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Best Linear Approximation of Wiener Systems
Using Multilevel Signals: Theory and Experiments

A. De Angelis, J. Schoukens, K. R. Godfrey, P. Carbone

Abstract—The problem of measuring the best linear approxi-
mation of a nonlinear system by means of multilevel excitation
sequences is analyzed. A comparison between different types of
sequences applied at the input of Wiener systems is provided
by numerical simulations and by experiments on a practical
circuit including an analog filter and a clipping nonlinearity.
The performance of the sequences is compared with a white
Gaussian noise signal for reference purposes. The theoretical
characterization of the best linear approximation when using
randomized constrained sequences is derived analytically for the
cubic nonlinearity case. Numerical and experimental results show
that the randomized constrained approach for designing ternary
sequences has a low sensitivity to both even and odd order
nonlinearities, resulting in a response close to the actual response
of the underlying linear system.

Index Terms—Nonlinear systems, best linear approximation,
ternary sequences, binary pseudorandom sequences.

I. INTRODUCTION

The measurement of the frequency response function (FRF)
of a linear dynamical system is a fundamental step that is
typically performed in engineering applications for modeling
or control purposes. Such procedure is typically performed by
exciting the system under test with a properly designed input
signal and measuring the output. However, many practical
systems are affected by some degree of nonlinear distortion.
For such systems, the FRF will vary as a function of the
excitation that the system is subject to. To analyze these cases,
linearization is often a viable option. For this reason, the con-
cept of best linear approximation (BLA) of nonlinear systems
is of great importance to practical applications. Therefore, the
BLA, which is obtained by solving a least squares problem
where the mean squared difference between the actual output
of the system and the output of a linear model is minimized,
has been thoroughly studied in the literature [1]–[4].

An analysis of the BLA for several cases of the amplitude
distribution of the input signal is developed in [5], considering
Gaussian signals and binary signals. The analysis is further
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extended in [6] to multilevel signals. A particularly useful class
of multilevel signals is that of ternary sequences, which are
easy to generate in practical applications where the number of
available levels is limited, and allow for defining a wider range
of harmonic behavior when compared to binary sequences.
In this context, a direct synthesis (DS) method for obtaining
ternary sequences with harmonic multiples of two and three
suppressed is proposed in [7]. Such sequences are well suited
for the characterization of even and odd nonlinearities in
dynamical systems and for the mitigation of the impact of
nonlinear distortion on the FRF measurement. Furthermore,
in [8], [9], randomized constrained sequences (RCS) are intro-
duced, allowing for a more flexible approach to design ternary
sequences with defined spectral properties. The RCS approach
is particularly suited for practical measurement applications,
since it provides robustness in the presence of non-idealities
such as nonuniform digital-to-analog converter (DAC) levels.

In this paper, the study of the properties of RCS and DS
ternary sequences is developed by analyzing their behavior
when used as excitation signals to measure the BLA of a
nonlinear system. The performance is evaluated on a block-
structured nonlinear system and compared to commonly-used
binary sequences and Gaussian noise. The latter is assumed
as a reference, due to its well-studied properties for BLA
measurement [10].

The BLA is characterized theoretically, extending the nu-
merical simulation results in [11]. Specifically, the analytical
expression of the cross-correlation between the input and the
output of Wiener systems with cubic nonlinearity and RCS
input is derived. Furthermore, the behavior of the BLA is
validated by experimental measurements performed on the
prototype of a Wiener system implemented by an analog filter
followed by a diode-based clipper. It is shown that the RCS
approach is relatively more robust to nonlinearities compared
to the other considered approaches, thus providing a BLA
closer to the underlying linear system.

II. THE BLA OF A WIENER NONLINEAR SYSTEM

The BLA of a nonlinear dynamical system is defined as
a linear system such that its impulse response minimizes the
mean square value of an error sequence e [·] defined as [12]:

e [k] = y [k]− (gBLA ∗ u) [k] (1)

where gBLA [·] is the impulse response of the BLA, u [·] is
the input of the nonlinear system, y [k] is its output at time
instant k, and ∗ denotes the convolution operation.

When the system under test is subject to different excita-
tion signals, a different BLA is obtained, depending on the

ar
X

iv
:1

71
0.

