based estimate for fault
related frequency. Section IV introduces the proposed fault
detection and diagnosis technique, which is performed using a
matched subspace detector. Section V deals with the statistical
performance evaluation of the proposed approach. Section VI
gives experimental results for eccentricity fault, bearing faults,
and broken rotor bars. Section VII concludes this paper.

II. STATOR CURRENT SIGNAL MODEL

Three induction machine faults are considered in this study:
eccentricity fault, bearing faults, and broken rotor bars.

A. Fault Related Frequencies
1) Eccentricity fault effect over stator currents: When

eccentricity occurs in a rotating machine, the effective airgap
function varies in a sinusoidal manner with respect to angular
position θs and time in the stator reference frame [5], [24].
In the literature, two types of eccentricity are commonly
considered, which are static and dynamic eccentricities. They
can jointly occur leading to the so-called a mixed eccentricity.

Airgap variations have an effect over the airgap perma-
nence function and consequently on the motor inductances.
Eccentricity fault effect has been investigated to model the
fault impact on stator current [24], [25]. It has been proved,
that under eccentricity faults, the stator currents contain the
frequencies given by (1).

ωk = ωs

∣∣∣∣1± k(1− s
p

)∣∣∣∣ (1)

where p is the pole pairs number. Moreover, eccentricity fault
leads to an increase of oscillating torque components at ωr =(

1−s
p

)
ωs [5]

2) Bearing faults effects on stator currents: Bearing sup-
port the rotor of an induction machine. Consequently, any
bearing fault can induce two different effects, which are the
introduction of a particular radial rotor movement and some
load torque variations [26], [27]. Bearing single-point defects
can be monitored by supervising some frequency components
around the supply frequency, which are given by

ωk = (ωs + kωf ), (2)

where ωf is one of the characteristic vibration angular
frequencies given in [21]. Amplitude and frequency of such
frequency components depend on shaft rotational speed, fault
location, and bearing dimensions.

3) Broken rotor bars effects on stator currents: Broken
rotor bar induces a bar resistance increase, which leads to
asymmetry of the resistance in rotor equivalent phases. Con-
sequently, broken rotor bars fault induces asymmetry of the ro-
tating electromagnetic field in the air gap. Since stator currents
are linked to the airgap electromagnetic field, any broken rotor
bar may have an effect over the stator current waveform [28].
This effect is modeled by adding some frequency components
on the stator currents PSD [29], [30], which are located at

ωk = (1 + 2ks)ωs, (3)

where is s is the per unit slip, ωs is the normalized electrical
supply fundamental angular frequency and k ∈ Z∗.

B. Stator Current Model Under Faulty Condition
For the previously discussed three faults , the fault signature

can be modeled as additional (normalized) angular frequencies
that can be expressed by

ωk = ωs + kωd, (4)
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where ωd is the normalized fault-related angular frequency,
and −k1 ≤ k ≤ k2 (k ∈ Z∗). For eccentricity fault,
bearing faults and broken rotor bars, the normalized fault-
related angular frequency are ωd =

(
1−s
p

)
ωs, ωd = ωf and

ωd = 2sωs, respectively. In this study, we assume that the
supply frequency is equal to its nominal value i.e. 50Hz (or
60Hz). In this context, the normalized electrical supply angular
frequency is equal to ωd = 100π/Fs rad/sample, where Fs
corresponds to the sampling rate.

By separating the supply and fault related components, the
stator current can be decomposed as

x[n] = s1[n] + s2[n] + b[n], (5)

where:
• s1[n] =

∑k2
k=−k1
k 6=0

ak cos ((ωs + kωd)n+ φk) corre-

sponds to fault spectral components,
• s2[n] = a0 cos (ωsn+ φ0) corresponds to the supply

fundamental component,
• ak ∈ R+ and φk are the amplitude and initial phase of

the kth component, respectively,
• b[n] corresponds to the noise component. This random

component is introduced to model the uncertainty errors
that may occur during the measurement, conversion,
storage or processing stages. This component is assumed
to be a white, Gaussian noise with zero mean and variance
σ2, i.e. b[n] ∼ N (0, σ2). This choice is motivated by
the central limit theorem [31], and by the fact that the
Gaussian noise assumption leads to largest Cramér-Rao
bound [32].

In practice, the signal is observed during a time slice of
N ≥ L samples, where L = 2(k1 + k2 + 1). By noting x ,
[x[0], . . . , x[N − 1]]T the observed current signal, the signal
model in (5) can be written under a matrix form as follows

x = G1(ωd)θ1 + G2θ2 + b (6)

where:
• G1(ωd)θ1 is the additive term that models the influ-

ence of the fault-related components. More precisely,
G1(ωd) ∈ RN×(L−2) is a matrix given by

G1(ωd) ,
[
H(ωs − k1ωd) · · · H(ωs + k2ωd)

]
(7)

where

H(ω) ,


1 0

cos(ω) − sin(ω)

...
...

cos(ω(N − 1)) − sin(ω(N − 1))

 (8)

and θ1 ∈ R(L−2)×1 is a column vector defined as

θ1 ,



a−k1 cos(φ−k1)

a−k1 sin(φ−k1)

...
ak2 cos(φk2)

ak2 sin(φk2)


. (9)

It should be emphasized that the matrix H(ωs) and the
vector θ2 =

[
a0 cos(φ0) a0 sin(φ0)

]T
are excluded

from (7) and (9), respectively.
• G2θ2 is an interference term that models the influence

of the supply component. Specifically, G2 ∈ RN×2 is
a matrix given by G2 , H(ωs) and θ2 ∈ R2×1 is a
column vector, which is defined by

θ2 ,
[
a0 cos(φ0) a0 sin(φ0)

]T
. (10)

• b , [b[0], . . . , b[N − 1]]T contains the additive white
noise.

The goal of this paper is to detect a fault, i.e. θ1 6= 0,
from the stator current. It should be mentioned that this paper
assumes that the values of k1 and k2 are known. If this
condition is not satisfied, these values can be estimated using
a model-order selection technique [33].

III. ESTIMATION OF ωd

Let us denote G(ωd) , [G1(ωd) G2] the N × L matrix
obtained by concatenating the matrices G1(ωd) and G2 and
θ , [θT1 ,θ

T
2 ]T the L×1 vector obtained by concatenating the

vectors θ1 and θ2. Under the assumption that b ∼ N (0, σ2I),
the ML estimator of ωd is given by the minimizing argument
of the Least Squares function ‖x − G(ωd)θ‖2 with respect
to ωd and θ [34]. In this section, we derive the exact and
approximate estimators of ωd. Furthermore, we show that these
two estimators require the estimation of the interference-free
signal.

A. Exact Frequency Estimator

The minimizing argument of the Least Squares function
‖x−G(ωd)θ‖2 with respect to ωd is given by [35]

ω̂d = arg min
ωd

xTP⊥G(ωd)x (11)

where P⊥G(ωd) , IN − G(ωd)
(
GT (ωd)G(ωd)

)−1
GT (ωd)

is the orthogonal projector into the kernel of GT (ωd). Due to
the particular structure of G(ωd), the estimator of ωd can also
be simplified as [23, Eq 3.6]

ω̂d = arg min
ωd

yT (IN −EG1G2(ωd))y (12)

where y , P⊥G2
x is the interference-free signal obtained

by removing the fundamental angular frequency component,
P⊥G2

is the orthogonal projector into the kernel of GT
2 , and

EG1G2(ωd) corresponds to the oblique projector onto the
range of G1(ωd) along G2 and is defined as:

EG1G2(ωd) , G1(ωd)
(
GT

1 (ωd)P
⊥
G2

G1(ωd)
)−1

GT
1 (ωd)P

⊥
G2

(13)
As G2 is a N × 2 matrix, it is interesting to note that the
expression of the interference-free signal y = P⊥G2

x can
be derived analytically. Indeed, the interference-free signal
expression can be written as

y = P⊥G2
x = x−G2θ̂2 (14)
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where θ̂2 = (G2
TG2)−1G2

Tx corresponds to the estimator
of θ2 under the assumption of a healthy electrical motor.
Performing some computations leads to the following result

θ̂2 =

[
<e(ĉ)
=m(ĉ)

]
(15)

where ĉ is defined as

ĉ =
2

N2 − |q(ωs)|2
(NX(ωs)− q∗(ωs)X∗(ωs)) (16)

where (.)∗ corresponds to the complex conjugate, and

q(ωs) =
sin(Nωs)

sin(ωs)
ejωs(N−1) (17a)