07
06

7v
1 

 [
ee

ss
.S

P]
  1

9 
O

ct
 2

01
7



PREPRINT VERSION. ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2

Fig. 1. Diagram of a Wiener system (top) and its BLA (bottom). The symbol
g[k] denotes the impulse response of a linear system and the symbol f(x)
denotes a static nonlinear transformation acting on the sequence x.

distribution of the amplitude of the excitation and its power
spectrum. For a Wiener system, defined as the cascade of a
linear dynamical system and a static nonlinearity as shown in
Fig. 1, Gaussian excitations result in a BLA that is a scaled
version of the underlying linear system [5].

This property represents a significant advantage in measure-
ment applications, especially those where the dynamics of the
underlying linear system must be measured while mitigating
the impact of nonlinear distortions [13]. However, the usage of
Gaussian signals is not always advisable in practical scenarios.
In fact, other classes of excitations are characterized by useful
properties, such as a lower crest factor, resulting in more power
into the system under test for the same maximum amplitude.
Furthermore, in some applications, there is a limitation on
the number of levels in the input signal. Such constraints
may be related to the particular measurement process, ease of
implementation considerations, or design of the actuator [14].
Therefore, in those applications, one may resort to the use of
binary sequences or multilevel signals. The latter are defined as
discrete sequences with a number of amplitude levels greater
than two [6]. Ternary signals, which use three amplitude levels,
are an example of a multilevel signal.

The use of signals with a limited number of levels implies
that the distribution of the input deviates from Gaussianity.
This causes the BLA to be biased with respect to the Gaussian
BLA. This, in turn, means that the BLA will not be a scaled
version of the linear system response. An in-depth theoretical
study of such modifications is presented in [5], which pro-
vides analytical expressions for the BLA using common non-
Gaussian signals for general Wiener–Hammerstein systems.

III. EXCITATION SIGNALS FOR MEASURING THE BLA

In this section, we provide a description of several signals
that will then be used in the next section for numerical
comparison of the BLA of a Wiener system. The aim is
to prove the applicability of such signals to the purpose of
measuring the BLA, and to highlight the advantages of ternary
sequences with respect to commonly-used binary sequences.

The excitation signals considered in this paper are ternary
sequences, specifically DS and RCS, pseudorandom binary
sequences, specifically maximum length binary sequences
(MLBS) and inverse-repeat MLBS (IRMLBS), together with
white Gaussian noise (WGN).

In particular, DS sequences are constructed according to
the analytical method introduced in [7]. A DS sequence

is obtained starting from a basic sequence with specified
harmonic properties, which can be a MLBS among other
classes of sequences. The basic sequence is repeated n times
and multiplied by a special fixed sequence. For suppression
of harmonic multiples of 2 and 3, n = 6. Due to this
synthesis mechanism, the length N of a MLBS-based DS must
satisfy the constraint N = 6(22k+1 − 1), with k integer. This
requirement implies a lack of flexibility in terms of available
periods. On the other hand, the advantage of the DS approach
is that harmonic multiples of two and three are suppressed,
which removes the effects of even order nonlinearities and
mitigates those of odd order ones [7], [15].

Recently, another approach, i.e. Randomized Constrained
Sequences (RCS), for generating ternary sequences with har-
monic multiples of two and three suppressed has been pro-
posed in [8], [9]. Such approach is based on random sequences
that are constrained to satisfy the harmonic suppression condi-
tions and are iteratively modified in order to approach a design
goal, such as uniformity of the levels of excited frequencies.
The RCS method allows for a greater flexibility in terms of
achievable sequence lengths, since it can provide sequences of
length 6k, with k integer.

For comparison purposes, MLBS are considered in this
paper, since these binary pseudorandom sequences are com-
monly used for measuring the response of dynamical systems.
These sequences are generated using linear-feedback shift
registers with properly chosen feedback terms [16]. As a
consequence, the available MLBS sequence lengths are 2k−1,
with k integer. Furthermore, there is a limited number of
unique sequences for a given length. Notice that it is not
possible to suppress odd-order harmonics using MLBS (given
that they have only two levels). All harmonics are excited
when using an MLBS, but even harmonic suppression can be
achieved by IRMLBS, obtained by inverting every other digit
in an MLBS of period N to obtain an IRMLBS of period
2N [17]. For this reason, IRMLBS are also added to the
comparison.

IV. NUMERICAL COMPARISON

For numerical simulation, four Wiener systems are consid-
ered, with the parameters shown in Table I. In particular, the
linear block of the Wiener system consists of a FIR filter
having impulse response coefficients given by [1 0.7 0.3] in
the case of memory length 3, and [1 0.7 0.3 0.2 0.1 0.05] in
the case of memory length 6. Furthermore, for the nonlinear
block of the system, two nonlinearities are considered: x3 and
x3 + x2. For each system, each of the considered sequences
is applied at the input, u[k], and the output sequence y[k]
is computed at steady state, by discarding the transient. The
system is noise free, because we are interested in studying the
effect of the sequence distribution and not of measurement
noise. The sequence length is 762 for DS, RCS, and WGN,
511 for the MLBS case, and 510 for the case of IRMLBS.
Different lengths are used because of the sequence-specific
length limitations explained in the previous section. As an
example, the length of DS must be 6(22k+1 − 1), which is
an even number. On the other hand, the MLBS must be of
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Fig. 2. Numerical simulation results. The absolute value and the standard deviation of the estimated BLA are shown for the systems defined in Table I: (a)
System 1; (b) System 2; (c) System 1 standard deviation; (d) System 2 standard deviation; (e) System 3; (f) System 4; (g) System 3 standard deviation; (h)
System 4 standard deviation.

the form 2k − 1, which is an odd number. Therefore, it is not
possible to generate a DS sequence and an MLBS sequence
having the same length. The sequence lengths were selected
to be as close as possible. First, a value of 762 was chosen
arbitrarily for the sequence length of DS. This choice allowed
the computational complexity of further processing operations
to be contained. Once a length of 762 was defined for DS,
the closest MLBS and IRMLBS lengths were chosen, namely
511 for MLBS and 2×255 = 510 for IRMLBS.

The BLA is estimated as follows [12]:

ĜBLA(jωk) =
ŜY U [k]

ŜUU [k]
(2)

where ŜY U [k] is the cross-power spectrum of the input and
output sequences, and ŜUU [k] is the autopower spectrum of the
input. The estimates are obtained by first dividing the sequence
realizations into groups of 4 unique sequences each. Then,

TABLE I
SUMMARY OF CONSIDERED SYSTEMS.

Impulse response g[·] Nonlinearity f(·)

System 1 [1 0.7 0.3] x3

System 2 [1 0.7 0.3 0.2 0.1 0.05] x3

System 3 [1 0.7 0.3] x3 + x2

System 4 [1 0.7 0.3 0.2 0.1 0.05] x3 + x2

each group is used to provide an estimate of the BLA by
averaging before division. Such averaging significantly reduces
the variance increase due to the random behavior for Gaussian
signals [12]. The mean and standard deviation of the BLA
estimates provided by each group are then calculated. Due to
the limited availability of unique MLBSs for a given length,
as described in [18], 4 groups are formed for the DS and
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TABLE II
KULLBACK-LEIBLER DIVERGENCE BETWEEN THE EMPIRICAL

PROBABILITY DISTRIBUTIONS, ESTIMATED BY HISTOGRAMS, OF THE
CONSIDERED SEQUENCES AND THE IDEAL NORMAL DISTRIBUTION, AT

THE OUTPUT OF THE LINEAR BLOCK OF SYSTEM 2.

DS RCS WGN MLBS IRMLBS

0.2346 0.0654 0.0255 0.1837 0.1897

IRMLBS cases, 12 groups for the MLBS case, and 100 groups
for the other cases.

The input sequences are normalized so that they have the
same RMS value. The normalization is performed such that
the impulse response of the Gaussian BLA is equivalent to
the true underlying linear impulse response, according to the
procedure in [5]. Additionally, the ternary sequences RCS and
DS are multiplied by the term

√
3/2, in order to obtain the

same power for all excitations.
Numerical results for all considered systems and input

sequence types are shown in Fig. 2, where only excited
harmonics are displayed. In the figure, scaled versions of the
BLA are plotted. The scaling factor is chosen such that the
least square errors between each BLA and the FRF of the
linear filter are minimized. This choice has been made because
we are interested in the dissimilarity between the dynamics.
The standard deviation has been scaled by the same factor.