X(ωs) ,
N−1∑
n=0

x[n]e−jωsn (17b)

After some computations, it can be checked that the ele-
ments of y = [y[0], · · · , y[N − 1]]T are given by

y[n] = x[n]− |ĉ| cos (ωsn+ arg[ĉ]) (18)

where |ĉ| and arg[ĉ] correspond to the modulus and argument
of ĉ, which is the estimate of c = a0e

jφ0 .
Note that the complex scalar X(ωs) simply corresponds to

the Discrete-Time Fourier Transform (DTFT) of x[n] evaluated
at the normalized angular frequency ωs. Concerning the signal
length, it should be mentioned that the particular values N =
kπ/ωs (k ∈ N) are attractive from a computational point of
view. Indeed, for these particular values, the complex scalar ĉ
reduces to ĉ = 2X(ωs)/N

B. Approximate Frequency Estimator
The evaluation of the cost function in (12) requires the

inversion of a (L − 2) × (L − 2) matrix. For N � 1,
it can be shown that this cost function has a simple
closed-form expression. Indeed, for N � 1, the matrix
products GT

1 (ωd)G1(ωd) and GT
2 G2 can be approximated

by (N/2)IL−2 and (N/2)I2, respectively. It follows that
PG2 ≈ IN , and so the oblique projector can be simplified as
EG1G2

(ωd) ≈ (2/N)G1(ωd)G
T
1 (ωd), which does not depend

on G2. Consequently, the minimizing argument of (12) is
asymptotically equal to

ω̂d = arg max
ωd

k2∑
k=−k1
k 6=0

Py(ωs + kωd) (19)

where Py(ω) is the periodogram of y[n], which is defined as

Py(ω) ,
1

N

∣∣∣∣∣
N−1∑
n=0

y[n]e−jωn

∣∣∣∣∣
2

. (20)

As compared to the exact cost function, the approximate one
does not require any matrix inversion and explicitly depends
on the periodogram of y[n]. Note that it is really important
to use the periodogram of the interference-free signal y[n]
instead of the periodogram of the original signal x[n]. Indeed,

the supply frequency, which has usually the largest amplitude,
can introduce strong sidelobes in the periodogram of x[n].
These sidelobes critically affect the values of Px(ωs + kωd)
for k 6= 0. Using the interference-free signal instead of the
original one allows to overcome this issue.

IV. MATCHED SUBSPACE FAULT DETECTOR

Let us consider the following hypothesis testing problem:
the induction motor is healthy (H0) or a fault is present
(H1). Mathematically, this hypothesis testing problem can be
formulated as

H0 : θ1 = 0,

H1 : θ1 6= 0. (21)

This problem can be solved by a Generalized Likelihood Ratio
Test (GLRT). For the particular model in (6) with ωd known,
the GLRT reduces to a matched subspace detector [23], [36].

A. Exact Fault Detector

Let us consider the interference-free signal y computed
by (18). When the noise variance is unknown, the matched
subspace detector decides H1 if [23]

T (y) =

(
N − L
L− 2

)
yTEG1G2(ωd)y

yT (IN −EG1G2(ωd))y
> γ (22)

where γ is the test threshold. Note that when the fault-related
(normalized) angular frequency ωd is unknown, it can be
replaced in (22) by its Maximum Likelihood estimator ω̂d
given in (12).

Regarding the detector performance, the probability of false
alarm is given by

PFA = QFL−2,N−L
(γ), (23)

where QFL−2,N−L
(.) is the complementary cumulative dis-

tribution function of a F distribution with L − 2 numerator
degrees of freedom and N − L denominator degrees of
freedom. Furthermore, the probability of detection is given
by

PD = QFL−2,N−2(λ)(γ), (24)

where QFL−2,N−L(λ)(.) corresponds to the complementary
cumulative distribution function of a non-central F distribution
with L−2 numerator degrees of freedom, N−L denominator
degrees of freedom, and a noncentrality parameter λ equal to

λ =
θT1 G

T
1 (ωd)P

⊥
G2

G1(ωd)θ1

σ2
. (25)

Note that the probability of detection PD depends on several
parameters such as the noise variance σ2, the value of θ1, the
sample length N , and the detection threshold, γ.