In Fig. 3, the ratio between the linear system response
and the BLA is plotted, with the same scaling as in Fig.
2, from which it can be seen that the RCS input signal
provides the closest response to the true underlying linear
system response, except for Gaussian noise. This is because
the amplitude distribution of the RCS at the output of the linear
system is the closest to a Gaussian distribution, among the
considered signals. The latter behavior is also highlighted by
the Kullback-Leibler divergence [19] values listed in Table II.

V. DISCUSSION OF THE RESULTS

Results show that odd ternary sequences are less sensitive
to the effect of even-order nonlinearities and memory length
of the linear system. In fact, they show less variability when
compared to white Gaussian noise excitation and to binary
signals that excite all harmonics (such as MLBS). This can be
noticed by observing that the standard deviation for MLBS in
Fig. 2(g), where the x2 term is present, is considerably larger
than that of Fig. 2(c).

Moreover, from the results of Fig. 3, it can be noticed
that DS is very sensitive to nonlinear distortions, due to its
particular construction. On the other hand, RCS, thanks to
its randomization properties, is less sensitive to nonlinearity.
Still, RCS maintains the ability to discriminate even and
odd distortions, due to harmonic multiples of two and three
suppressed. This is not possible with MLBS and IRMLBS.

VI. THEORY FOR CUBIC NONLINEARITY AND RCS INPUT

Motivated by the numerical simulation results presented
in the previous sections, we analyze the performance of
RCS for Wiener systems also from a theoretical point of
view. Specifically, in this section, we provide a theoretical

characterization of the behavior of RCS when applied to the
input of a Wiener system with a cubic nonlinearity. Notice
that a cubic nonlinearity may be used to model numerous
real-world nonlinear systems often encountered in practice,
which can be represented using odd functions. The theoretical
characterization is performed by deriving the cross-correlation
between the input and the output, as stated in the following
Theorem.

Theorem 1. Consider an RCS of length N as defined in [9]
at the input of a causal Wiener system. Let the Wiener system
consist of a FIR filter of order H , with H < N/6, and a cubic
nonlinearity. Denote the input of the Wiener system by u[·], its
output by y[·], the autocorrelation of the input by Ru[·], and
the impulse response of the FIR filter by g[·].

Then, the cross-correlation between the output and the input
is given by

Ryu[r] = 2α2 (g ∗Ru) [r]−
(
g3 ∗Ru

)
[r] (3)

= g [rm]Ru [rq]
(
2α2 − g2 [rm]

)
, (4)

r = 0 . . . N − 1 ,

where α2 ,
H∑

k=0

g2 [k], rq denotes the quotient of the division

r
N/6 , i.e. rq ,

⌊
r

N/6

⌋
N
6 , and rm denotes the reminder, with

rm = r − rq .

Proof: See Appendix I.
Note that the expressions for the cross-correlation in (3)

and (4) apply also to Wiener systems where the nonlinearity
is y = x3 + x2. This is due to the general result that zero-
mean excitations with symmetric distribution, combined with
even-order nonlinearities (with even-degree Volterra kernels),
have a zero BLA [12].

It is interesting to compare the derived expression of the
cross-correlation to that for white Gaussian input sequences
of variance one, which is given by [5]:

Ryu(Gaussian)[r] = 3α2g[r] . (5)

If the cross-correlation in (3) is evaluated for |r| < N/6 and
for an RCS input of unitary variance, i.e. the RCS sequence
is scaled by

√
3/2, it reduces to

Ryu[r] = 3α2g[r]−
3

2
g3[r]. (6)

By comparing (6) to (5), it can be noticed that the bias term of
the RCS with respect to the Gaussian input case is −3/2g3[r],
whereas for random binary sequences it is −2g3[r], which
applies also to MLBS in the limit when N is large [5].
Therefore, the BLA of the RCS is closer to the underlying
linear system than that of the MLBS.

The theoretical results in Theorem 1 have been validated by
numerical simulations. In particular, 103 different instances
of an RCS of length N = 762 were generated and fed to
a Wiener system with H = 3, g = [1, 0.7, 0.3], and a
cubic nonlinearity. For each input sequence, the corresponding
output was stored. Subsequently, the cross-correlation between
the input and the output was calculated for each sequence.
Finally, the average of all cross-correlation sequences was
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Fig. 3. Numerical simulation results. Ratio between linear system response and BLA. (a) System 1; (b) System 2; (c) System 3; (d) System 4.
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Fig. 4. Comparison between numerical simulations and theoretical equations
(3) and (4). (a): full cross-correlation sequence. (b): magnification of the first
peak of the cross-correlation sequence.

calculated. Such average cross-correlation is depicted in Fig.
4, together with the theoretical values obtained from (3) and
(4). As shown in Fig. 4, there is a very good agreement
between theoretic results and simulations, thus validating the
derivations of Theorem 1. In the following section, we show
that the behavior analyzed theoretically for cubic nonlinearity
may be observed also in a practical situation, with a realistic
type of nonlinearity.

VII. EXPERIMENTAL RESULTS ON A REAL-WORLD
WIENER SYSTEM

To validate the theoretical results presented in Sections IV -
VI, experiments were performed on a real-world Wiener

180 Ω

VO

−

+

1 kΩ

100 nF

1 kΩ

VI

Fig. 5. Schematic of the realized Wiener system, consisting of a low pass
filter and a soft clipper.

system, implemented as an electronic circuit. The considered
Wiener system is comprised of a first-order low-pass active
filter, having a cutoff frequency of approximately 1600 Hz,
followed by a diode-based clipper with a series resistor, thus
performing soft clipping, as depicted in the schematic of
Fig. 5. This circuit was first analyzed by numerical simula-
tions, then experimentally tested.

A. Simulation

Numerical simulations were carried out by modeling the
lowpass filter as a first-order iir filter and performing hard
clipping numerically. Hard clipping is an approximation of
the soft clipping operation of the actual circuit. The same
simulation procedure as in Section IV was used. Specifically,
due to a limited number of sequences available, 16 instances of
DS and IRMLBS, 48 instances of MLBS, and 1000 instances
of RCS and WGN were used. Oversampling by a factor of 10
was employed, to mitigate the effect of frequency warping
close to Nyquist frequency due to the iir filter. Therefore,
the sampling frequency of the data acquisition system was
200 kSa/s, whereas the signal generator frequency was 20 kHz.
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Simulation results are shown in Fig. 6, where plots are scaled
so that the mean squared error between each BLA and the
FRF of the linear filter is minimized.

B. Experimental Characterization

A prototype of the considered Wiener system shown in
Fig. 5 was built using two 1N4148 diodes and a OP27
operational amplifier. Experiments were conducted using the
“Analog discovery 2” acquisition board by Digilent [20]. In
particular, the same sequences as those used in simulations
were applied at the input, scaled so they had the same desired
RMS amplitude, and the input and output of the system
were measured simultaneously, discarding the initial transient.
The experiment was repeated for several values of the RMS
amplitude. The sampling frequency of the on-board DAC
was set to 20 kSa/s, with a resolution of 14 bits. Moreover,
the sampling frequency of the ADC was set to 200 kSa/s
with a resolution of 14 bits. Note that oversampling was
performed also in the case of the experiments. The purpose
of oversampling in this context was to mitigate the effect of
sharp transitions of the input signal.

As a reference, the frequency response of the underlying
linear system was also measured, using a stepped sine excita-
tion with a low amplitude of 0.1 V that was chosen in order
to avoid exciting the nonlinearity.

Experimental results are shown in Fig. 7, where the averag-
ing process and number of sequence instances used is the same
as in the simulations. By comparing such results with numer-
ical simulations in Fig. 6, a strong agreement in the behavior
of the considered sequences can be noticed. Specifically, the
RCS is closer to the underlying linear system, both in terms
of magnitude and phase, with respect to the other multilevel
sequences compared. This is particularly emphasized when the
nonlinearity is strongly excited.

VIII. CONCLUSION

The use of ternary sequences for measuring the BLA of a
Wiener nonlinear system was investigated by numerical simu-
lations, theoretical derivations, and experiments. The theoret-
ical characterization of the randomized constrained sequences
was provided. Moreover, the performance of ternary sequences
was compared to that of commonly used binary sequences
and to white Gaussian noise. The comparison was carried out
both numerically and by experiments on a realized Wiener
circuit performing analog filtering and clipping. Results show
that the randomized constrained sequence approach provides
low sensitivity to nonlinearities, resulting in a BLA that is
close to the underlying linear system response. Compared to
binary sequences, it has the advantage of suppressing harmonic
multiples of two and three, allowing a nonparametric nonlinear
analysis to be made without any user interaction. Compared to
other signals that provide such suppression, such as multisines,
RCS is also robust to DAC nonlinearities, while a multisine
requires highly linear DAC for proper operation.