In practice, the detection threshold γ can be set according
to a desired probability of false alarm, PFA, using (23). Since
PFA does not depend on σ2, this test leads to a constant false
alarm rate (CFAR) detector.
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TABLE I
SIGNAL PARAMETERS UNDER ASSUMPTION H1 (L = 10).

Parameter k = −2 k = −1 k = 0 k = 1 k = 2

ak 0.0004 0.018
√
2 0.0175 0.0003

φk 1.2 0.3 0.1 0.1 0.5

B. Approximate Fault Detector
The implementation of the exact fault detector requires

a matrix inversion. For N � 1, it can be shown that
the statistical test T (y) has a simple closed-form that only
depends on the periodogram of y[n].

As provided in subsection III-B, the oblique projector
EG1G2

(ωd) can be approximated by (2/N)G1G
T
1 when

N � 1. It follows that the matched subspace detector reduces
to

Ta(y) =

(
N − L
L− 2

) k2∑
k=−k1
k 6=0

Py(ωs + kωd)

1
2‖y‖2 −

k2∑
k=−k1
k 6=0

Py(ωs + kωd)

> γ (26)

where Py(ω) is defined in (20) and corresponds to the peri-
odogram of y[n] evaluated at ω.

C. Fault Detection Methodology
The proposed induction machine fault detection methodol-

ogy is based on four steps, which are summarized by Fig. 1.
The proposed approach performance is tested on synthesized
signals. Afterwards, its effectiveness is confirmed on experi-
mental data for eccentricity fault, bearing faults, and broken
rotor bars.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
techniques with synthetic signals. These signals are generated
according to the signal model in (5) with the parameters
provided in Table I. The (normalized) angular frequencies ωs
and ωd are respectively set to 2π × 50/Fs rad/sample and
2π × 10.2/Fs rad/sample, with Fs = 2400 Hz.

A. Estimation of ωd
In this subsection, we evaluate the performance of three

estimators of ωd: the exact estimator provided in (12), the
approximate estimator provided in (19) and a simple technique
without interference rejection, obtained by replacing Py(ω)
by Px(ω) in (19). For these estimators, the optimization of
the cost function is performed using the Nelder-Mead method
with an initial value equal to ωd = 20π/Fs rad/samples. The
estimation performance is evaluated in terms of Mean Square
Error (MSE), which is estimated using M = 1000 Monte
Carlo trials as

MSEωd
=

1

M

M−1∑
m=0

(ωd − ω̂d[m])
2
. (27)

where ωd and ω̂d[n] correspond to the true and estimated (nor-
malized) fault-related angular frequencies, respectively. The

Stator current
samples x[n]

Compute the interference-free
signal y[n] based on (18)

y[n]

Estimate ω̂d and θ̂1

based on (12) and (??)

ω̂d and θ̂1

Compute fault
detection criterion

based on (22) or (26)

T (y) or Ta(y)

T (y) > γ

Faulty motor
H1

Yes

Healthy motor
H0

No

Operator desired
false alarm

probability PFA

Compute
detection
Threshold

γ

Fig. 1. Flowchart of the matched subspace detector.

MSE is also compared with exact and approximate Cramér-
Rao Bounds (CRBs). While the exact CRB must be evaluated
numerically, it can be approximated for a large number of
samples by

CRBa(ωd) =
24σ2

N3

k2∑
k=−k1

k2a2k

. (28)

Note that the CRB for angular frequency decreases as the
noise variance σ2 increases and that the bound decreases as
1/N3, making it quite sensitive to data record length N . This
fact makes the frequency estimates more sensitive to data
acquisition length N than noise variance σ2.

Figure 2 displays the MSE versus signal length, N , for a
signal to noise ratio equal to SNR = 30dB. We observe
that the MSE of the exact estimator approaches the CRB
when N > 300 samples. Furthermore, this figure clearly
shows the benefit of using the interference-free signal, y[n].
Indeed, the approximate estimator based on y[n] clearly out-
performs the approximate one without interference rejection.
Furthermore, we note that the approximate estimator based on
the interference-free signal, y[n], periodically approaches the
CRB.
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Fig. 2. Estimation of ωd: Cramer-Rao Bounds (CRB) and MSE for
frequency versus signal length N (SNR = 30dB).
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Fig. 3. Fault detection: Probability of detection, Pd, and false alarm,
PFA, versus signal length N (PFA = 0.1, SNR = 30dB).