APPENDIX A
PROOF OF THEOREM 1

The cross-correlation between the output and the input is

Ryu[r] = E [y[t]u[t− r]]

= E

(H−1∑
k=0

g[k]u[t− k]

)3

u[t− r]

 (7)

By expanding (7), we obtain

Ryu[r] = E

H−1∑
k=0

g3[k]u3[t− k]

+3

H−1∑
k=0

H−1∑
h=k+1

g2[k]g[h]u2[t− k]u[t− h]

+6

H−1∑
k=0

H−1∑
h=k+1

H−1∑
j=h+1

g[k]g[h]g[j]u[t− k]u[t− h]u[t− j]


×u[t− r]

 , r = 0 . . . N − 1 (8)

where the terms of the expansion of a polynomial raised to
the third power are given by the multinomial coefficients [21].

Recall from [9] that E [u[n]] = 0 ,∀n and that the autocor-
relation of the RCS is

Ru[n] =



2
3 n = 0
− 2

3 n = N
2

1
3 n = N

6 ,
5
6N

− 1
3 n = N

3 ,
2
3N

0 elsewhere

. (9)

By using (9), and considering that H < N/6, we obtain, for
k, h, j = 0 . . . H − 1, h 6= k, j 6= k, j 6= h, that the random
variables u [t− k], u[t−h], u[t−j], and u[t−r] are statistically
independent and

E [u [t− k]u[t− h]u[t− j]u[t− r]] = 0 . (10)

Then, by substituting (10) in (8) and noting that u3[·] ≡
u[·] for any ternary sequence assuming values [1 ,−1 , 0], the
expression in (8) for the cross-correlation simplifies to:

Ryu[r] = E

[
H−1∑
k=0

g3[k]u[t− k]u[t− r]

+3

H−1∑
k=0

H−1∑
h=0
h6=k

g2[k]g[h]u2[t− k]u[t− h]u[t− r]


=

H−1∑
k=0

g3[k]Ru[r − k]

+ 3

H−1∑
k=0

H−1∑
h=0
h6=k

g2[k]g[h]E
[
u2[t− k]

]
Ru[r − h]

=

H−1∑
k=0

g3[k]Ru[r − k] + 2

H−1∑
k=0

H−1∑
h=0
h6=k

g2[k]g[h]Ru[r − h]

(11)
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Fig. 6. Wiener system of Fig. 5, numerical simulation results. The two graphs on the left are obtained with an input RMS level of 1 V, whereas those on
the right with an input RMS level of 2 V, thus providing a stronger excitation of the nonlinearity.
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B
L
A

∣ ∣ ∣[dB
]

0 0.2 0.4 0.6 0.8 1

·104

−2

0

2

Frequency [Hz]

∣ ∣ ∣G/Ĝ
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Fig. 7. Wiener system of Fig. 5, experimental test results for an input RMS level of 1 V (left) and 2 V (right).

where we used the fact that the variance of the RCS is
E
[
u2[n]

]
= 2/3 ,∀n, and the result that functions of inde-

pendent random variables are independent.
By using simple algebraic manipulations, (11) can be writ-

ten in terms of the convolution operator as follows:

Ryu[r] =
(
g3 ∗Ru

)
[r] + 2

H−1∑
k=0

H−1∑
h=0
h6=k

g2[k]g[h]Ru[r − h]

=
(
g3 ∗Ru

)
[r] + 2

(
H−1∑
k=0

g2[k]

)
H−1∑
h=0

g[h]Ru[r − h]

− 2

H−1∑
k=0

g2[k]g[k]Ru[r − k]

=
(
g3 ∗Ru

)
[r] + 2

(
H−1∑
k=0

g2[k]

)
(g ∗Ru) [r]

− 2
(
g3 ∗Ru

)
[r]

= 2α2 (g ∗Ru) [r]−
(
g3 ∗Ru

)
[r]

Therefore, (3) is proven. Finally, the expression in (4)
follows from (3) by noticing that only one term of the
convolution sums in (3) is nonzero for a given r.
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