B. Fault Detection

In this subsection, the performance of the matched subspace
detector is assessed on synthesized signals. Two detector types
are considered in the following, which are the clairvoyant
matched subspace detector that requires a perfect knowledge
of θ1 and ωd and the blind matched subspace detector that
replaces θ1 and ωd with their estimates θ̂1 and ω̂d. The detec-
tion performance is usually assessed through two parameters,
which are the probability of detection PD (i.e. the probability
to detect H1 when H1 is true), and the probability of false
alarm PFa (i.e. the probability to detect H1 when H0 is true).

Figure 3 presents the performance of three fault detectors
for the discrimination between H0 and H1 with respect to N
(SNR = 30dB). For H0, the signal parameters are obtained
from Table I by setting ak = 0 for k 6= 0. The three considered
fault detectors are the clairvoyant exact detector provided by
(22), the clairvoyant approximate detector provided by (26),
and the blind approximate detector given by (26) (obtained
by replacing ωd by its approximate estimator in (19)). For

these three detectors, the threshold γ is computed from the
probability of false alarm, which is set to 0.1. The detector per-
formances are assessed through the Probability of Detection,
Pd, and Probability of False Alarm, PFA, which are estimated
using M = 1000 Monte Carlo trials. These probabilities are
compared with the theoretical values of PFA and PD provided
in section IV.

For the three detectors, we observe that the probability of
detection, PD, becomes equal to 1 for N ≥ 100 samples.
Regarding PFA, we note that the probability of false alarm
obtained with the approximate clairvoyant detector is close to
the desired one for N ≥ 200 samples. When the (normalized)
fault-related angular frequency is unknown, Figure 3 also
shows that the blind approximate detector seems to increase
the false alarm rate since PFA ≥ 0.1 when N ≥ 250 samples.

VI. EXPERIMENTAL RESULTS

This section illustrates the behavior of the exact and ap-
proximate blind detectors for eccentricity fault, bearing faults
and broken rotor bars detection using experimental signals
issued from different induction motors and for different load
conditions.

A. Experimental Setup Description
Two mechanical faults and one electrical fault are consid-

ered in this section. These faults include eccentricity fault,
rolling-element bearing faults, and broken rotor bars. The
stator currents are measured using a data acquisition card and
processed off-line on a standard desktop PC using Matlab®.

1) Experimental setup for mechanical faults: Healthy ma-
chine and faulty ones with eccentricity fault and bearing faults
have been tested. Each machine is a 230/400V, 0.75kW, three-
phase induction machine with one pole pairs and 2780 rpm
rated speed. The machines under study are fed by a PWM
inverter with a fundamental frequency that can be tuned from
0 to 60 Hz. A DC generator is used to load the induction
machines. The Experimental test bed is illustrated by Fig. 4.
The induction machines have two 6204-2 ZR type bearings
(single row and deep groove ball bearings) with the following
parameters: outside diameter is 47 mm, inside diameter is 20
mm, and pitch diameter D is 31.85 mm. Bearings have 8 balls
with an approximate diameter d of 12 mm and a contact angle
of 0◦. In the eccentricity-based faulty machine, eccentricity is
introduced by acting on jack bolts on the circumference of
each end-bell. Indeed, this will introduce a non-uniform air
gap. Bearing faults are obtained by drilling holes of several
diameters in the inner raceway (faults ranging from 0.178 mm
in diameter to 1.016 mm).

All the experiments were done in steady-state conditions.
Induction machines stator currents have been measured using
closed-loop (compensated) current transducers using Hall ef-
fect. These transducers are advantageous in terms of accuracy,
linearity, low-temperature drift, wide frequency bandwidth,
and high immunity to external interference. The stator currents
acquisition is performed by a 24 bits LabJack UE9 acquisition
card with 20 kHz sampling frequency as illustrated by Fig. 5.
The bipolar analog-to-digital converter (ADC) of the LabJack
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Fig. 5. Measurement devices.

UE9 has a range of −5 Volts to +5 Volts, which gives a
voltage resolution of 0.59µV/bit.

2) Experimental setup for rotor electrical fault: The ex-
perimental bench consists of a three-phase 5 kW induction
motor. The motor has p = 2 pole pairs and a nominal toque
Γ = 32 N.m. The induction motor is supplied by a standard
industrial inverter using a constant voltage to frequency ra-
tio control strategy. The load is a DC motor with separate
constant excitation connected to a resistor. The load level is
controlled through an auto-transformer connected to the DC
motor excitation. The motor fault has been simply achieved
by drilling the rotor bar (broken bar emulation). Broken rotor
bar significantly increases the currents flowing in the adjacent
bars. These excessive currents increase the mechanical stresses
on the adjacent bars and may consequently cause the breakage
of the corresponding bars. Hence, one and two broken rotor
bars have been considered for fault severity tracking.
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Fig. 6. Eccentricity fault: Healthy and faulty phase motor current data
collected from the experimental setup (N = 10000, Hanning window).

B. Eccentricity Fault Detection

For illustration purposes, the stator current spectral signature
of a motor with eccentricity fault is shown in Fig 6. The current
spectra shows an increase of the fault-related frequencies
around the fundamental frequency. This behavior is identical
for several load conditions. Consequently, it can be clearly
recognized that a monitoring strategy based on these compo-
nents can be efficiently used for detection purposes. Moreover,
we observe that the noise component level is about −110dB,
which may eventually hide the low-amplitude fault frequency
components for small data lengths. This noise component is
due to the measurement chain, quantization errors and the
induction machine operating conditions. Finally, we note that
that the amplitude of the fundamental frequency is much more
larger than those at the fault-related frequencies. When using
a classical periodogram, the large amplitude of the fundamen-
tal component can mask the amplitude of the fault related
components. To overcome this issue, the proposed technique
explicitly removes the fundamental component from the raw
signal using an oblique projection, and estimates the amplitude
of the fault related components from the interference-free
signal.

The original stator current signal has been low-pass filtered
and down-sampled to 400 Hz. Then, it has been processed
using the proposed approach. The evolution of the fault detec-
tion criteria T (y) with respect to load conditions for several
rotational speeds is given in Fig. 7. The detector threshold γ
obtained by setting PFA = 0.1 is also shown for comparison.
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Fig. 7. Eccentricity fault: T (y) versus induction motor load for several
rotational speeds.

For the healthy motor, we observe that the fault criteria T (y) is
below the threshold γ whatever the load and speed conditions
are. For a motor with eccentricity fault, the detector allows
to correctly detect the fault regardless of the rotational speed
conditions. However, the fault may not be detected for an
unloaded motor since it has a small influence on the stator
current under small load. This is mainly due to the loading
impact on the fault signature.

C. Bearing Fault Detection

The proposed fault detection criteria sensitivity has been
evaluated according to bearing faults level. In fact, several fault
severity degrees are considered in this study as summarized
by table II.

TABLE II
BEARING FAULT DEGREE VERSUS INNER RACEWAY HOLE DIAMETER.

Fault
degree 1 2 3 4

Bearing hole
diameter (inches) 0.007 0.014 0.02 0.03
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Fig. 8. Bearing fault: Healthy and faulty phase motor current data
collected from the experimental setup (N= 10000, Hanning window).

The stator current PSD for healthy and faulty induction
machines is given by Fig. 8. This figure shows clearly that
bearing fault introduce some frequency components around
the supply fundamental frequency. These components already
exist on the stator current spectrum for healthy machine, which
may be due to inherent eccentricity at the manufacturing stage,
or harsh operating conditions. However, these components
are extremely low for healthy machines and their amplitude
increases when a fault is present. The results after the PSD
computation using the periodogram for various fault conditions
are given in table III. We observe that the noise level is
about −160dB. Furthermore, this table clearly shows that the
fundamental frequency has higher amplitude than the fault
related frequencies. Consequently, removing this component
from the raw data can significantly enhance the detection of
the fault related components estimates.

The raw data has been low-pass filtered and down-sampled
to 400 Hz. Then, it has been processed using the proposed
approach. The evolution of the exact and approximate fault
detection criteria T (y) and Ta(y) with respect to N for several
fault degrees is given by Fig. 9. The detector threshold γ
obtained by setting PFA = 0.1, is also shown for comparison.
For the healthy motor, we observe that the fault criteria T (y)
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TABLE III
AMPLITUDE OF THE BEARING FAULT RELATED COMPONENTS.

Fault Fundamental Fault related components Noise level
(dB)Frequency

(Hz)
PSD
(dB)

Frequency
(Hz)

PSD
(dB)

Healthy fs = 50 6.58
fl = 25.33
fu = 74.65

−115.4
−116.4 −166.9

Sev.1 fs = 50 6.17
fl = 25.3
fu = 74.68

−99.1
−106.7 −162.3

Sev. 2 fs = 50 6.35
fl = 25.33
fu = 74.65

−92.72
−94.57 −167.6

Sev. 3 fs = 50 6.33
fl = 25.33
fu = 74.65

−86.23
−87.69 −160.4

Sev. 4 fs = 50 6.42
fl = 25.33
fu = 74.65

−83.16
−84.89 −161.3
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Fig. 9. Bearing faults: T (y) and Ta(y) versus N (L = 6).

and Ta(y) are below the threshold γ whatever the number of
samples, N . For bearing fault, the detector requires at least
N = 600 samples to correctly detect the fault. For a severe
bearing fault, we observe that a smaller number of samples is
required. Moreover, the fault detection criteria increase as the
fault degree increases.

D. Broken Rotor Bars Fault Detection
The healthy and the two faulty machines have been operated

under steady state conditions with a fundamental frequency
equal to 50 Hz at 50% load. The stator current has been
acquired using a data acquisition board, with Fs = 20
kHz. The signal is further low-pass filtered, down-sampled to
400Hz.

The stator current power spectral density (PSD) for healthy
and faulty induction machines is given by Fig. 10. This figure
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Fig. 10. Broken rotor bars: Healthy and faulty phase motor current data
collected from the experimental setup (N= 20000, Hanning window).

TABLE IV
AMPLITUDE OF THE BROKEN ROTOR BARS RELATED COMPONENTS.

Broken
bars

Fundamental Fault related components Noise level
(dB)Frequency

(Hz)
PSD
(dB)

Frequency
(Hz)

PSD
(dB)

0 fs = 50 23.87
fl = 46.84
fu = 53.25

−89.15
−100.4 −132.7

1 fs = 50 24.85
fl = 47.3
fu = 53.1

−71.26
−67.72 −97.99

2 fs = 50 24.93
fl = 46.54
fu = 53.71

−36.94
−34.53 −92.73

clearly shows that broken rotor bars introduce several fre-
quency components around the supply fundamental frequency.
The fundamental frequency and the fault related frequency
components for various fault degrees are summarized in table
IV. In this table, only the upper fu and the lower fl sidebands
are considered. It shows that the amplitude of the frequency
components, signature of the fault, evolve according to the
fault severity. Moreover, these frequencies are too close to the
fundamental frequency which make it difficult to detect using
the classical DTFT for short data measurement. Moreover, this
table gives the noise level, which appears to be more important
in the case of faulty machines. Visually, these differences can
make the broken rotor bars more difficult to detect.

The evolution of the exact and approximate fault detection
criteria T (y) and Ta(y) with respect to N for several fault
degrees is given by Fig. 11. The detector threshold γ obtained
by setting Pfa = 0.1 is also shown for comparison. For the
healthy motor, we observe that the criteria T (y) and Ta(y)
are below the threshold whatever the number of samples N .
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Fig. 11. Broken rotor bars: T (y) and Ta(y) versus N (L = 18).

For one broken bar, the detector requires at least N = 400
samples to correctly detect the fault. For two broken rotor bars,
we observe that a smaller number of samples is required.

VII. CONCLUSION

This paper has proposed a new faults detector for induction
machines. The proposed detector is based on three steps,
which are the estimation of the interference-free signal, the
estimation of the fault-related angular frequency, and the
application of a matched subspace detector. For the two last
steps, we have derived exact and approximate algorithms. The
approximate algorithm is simply based on the periodogram of
the interference-free signal and does not require any matrix
inversion, making it well suited for practical implementations.
The effectiveness of the proposed approach has been verified
for eccentricity fault, bearing faults, and broken rotor bars
detection.
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